用户名: 密码: 验证码:
阳极负载中温固体氧化物燃料电池关键材料的研究及单电池数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前石油、天然气、煤等化石燃料紧张,电力供应不足,城市污染严重的情况下,燃料电池已逐渐成为全球能源领域研发的重点和热点。其中,中温固体氧化物燃料电池(IT-SOFC),是目前被世界上公认为最有发展前景的燃料电池发电技术之一。阳极负载构型是平板式固体氧化物燃料电池实现中温化最理想的结构形式,因此本文针对阳极负载中温固体氧化物燃料电池的关键材料开展研究。
     复合掺杂氧化物纳米粉体的制备是燃料电池研制工艺中的首要问题。本文分别采用三种不同的方法制备了电解质超细粉体Sm_(0.15)Gd_(0.05)Ce_(0.8)O_(1.9),考察了焙烧温度、合成工艺、络合剂种类及金属离子摩尔数对SGDC纳米粉体性能的影响,测试和研究了其烧结性能。结果发现,采用GNP法制备的SGDC纳米粉体在相同煅烧温度、相同金属离子摩尔比情况下与pechini法制备的微粒相比,晶粒粒度小、颗粒形状规则、分散性较好;在两种湿化学合成方法中,随着络合剂与总金属离子摩尔数比值的提高,样品粒径不断增大,晶粒形状由纺锤体向球体过渡。pechini法和GNP法制备的粉料在1400℃其致密度即可达到98%,相比之下固相反应法合成的SGDC要到1600℃时才能达到96%;对于Pechini法和GNP法,当总金属离子摩尔浓度降低时,SGDC烧结体的相对密度增大,孔隙率降低,样品的烧结活性有所增加。
     以一定的制备工艺制成了La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3(LSCF)阴极和NiO/GDC阳极基片,对制备的IT-SOFC阴极和阳极基片的成相情况、微结构和烧结性能等进行了考察,分析了各影响因素与电极性能之间的内在关系。发现起始粉体大小对LSCF的结晶状况有重要影响;阴极LSCF的催化活性和电性能随烧结温度的升高而降低;1000℃是LSCF较为适宜的电极烧结温度;内掺加NiO的NiO/GDC阳极,总体结晶度和成相情况不如外加NiO制备的阳极;NiO/GDC阳极基板的烧结收缩率随NiO含量的升高而增加,随着烧结温度的提升,阳极素坯的烧结收缩率呈非均匀性增加;在相同的烧结温度下,还原之前,随NiO含量的增加,NiO/GDC阳极基板孔隙率明显下降。造孔剂质量分数为5%或10%的NiO/GDC阳极基板能满足SOFC关于孔隙率的要求,淀粉的添加量以阳极总质量的5%为最佳;有效减轻烧结前前驱粉的团聚有助于NiO/GDC阳极的晶化和晶粒的完全生长。
     通过丝网印刷和匀胶涂膜两种不同薄膜制备方法,在阳极基片上成功涂覆Gd_(0.2)Ce_(0.8)O_(1.9),Sm_(0.2)Ce_(0.8)O_(1.9),Sm_(0.15)Gd_(0.05)Ce_(0.8)O_(1.9)电解质薄膜。考察了不同薄膜制备方法、不同分散方式、不同粒度大小及粒径分布、不同烧结方式等因素对电解质性能的影响。实验结果表明,匀胶涂膜法制备的电解质样品与丝网印刷法相比,其烧结致密化温度可降低200℃左右;球磨对烧结致密化温度有着重要的影响作用,其它条件相同的情况下,湿磨的效果不如干磨;采用三明治式烧结装置进行烧结可有效防止极片烧结过程中的起翘和开裂;三种掺杂氧化铈基电解质中,GDC电解质薄膜的烧结驱动力最大,成膜质量好,烧结后的表面形貌明显优于SGDC和SDC;采用GDC作为电解质工作时,当温度超过1300℃,GDC会与YSZ发生相互反应,在界面处生成Gd_2Zr_2O_7新相;在电解质烧结过程中,团聚严重抑制了SGDC的致密化;在同样烧结温度下,团聚体系数较低的起始粉体显示出更高的烧结致密度。采用更为有效的高剪切乳化分散后,SGDC的烧结致密化温度可降低至1300℃。
     发展了用于研究阳极负载中温固体氧化物燃料电池的三维数学模型,计算了燃料与氧化剂气体速度矢量分布,浓度分布、各流场的压力分布及电极催化层的电流密度分布等电池特性。将实验制备的IT-SOFC各组元材料性能代入建立的数学模型中进行了计算。分析了工作压力、温度、燃料浓度、氧化剂组成、孔隙率、曲折因子等因素对电池性能的影响。将模型计算所得的电池性能与文献中报导的同种材料、同种电池构型的IT-SOFC实验数据进行了比较,结果表明数值模拟结果与实验结论能较好的吻合;将模型计算所得的阳极负载电池性能与同材质的其它负载构型电池实验数据进行了对比,发现在电池各关键组元材料相同的情况下,四种构型设计中,本论文所采用的阳极负载构型IT-SOFC具有明显更为优越的电池性能。研究结果为平板型阳极负载薄膜IT-SOFC单电池的设计和优化提供了重要的参考依据。
Fuel cells have drawn much attention of human beings due to its high efficientin energy conversion and environmental friendship. Intermediate Temperature SolidOxide Fuel Cells (IT-SOFC) is a kind of promising fuel cell technique. To realize anIT-SOFC, one effective way is to use new electrolytes with higher conductivity andthiner thickness. Planar structure with anode supported is the popular design modefor IT-SOFCs. This thesis aims at the development with DCO electrolytes, focusesmainly on the preparation of thin electrolyte films, anode supports, as well as thePEN multilayers, and tries to reveal the relationship among material compositions,microstructures, process parameters and properties of IT-SOFC components.
     The first step of cell assembly preparation is the. preparation of compositelydoped oxide nanopowders. In the paper three different methods of synthesizingprocedure of Sm_(0.15)Gd_(0.05)Ce_(0.8)O_(1.9) particles have been made detailed discussion. Theeffects of sintering temperature, preparation methods, the species of organic chelates,and the total cation ions on the performance of SGDC powders were investigated.The results show that the performance of particles obtained by Glycine-NitrateProcess (GNP)is superior to that using pechini method under the same operatingconditions. The former method can achieve an improved monodispersed spheres. It isnoted that the shape and size of the particles are various such as needle, spindle andsphere when the powders were prepared under different conditions, which wasobtained by TEM and SEM. The sintering ability of the powder by wet-chemicalmethod is so good that the relative density of the pressed pellet sintered at 1400℃exceed 98%. The relative density of the SGDC samples prepared by solid phasereaction method is more than 96%at 1600℃. The relative density becomes higher,the sintering ability becomes better, and the porosity reduces with the decreasing ofthe total cation ions concentration.
     Perovskite-type La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3 (LSCF) cathode and NiO/GDC anodesupport were synthesized using the glycine-nitrate process (GNP) and the pechinimethod. The property and process of perovskite phase in LSCF material, themicrostructure, the sintering performance of the anode and cathode were investigated.The influences of the synthesis method, the starting powder and the sinteringtemperature on crystallization and the catalytic activity of electrode have beenstudied. The results indicate that the single phase of LSCF perovskite can beobtained at 650℃. The fine grains and crystallinity of cathode is obtained by milling the starting LSCF powder for 3h. LSCF cathode showed a worse catalytic activity asits sintering temperature increases. The finer microstructure and higher surface areafor O_2 reduction reaction is observed in LSCF cathode sintered at 1000℃. Thecrystal phase and size of the NiO/GDC anode are various with the different NiOdoped modes. The sintering shrinkage of NiO/GDC anode supports green tapesascend and the porosity of NiO/GDC anode supports decline with the increasing ofNiO contents.The anode support with the amylum of 5%mass fraction possess thebest porosity performance. The better crystal size could be obtained after effectivedispersion measures taken.
     Gd_(0.2)Ce_(0.8)O_(1.9), Sm_(0.2)Ce_(0.8)O_(1.9) and Sm_(0.15)Gd_(0.05)Ce_(0.8)O_(1.9) thin DCO films werecoated on the anode supports by screen printing and spin coating methods. Theeffects of dispersion technique, preparation methods of thin electrolyte films, particlesize and distribution, and the sintering mode on the electrolyte performance wereinvestigated. The results show that the densification temperature of electrolytesamples preparated by spin coating method is siginificantly lower than that obtainedby screen printing technique. The SGDC samples with dry ball-milling dispersionmode exhibit the highest sintered density at the same temperature. The "sandwich"sintering technique used is efficient for making good electrolyte membrances.Among three different DCO electrolytes, GDC possess the highest sintering kinetics,the closest electrolyte thin membrance, and the best microstruce. Interaction will beoccurred between GDC and YSZ, if the operating temperature reached 1300℃.Thestudies indicate that agglomeration retards densification in the stage of sintering. Thepowders with better dispersion exhibit a higher sintered density at the sametemperature. After effective dispersion measures taken, SGDC can fully dense at thesintering temperature of 1300℃.
     A three-dimensional mathematical model of an anode-supported planarIT-SOFC, with pure hydrogen as fuel and air as oxidant, has been developed bycoupling the velocity field, the species concentration field, the pressure field and thecurrent density field with one-another. An analysis to the effects of the systemparameters (operating pressure, temperature, fuel concentration, porosity, tortuosity,and the species of oxidant) on the system performance is performed. Results showthat the performance curves predicted by this numerical modeling agreed well withthe published experimental data. The performance of an anode-supported fuel cell issuperior to that using cathode or electrolyte as the support under the same operatingconditions. The former can achieve an improved operating range of current density and the electric potential. The model results could provide some fundamentalguidelines for the design and operation optimization of anode-supported planarIT-SOFCs.
引文
[1] Parker,S. P. Mcgraw-Hill encyclopedia of energy eng(能源百科全书)[M].北京:科学出版社,1992.
    [2] 黄镇江.燃料电池及其应用[M].北京:电子工业出版社,2005.
    [3] A.J.Appleby, F.R.Foulkes. A Fuel Cell Handbook [M]. Kreiger Publishing Co., 1993.
    [4] 衣宝廉.燃料电池——原理.技术.应用[M].北京:化学工业出版社,2003.
    [5] Ilic, D., K. Holl, P. Birke, et al. Fuel cells and batteries: Competition or separate paths? [J]. Journal of Power Sources, 2006,155 (1):72-76.
    [6] Zhu, B., G.Y. Meng, B.E. Mellander. Non-conventional fuel cell systems: new concepts and development [J]. Journal of Power Sources, 1999,79(1):30-36.
    [7] Sjunnesson, L. Utilities and their investments in fuel cells [J]. Journal of Power Sources, 1998,71 (1-2):41-44.
    [8] Lu, J.B., Z.T. Zhang, Z.L. Tang. Review on the development of solid oxide fuel cells [J]. Rare Metal Materials and Engineering, 2005,34(8): 1177-1180.
    [9] Dubois, J.C. The fuel cell and the electrical vehicle [J]. Actualite Chimique, 1999,(1): 19-26.
    [10] 雷永泉.新能源材料[M].天津:天津大学出版社,2000.
    [11] Berger, C.,P. hall. Handbook of Fuel Cell Technology [M]. Englewood cliffs, 1968.
    [12] C.Singhal, S.,K. Kendall. High Temperature Solid Oxide Fuel Cell: Fundamentals, Design and Applications [M]. Newyork: Elsevier Limited, 2003.
    [13] Mcdougall, A. Fuel Cells [M]. the macmillan press 1td, 1976.
    [14] Fergus, J.W. Electrolytes for solid oxide fuel cells [J]. Journal of Power Sources, 2006,162(1):30-40.
    [15] 李瑛,王林山.燃料电池[M].北京:冶金工业出版社,2000.
    [16] 隋智通,隋升,罗冬梅.燃料电池及其应用[M].北京:冶金工业出版社,2004.
    [17] 郭公毅.燃料电池[M].北京:能源出版社,1984.
    [18] Lu, C., S. An, W.L. Worrell, et al. Development of intermediate-temperature solid oxide fuel cells for direct utilization of hydrocarbon fuels [J]. Solid State Ionics, 2004,175(1-4):47-50.
    [19] Singhal, S.C. Advances in solid oxide fuel cell technology [J]. Solid State Ionics, 2000,135(1-4):305-313.
    [20] Gauckler, L.J., D. Beckel, B.E. Buergler, et al. Solid oxide fuel cells: Systems and materials [J]. Chimia, 2004,58(12):837-850.
    [21] Gao, L.,L.C. Guo. Development of materials for solid oxide fuel cell [J]. Journal of Rare Earths, 2005,23:617-627.
    [22] Pinol, S., M. Morales, F. Espiell. Low temperature anode-supported solid oxide fuel cells based on gadolinium doped ceria electrolytes [J]. Journal of Power Sources, 2007,169(1):2-8.
    [23] Huijsmans, J.P.P., F.P.F. van Berkel, G.M. Christie. Intermediate temperature SOFC-a promise for the 21st century [J]. Journal of Power Sources, 1998,71(1-2):107-110.
    [24] Jiang, S.P.,S.H. Chan. A review of anode materials development in solid oxide fuel cells [J]. Journal of Materials Science, 2004,39(14):4405-4439.
    [25] Fagg, D.P., G.C. Mather, J.R. Frade. Cu-Ce_(0.8)Gd_(0.2)O_2-delta materials as SOFC electrolyte and anode [J]. Ionics, 2003,9(3-4):214-219.
    [26] Huang, K., J. Wan, J.B. Goodenough. Oxide-ion conducting ceramics for solid oxide fuel cells [J]. Journal of Materials Science, 2001,36(5): 1093-1098.
    [27] Ji, Y., J. Liu, T.M. He, et al. The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte [J]. Journal of Alloys and Compounds, 2005,389(1-2):317-322.
    [28] 程继贵,邓丽萍,孟广耀.固体氧化物燃料电池阳极材料的制备和性能研究新进展[J].兵器材料科学与工程,2002,25(6):45—49.
    [29] Hori, M., K. Nagasaka, M. Miyayama, et al. Evaluation of electrode performances of single-chamber solid oxide fuel cells [A].In: Electroceramics in Japan Vⅲ,2005.
    [30] Primdahl, S.,M. Mogensen. Mixed conductor anodes: Ni as electrocatalyst for hydrogen conversion [J]. Solid State Ionics, 2002,152:597-608.
    [31] Hashimoto, A., D. Hirabayashi, T. Hibino, et al. Intermediate-temperature SOFCs with ru-catalyzed Ni-cermet anodes [A].In: Electroceramics in Japan Vⅱ,2004.
    [32] Cheng, J.G., L.P. Deng, B.R. Zhang, et al. Properties and microstructure of NiO/SDC materials for SOFC anode applications [J]. Rare Metals, 2007, 26(2):110-117.
    [33] Fang, X.H., G.Y. Zhu, C.R. Xia, et al. Synthesis and properties of Ni-SDC cermets for IT-SOFC anode by co-precipitation [J]. Solid State Ionics, 2004,168(1-2):31-36.
    [34] Marina, O.A., C. Bagger, S. Primdahl, et al. A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance [J]. Solid State Ionics, 1999,123 (1-4): 199-208.
    [35] Marina, O.A.,M. Mogensen. High-temperature conversion of methane on a composite gadolinia-doped ceria-gold electrode [J]. Applied Catalysis a-General, 1999,189(1):117-126.
    [36] 汤根土.平板状阳极支撑固体氧化物燃料电池的实验与数值模拟[D].浙江大学博士学位论文,2005.
    [37] Atkinson, A., S. Barnett, R.J. Gorte, et al. Advanced anodes for high-temperature fuel cells [J]. Nature Materials, 2004,3(1): 17-27.
    [38] Bebelis, S., N. Kotsionopoulos, A. Mai, et al. Electrochemical characterization of mixed conducting and composite SOFC cathodes [J]. Solid State Ionics, 2006,177(19-25): 1843-1848.
    [39] Hart, N.T., N.P. Brandon, M.J. Day, et al. Functionally graded composite cathodes for solid oxide fuel cells [J]. Journal of Power Sources, 2002,106(1-2):42-50.
    [40] 李彦.固体氧化物燃料电池的电极材料研究和单电池数值模拟[D].浙江大学博士学位论文,2006.
    [41] 马文会.固体氧化物燃料电池复合掺杂阴极材料的研究[D].昆明理工大学博士学位论文,2001.
    [42] Holtappels, P.,C. Bagger. Fabrication and performance of advanced multi-layer SOFC cathodes [J]. Journal of the European Ceramic Society, 2002,22(1):41-48.
    [43] Uchida, H., S. Arisaka, M. Watanabe. High performance electrodes for medium-temperature solid oxide fuel cells: Activation of La(Sr)CoO_3 cathode with highly dispersed Pt metal electrocatalysts [J]. Solid State Ionics, 2000,135(1-4):347-351.
    [44] Bebelis, S., N. Kotsionopoulos, A. Mai, et al. Electrochemical characterization of perovskite-based SOFC cathodes [J]. Journal of Applied Electrochemistry, 2007,37(1):15-20.
    [45] Hunsom, M., L.A. Dunyushkina, S.B. Adler. Investigation of La_(0.8)Sr_(0.2)CoO_3/ Ce_(0.85)Sm_(0.15)O_(2-x) cathode performance of solid oxide fuel cell by electrochemical impedance spectroscopy: Effect of firing temperature [J]. Korean Journal of Chemical Engineering, 2006,23(5):720-725.
    [46] Hwang, H.J., J.W. Moon, J. Moon. Removal of nitric oxide (NO) by perovskite-type composite catalytic thick film, La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-delta) and gadolinia-doped ceria electrolyte Gd_(0.2)Ce_(0.8)O_(2-delta) [J]. Journal of the American Ceramic Society, 2005,88(1):79-84.
    [47] 刘莉,唐超群.CeO_2基中低温固体电解质材料研究进展[J].电源技术,2001,25(6):428-431.
    [48] Kim, E.J., S.H. Lee, S.C. Choi. The preparation for sintered body of ultra fine Y_2O_3-doped CeO_2 powders using colloidal surface chemistry [A].In: Euro Ceramics Vⅱ, Pt 1-3,2002.
    [49] Kharton, V.V., F.M. Figueiredo, L. Navarro, et al. Ceria-based materials for solid oxide fuel cells [J]. Journal of Materials Science, 2001,36(5): 1105-1117.
    [50] Mori, T.,J. Drennan. Influence of microstructure on oxide ionic conductivity in doped CeO_2 electrolytes [J]. Journal of Electroceramics, 2006,17(2-4):749-757.
    [51] Chiodelli, G., L. Malavasi, V. Massarotti, et al. Synthesis and characterization of Ce_(0.8)Gd_(0.2)O_(2-y) polycrystalline and thin film materials [J]. Solid State Ionics, 2005,176(17-18):1505-1512.
    [52] Bellon, O., N.M. Sammes, J. Staniforth. Mechanical properties and electrochemical characterisation of extruded doped cerium oxide for use as an electrolyte for solid oxide fuel cells [J]. Journal of Power Sources, 1998,75(1):116-121.
    [53] Higashi, K., K. Sonoda, H. Ono, et al. Characterization of rare earth-doped ceria powders derived from oxalate coprecipitate [A].In: Novel Synthesis and Processing of Ceramics,1999.
    [54] Gourba, E., P. Briois, A. Ringuede, et al. Electrical properties of gadolinia-doped ceria thin films deposited by sputtering in view of SOFC application [J]. Journal of Solid State Electrochemistry, 2004,8(9):633-637.
    [55] 汪灿,刘宁,石敏.固体氧化物燃料电池电解质材料的研究进展[J].材料导报,2004,18:264—266.
    [56] Gourba, E., A. Ringuede, M. Cassir, et al. Characterisation of thin films of ceria-based electrolytes for Intermediate Temperature-Solid oxide fuel cells (IT-SOFC) [J]. Ionics, 2003,9(1-2):15-20.
    [57] Jung, G.B.,T.J. Huang. Sintering temperature, microstructure and resistivity of polycrystalline Sm_(0.2)Ce_(0.8)O_(1.9) as SOFC's electrolyte [J]. Journal of Materials Science, 2003,38 (11):2461-2468.
    [58] Maffei, N.,A.K. Kuriakose. Solid oxide fuel cells of ceria doped with gadolinium and praseodymium [J]. Solid State Ionics, 1998,107(1-2):67-71.
    [59] Fujishiro, Y., K. Hamamoto, R.V. Mangalaraja, et al. Fabrication and fuel cell properties of Gd-doped CeO_2 micro-tube ceramics reactors prepared by gel precursor [A].In: Science of Engineering Ceramics Iⅱ,2006.
    [60] Kim, J.,D. Lee. The effect of multiple doping on electrical conductivity of gadolinia-doped ceria electrolyte [J]. Korean Journal of Chemical Engineering, 2002,19(3):421-424.
    [61] Leng, Y.J., S.H. Chan, S.P. Jiang, et al. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction [J]. Solid State Ionics, 2004,170(1-2):9-15.
    [62] 魏丽,陈诵英,王琴.中温固体氧化物燃料电池电解质材料的研究进展[J].稀有金属,2002,27(2):286-292.
    [63] Gao, J.F., X.Q. Liu, D.K. Peng, et al. Electrochemical behavior of Ln_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-delta) (Ln=Ce, Gd, Sm, Dy) materials used as cathode of IT-SOFC [J]. Catalysis Today, 2003,82(1-4):207-211.
    [64] Bi, Z.H., M.J. Cheng, Y.L. Dong, et al. Electrochemical evaluation of La_(0.6)Sr_(0.4)CoO_3-La_(0.45)Ce_(0.55)O_2 composite cathodes for anode-supported La_(0.45)Ce_(0.55)O_2-La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(2.85) bilayer electrolyte solid oxide fuel cells [J]. Solid State Ionics, 2005,176(7-8):655-661.
    [65] Bi, Z.H., Y.L. Dong, M.J. Cheng, et al. Behavior of lanthanum-doped ceria and Sr-, Mg-doped LaGaO_3 electrolytes in an anode-supported solid oxide fuel cell with a La_(0.6)Sr_(0.4)CoO_3 cathode [J]. Journal of Power Sources, 2006,161 (1):34-39.
    [66] 郑文君,彭定坤.La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3—a)的柠檬酸盐法制备和表征[J].无机材料学报,2001,16(2):358—362.
    [67] 张乃庆,孙克宁,吴宁宁.中温SOFC La_(0.9)Sr_(0.1)Ga_(0.8)Mg_(0.2)O_(3-a)固体电解质的电性能研究[J].人工晶体学报,2004,33(3):354—357.
    [68] Steele, B.C.H. Appraisal of Ce_(1-y)Gd_yO_(2-y/2) electrolytes for IT-SOFC operation at 500 degrees C [J]. Solid State Ionics, 2000,129(1-4):95-110.
    [69] Brahim, C., A. Ringuede, E. Gourba, et al. Electrical properties of thin bilayered YSZ/GDC SOFC electrolyte elaborated by sputtering [J]. Journal of Power Sources, 2006,156(1):45-49.
    [70] Briois, P.,A. Billard. A comparison of electrical properties of sputter-deposited electrolyte coatings dedicated to intermediate temperature solid oxide fuel cells [J]. Surface & Coatings Technology, 2006,201 (3-4): 1328-1334.
    [71] Chour, K.W., J. Chen, R. Xu. Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications [J]. Thin Solid Films, 1997, 304(1-2): 106-112.
    [72] Garcia, G., J. Caro, J. Santiso, et al. Thin film growth of ionic conducting membranes by PIMOCVD [J]. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2004,43(2):448-451.
    [73] Vo, N.X.P., S.P. Yoon, S.W. Nam, et al. Fabrication of an anode-supported SOFC with a sol-gel coating method for a mixed-gas fuel cell [A].In: On the Convergence of Bio-Information-, Environmental-, Energy-, Space- and Nano-Technologies, Pts 1 and 2,2005.
    [74] Bi, Z.H., B.L. Yi, Z.W. Wang, et al. A high-performance anode-supported SOFC with LDC-LSGM bilayer electrolytes [J]. Electrochemical and Solid State Letters, 2004,7(5):A105-A107.
    [75] Du, Y.H., N.M. Sammes, G.A. Tompsett, et al. Extruded tubular strontium- and magnesium-doped lanthanum gallate, gadolinium-doped ceria, and yttria-stabilized zirconia electrolytes-Mechanical and thermal properties [J]. Journal of the Electrochemical Society, 2003,150(1):A74-A78.
    [76] Ai, N., Z. Lu, K.F. Chen, et al. Preparation of Sm_(0.2)Ce_(0.8)O_(1.9) membranes on porous substrates by a slurry spin coating method and its application in IT-SOFC [J]. Journal of Membrane Science, 2006,286(1-2):255-259.
    [77] Leng, Y.J., S.H. Chan, K.A. Khor, et al. (La_(0.8)Sr_(0.2))_(0.9)MnO_3-Gd_(0.2)Ce_(0.8)O_(1.9) composite cathodes prepared from (Gd,Ce)(NO_3)_(x)-modified (La_(0.8)Sr_(0.2))_(0.9)MnO_3 for intermediate-temperature solid oxide fuel cells [J]. Journal of Solid State Electrochemistry, 2006,10(6):339-347.
    [78] Lee, K.T.,A. Manthiram. LaSr_3Fe_(3-y)Co_yO_(10-delta)(0<y<1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells [J]. Chemistry of Materials, 2006,18(6):1621-1626.
    [79] Lang, M., R. Henne, S. Schaper, et al. Development and characterization of vacuum plasma sprayed thin film solid oxide fuel ce1Is [J]. Journal of Thermal Spray Technology, 2001,10(4):618-625.
    [80] Suzuki, T., T. Yamaguchi, Y. Fujishiro, et al. Improvement of SOFC performance using a microtubular, anode-supported SOFC [J]. Journal of the Electrochemical Society, 2006,153(5):A925-A928.
    [81] Tsai, T.P., E. Perry, S. Barnett. Low-temperature solid-oxide fuel cells utilizing thin bilayer electrolytes [J]. Journal of the Electrochemical Society, 1997, 144(5):L130-L132.
    [82] Cheng, J.G., Q.X. Fu, X.Q. Liu, et al. Preparation and performance of IT-SOFC with anode-supported thin GDC electrolytes by tape casting process [A].In: High-Performance Ceramics 2001, Proceedings,2002.
    [83] Rupp, J.L.M.,L.J. Gauckler. Microstructures and electrical conductivity of nanocrystalline ceria-based thin films [J]. Solid State Ionics, 2006,177 (26-32):2513-2518.
    [84] Torrens, R., N.M. Sammes, G. Tompsett. Characterization of Pr- and Sm-doped Ce_(0.8)Gd_(0.2)O_(2-delta) [J]. Journal of Electroceramics, 2004,13 (1-3):683-689.
    [85] Mori, T., Y.R. Wang, J. Drennan, et al. Influence of particle morphology on nanostructural feature and conducting property in Sm-doped CeO_2 sintered body [J]. Solid State Ionics, 2004,175(1-4):641-649.
    [86] Jiang, S.P.A review of wet impregnation-An alternative method for the fabrication of high performance and nano-structured electrodes of solid oxide fuel cells [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2006,418(1-2): 199-210.
    [87] 阎景旺.中温固体氧化物燃料电池的研制与电极过程的研究[D].中国科学院研究生院博士学位论文,2002.
    [88] Lee, G.Y., R.H. Song, J.H. Kim, et al. Properties of Cu, Ni, and V doped-LaCrO_3 interconnect materials prepared by pechini, ultrasonic spray pyrolysis and glycine nitrate processes for SOFC [J]. Journal of Electroceramics, 2006, 17(2-4):723-727.
    [89] Razpotnik, T.,J. Macek. Synthesis of nickel oxide/zirconia powders via a modified Pechini method [J]. Journal of the European Ceramic Society, 2007, 27(2-3):1405-1410.
    [90] Mori, M.,N.M. Sammes. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method [J]. Solid State Ionics, 2002,146(3-4):301-312.
    [91] Briuker, C.J. Sol-Gel Science [M]. Academic Press, 1990.
    [92] Bhaskar, S., S.B. Majumder, P.S. Dobal. Dielectric and ferroelectric response of sol-gel derived Pb_(0.85)La_(0.15)TiO_3 ferroelectric thin films on different bottom electrodes [J]. Thin Solid Films, 2002:30-39.
    [93] Fontaine, M.L., C. Laberty-Robert, F. Ansart, et al. Composition and porosity graded La_(2-x)NiO_(4+delta) (x>0) interlayers for SOFC: Control of the microstructure via a sol-gel process [J]. Journal of Power Sources, 2006,156(1):33-38.
    [94] Gupta, R.K.,C.M. Whang. Structural study of a sol-gel derived novel solid oxide fuel cell perovskite: (La_(1-x)Sr_x)(Cr_(0.85)Fe_(0.05)Co_(0.05)Ni_(0.05))O_(3-delta) [J]. Journal of Physics-Condensed Matter, 2007,19(19).
    [95] Subramania, A., T. Saradha, S. Muzhumathi. Synthesis of nano-crystalline (Ba_(0.5)Sr_(0.5))Co_(0.8)Fe_(0.2)O_(3-delta) cathode material by a novel sol-gel thermolysis process for IT-SOFCs [J]. Journal of Power Sources, 2007,165(2):728-732.
    [96] 朱冬生,赵朝晖.溶胶—凝胶法制备纳米薄膜的研究进展[J].材料导报,2003,17:53—55.
    [97] Ji, Y., J. Liu, T.M. He, et al. Single intermedium-temperature SOFC prepared by glycine-nitrate process [J]. Journal of Alloys and Compounds, 2003, 353(1-2):257-262.
    [98] Lee, D., I. Lee, Y. Jeon, et al. Characterization of scandia stabilized zirconia prepared by glycine nitrate process and its performance as the electrolyte for IT-SOFC [J]. Solid State Ionics, 2005,176(11-12):1021-1025.
    [99] Huang, S.G., C.R. Xia, X.B. Zhang, et al. Performances of Gd_(0.8)Sr_(0.2)CoO_3 powders for IT-SOFC cathodes prepared by glycine-nitrate process [J]. Rare Metal Materials and Engineering, 2005,34(10): 1650-1652.
    [100] Rambabu, B., S. Ghosh, H. Jena. Novel wet-chemical synthesis and characterization of nanocrystalline CeO2 and Ce_(0.8)Gd_(0.2)O_(1.9) as solid electrolyte for intermediate temperature solid oxide fuel cell (IT-SOFC) applications [J]. Journal of Materials Science, 2006,41 (22):7530-7536.
    [101] Senguttuvan, T.D., S.B. Samanta, K.N. Sood, et al. Phases in copper-stabilized zirconia solid oxide fuel cells anode material [J]. Materials Chemistry and Physics, 2005,95(2-3):197-201.
    [102] Panteix, P.J., I. Julien, D. Bernache-Assollant, et al. Synthesis and characterization of oxide ions conductors with the apatite structure for intermediate temperature SOFC [J]. Materials Chemistry and Physics, 2005,95(2-3):313-320.
    [103] Nie, H.W., H. Zhang, G.Y. Yu, et al. Preparation and characterization of oxygen permeable membrane of SrFeCu_(0.2)O_x [J]. Separation and Purification Technology, 2001,25(1-3):415-418.
    [104] Wang, J.Q., H.Y. Xu, Y. Wang, et al. Effect of sulfate ions on YAG powders synthesized by microwave homogeneous precipitation [J]. Journal of Rare Earths, 2006,24:284-287.
    [105] Li, H.G., T. Ikegami, Y.R. Wang, et al. Reactive ceria nanopowders via carbonate precipitation [J]. Journal of the American Ceramic Society, 2002, 85(9):2376-2378.
    [106] Xu, H.R., L. Gao, H.Y. Zhou, et al. Synthesis of nanopowders of Ba(Ti_(0.8)Zr_(0.2))O_3 [J]. Materials Letters, 2004,58(14): 1999-2001.
    [107] Selvam, I.P.,V. Kumar. Synthesis of nanopowders of (Ba_(1-x)Sr_x)TiO_3 [J]. Materials Letters, 2002,56(6): 1089-1092.
    [108] Zhu, B.J., Y. Tao, T. Gong, et al. Thermodynamic study of impurity forming in preparing La_(1-x)Sr_xMnO_3 by self-propagating high-temperature synthesis method [J]. Rare Metal Materials and Engineering, 2007,36(3):513-516.
    [109] Ishikawa, H., M. Enoki, T. Ishihara, et al. Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O_(3.delta) for electrolyte of solid oxide fuel cells [J]. Journal of Alloys and Compounds, 2007,430(1-2):246-251.
    [110] Boskovic, S., D. Djurovic, Z. Dohcevic-Mitrovic, et al. Self-propagating room temperature synthesis of nanopowders for solid oxide fuel cells (SOFC) [J]. Journal of Power Sources, 2005,145(2):237-242.
    [111] 汤根土,骆仲泱,余春江等.溶胶-凝胶低温燃烧合成法制备Sm_(0.15)Gd_(0.05)Ce_(0.8)O_(1.9)纳米粉体[J].硅酸盐学报,2004,32(9):1121-1127.
    [112] Tsipis, E.V., V.V. Kharton, I.A. Bashmakov, et al. Cellulose-precursor synthesis of nanocrystalline Ce_(0.8)Gd_(0.2)O_(2-delta) for SOFC anodes [J]. Journal of Solid State Electrochemistry, 2004,8(9):674-680.
    [113] Suda, S., K. Kawahara, M. Kawano, et al. Preparation of matrix-type nickel oxide/samarium-doped ceria composite particles by spray pyrolysis [J]. Journal of the American Ceramic Society, 2007,90(4): 1094-1100.
    [114] Haanappel, V.A.C., A. Mai, J. Mertens. Electrode activation of anode-supported SOFCs with LSM- or LSCF-type cathodes [J]. Solid State Ionics, 2006, 177(19-25):2033-2037.
    [115] Dusastre, V.,J.A. Kilner. Optimisation of composite cathodes for intermediate temperature S OFC applications [J]. Solid State Ionics, 1999,126(1-2): 163-174.
    [116] Paulson, S.C.,V.I. Birss. Chromium poisoning of LSM-YSZ SOFC cathodes-Ⅰ. Detailed study of the distribution of chromium species at a porous, single-phase cathode [J]. Journal of the Electrochemical Society, 2004,151 (11):A1961-A1968.
    [117] Yoon, S.P., J. Han, S.W. Nam, et al. Improvement of anode performance by surface modification for solid oxide fuel cell running on hydrocarbon fuel [J]. Journal of Power Sources, 2004,136(1):30-36.
    [118] Kleitz, M.,F. Petitbon. Optimized SOFC electrode microstructure [J]. Solid State Ionics, 1996,92(1-2):65-74.
    [119] Horita, T., K. Yamaji, N. Sakai, et al. Imaging of oxygen transport at SOFC cathode/electrolyte interfaces by a novel technique [J]. Journal of Power Sources, 2002,106(1-2):224-230.
    [120] Jorgensen, M.J., S. Primdahl, C. Bagger, et al. Effect of sintering temperature on microstructure and performance of LSM-YSZ composite cathodes [J]. Solid State Ionics, 2001,139(1-2):1-11.
    [121] Shao, Z.P.,S.M. Halle. A high-performance cathode for the next generation of solid-oxide fuel cells [J]. Nature, 2004,431 (7005): 170-173.
    [122] Suzuki, T., P. Jasinski, H.U. Anderson, et al. Role of composite cathodes in single chamber SOFC [J]. Journal of the Electrochemical Society, 2004, 151(10):A1678-A1682.
    [123] Touati, A.,A. Hammou. Determination of the exchange current in the SOFC composite cathode [J]. Ionics, 2006,12(6):339-341.
    [124] Ji, Y., J. Liu, T.M. He, et al. Electrolyte and electrode materials of intermedium-temperature SOFC prepared by glycine-nitrate process [J]. Chemical Journal of Chinese Universities-Chinese, 2002,23(7): 1227-1230.
    [125] Dokiya, M. SOFC system and technology [J]. Solid State Ionics, 2002, 152:383-392.
    [126] Matsuzaki, Y.,I. Yasuda. Electrochemical properties of reduced-temperature SOFCs with mixed ionic-electronic conductors in electrodes and/or interlayers [J]. Solid State Ionics, 2002,152:463-468.
    [127] Van Herle, J., R. Ihringer, R.V. Cavieres, et al. Anode supported solid oxide fuel cells with screen-printed cathodes [J]. Journal of the European Ceramic Society, 2001,21(10-11):1855-1859.
    [128] Bieberle, A.,L.J. Gauckler. Reaction mechanism of Ni pattern anodes for solid oxide fuel cells [J]. Solid State Ionics, 2000,135(1-4):337-345.
    [129] Bieberle, A., L.P. Meier, L.J. Gauckler. The electrochemistry of Ni pattern anodes used as solid oxide fuel cell model electrodes [J]. Journal of the Electrochemical Society, 2001,148(6):A646-A656.
    [130] W, D.D., C.T. D, E.T.E. Conductivity of porous Ni/ZrO_2-Y_2O_3 cermets [J]. Journal of The Electrochemical Society, 1987,134(9):2141.
    [131] Aruna, S.T., M. Muthuraman, K.C. Patil. Synthesis and properties of Ni-YSZ cermet: anode material for solid oxide fuel cells [J]. Solid State Ionics, 1998,111(1-2):45-51.
    [132] 谢德明.CeO_2基中温固体氧化物燃料电池的研究[D].浙江大学博士后研究工作报告,2004.
    [133] Bao, W.T., Q.B. Chang, G.Y. Meng. Effect of NiO/YSZ compositions on the co-sintering process of anode-supported fuel cell [J]. Journal of Membrane Science, 2005,259(1-2): 103-109.
    [134] Mertens, J., V.A.C. Haanappel, C. Tropartz, et al. The electrochemical performance of anode-supported SOFCs with LSM-type cathodes produced by alternative processing routes [J]. Journal of Fuel Cell Science and Technology, 2006,3(2):125-130.
    [135] Ai, G., Z. Lu, B. Wei, et al. Performance of anode-supported single-chamber solid oxide fuel cells [J]. Chinese Journal of Catalysis, 2006,27(10):885-889.
    [136] Tomita, A., S. Teranishi, M. Nagao, et al. Comparative performance of anode-supported SOFCs using a thin Ceo.9Gdo.101.95 electrolyte with an incorporated BaCe_(0.8)Y_(0.2)O_3-alpha layer in hydrogen and methane [J]. Journal of the Electrochemical Society, 2006,153(6):A956-A960.
    [137] Matsuda, M., T. Hosomi, K. Murata, et al. Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC [J]. Journal of Power Sources, 2007,165(1): 102-107.
    [138] Haanappel, V.A.C., J. Mertens, D. Rutenbeck, et al. Optimisation of processing and microstructural parameters of LSM cathodes to improve the electrochemical performance of anode-supported SOFCs [J]. Journal of Power Sources, 2005, 141(2):216-226.
    [139] de Haart, L.G.J., K. Mayer, U. Stimming, et al. Operation of anode-supported thin electrolyte film solid oxide fuel cells at 800 degrees C and below [J]. Journal of Power Sources, 1998,71(1-2):302-305.
    [140] Nguyen, T.L., T. Honda, T. Kato, et al. Fabrication and characterization of anode-supported tubular SOFCs with zirconia-based electrolyte for reduced temperature operation [J]. Journal of the Electrochemical Society, 2004, 151(8):A1230-A1235.
    
    [141] Leng, Y.J., S.H. Chan, K.A. Khor, et al. Performance evaluation of anode-supported solid oxide fuel cells with thin film YSZ electrolyte [J]. International Journal of Hydrogen Energy, 2004,29(10):1025-1033.
    [142] Ma, Q.L., J.J. Ma, S. Zhou, et al. A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte [J]. Journal of Power Sources, 2007,164(1):86-89.
    [143] Tancret, F.,D.M. Schleich. Ceramic technologies for anode-supported solid oxide fuel cells [A].In: High-Performance Ceramics Iii, Pts 1 and 2,2005.
    [144] Suda, E., B. Pacaud, Y. Montardi, et al. Low-temperature sinterable Ceo.9Gdo.1O1.95 powder synthesized through newly-devised heat-treatment in the coprecipitation process [J]. Electrochemistry, 2003,71(10):866-872.
    [145] Kim, S.D., S.H. Hyun, J. Moon, et al. Fabrication and characterization of anode-supported electrolyte thin films for intermediate temperature solid oxide fuel cells [J]. Journal of Power Sources, 2005,139(1-2):67-72.
    [146] Yamaji, K., H. Kishimoto, Y.P. Xiong, et al. Performance of anode-supported SOFCs fabricated with EPD techniques [J]. Solid State Ionics, 2004, 175(1-4):165-169.
    [147] Di Giuseppe, G.,J.R. Selman. Anode-supported planar solid oxide fuel cells by plasma-enhanced metalorganic chemical vapor deposition (PE-MOCVD) and electrostatic spray deposition (ESD): Fabrication of dense thin layers of yttria-stabilized zirconia by PE-MOCVD [J]. Journal of Materials Research, 2001,16(10):2983-2991.
    [148] Matsuda, M., T. Hosomi, K. Murata, et al. Direct EPD of YSZ electrolyte film onto porous NiO-YSZ composite substrate for reduced-temperature operating anode-supported SOFC [J]. Electrochemical and Solid State Letters, 2005, 8(1):AS-A11.
    [149] Jung, H.Y., K.S. Hong, H. Kim, et al. Characterization of thin-film YSZ deposited via EB-PVD technique in anode-supported SOFCs [J]. Journal of the Electrochemical Society, 2006,153(6):A961-A966.
    [150] Liu, Q.L., K.A. Khor, S.H. Chan, et al. Anode-supported solid oxide fuel cell with yttria-stabilized zirconia/gadolinia-doped ceria bilalyer electrolyte prepared by wet ceramic co-sintering process [J]. Journal of Power Sources, 2006, 162(2):1036-1042.
    [151] Wang, Z.R., J.Q. Qian, H.D. Cao, et al. A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs) [J]. Journal of Alloys and Compounds, 2007,437(1-2):264-268.
    [152] Zhang, L., S.P. Jiang, W. Wang, et al. NiO/YSZ, anode-supported, thinelectrolyte, solid oxide fuel cells fabricated by gel casting [J]. Journal of Power Sources, 2007,170(1):55-60.
    [153] 贺连星,温廷琏,吕之奕.陶瓷燃料电池电解质流延膜的烧结工艺及其性能研究[J].无机材料学报,1998,13(2):243-246.
    [154] Jadhav, L.D., S.H. Pawar, M.G. Chourashiya. Effect of sintering temperature on structural and electrical properties of gadolinium doped ceria (Ce_(0.9)Gd_(0.1)O_(1.95)) [J]. Bulletin of Materials Science, 2007,30(2):97-100.
    [155] Simner, S.P., J.P. Shelton, M.D. Anderson, et al. Interaction between La(Sr)FeO3 SOFC cathode and YSZ electrolyte [J]. Solid State Ionics, 2003, 161(1-2):11-18.
    [156] Reiss, I., D. Brounshitein, D.S. Tannhauser, et al. Density and ionic conductivity of sintered (CeO_2)_(0.8)(Gd_2O_3)_(0.2) [J]. J Am Ceram Soc, 2001,64:479-486.
    [157] Huang, K., M. Feng, J.B. Goodenough. Synthesis and electrical properties of dense Ce_(0.9)Gd_(0.1)O_(1.95) ceramics [J]. J Am Ceram Soc, 1998,81(2):357-362.
    [158] Yamashita, K., K.V. Ramanujachary, Hreenblattm. Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics [J]. Solid State Ionics, 1995,181 (2): 53-60.
    [159] Mather, G.C., EM. Figueiredo, J.R. Jurado, et al. Synthesis and characterisation of cermet anodes for SOFCs with a proton-conducting ceramic phase [J]. Solid State Ionics 2003,162:115-120.
    [160] A.Ringuede, J.A.Labrincha, J.R. Frade. A combustion synthesis method to obtain alternative cermetmaterials for SOFC anodes [J]. Solid State Ionics, 2001, 141-142:549-557.
    [161] ERuiz., F.P.-R., J.Gonzalez. The effect of ball milling dispersion on the optical properties of organic dyes trapped in silica films by the sol-gel method [J]. Material letters, 2000,42:25-32.
    [162] Janardhanan, V.M.,O. Deutschmann. Modeling of solid-oxide fuel cells [J]. Zeitsehrift Fur Physikalische Chemic-International Journal of Research in Physical Chemistry & Chemical Physics, 2007,221(4):443-478.
    [163] Kakac, S., A. Pramuanjaroenkij, X.Y. Zhou. A review of numerical modeling of solid oxide fuel cells [J]. Intemational Journal of Hydrogen Energy, 2007, 32(7):761-786.
    [164] Zhu, H.Y.,R.J. Kee. Thermodynamics of SOFC efficiency and fuel utilization as functions of fuel mixtures and operating conditions [J]. Journal of Power Sources, 2006,161 (2):957-964.
    [165] Hussain, M.M., X. Li, I. Dincer. Mathematical modeling of planar solid oxide fuel cells [J]. Joumal of Power Sources, 2006,161 (2): 1012-1022.
    [166] Shi, Y.X., N.S. Cai, C. Li. Numerical modeling of an anode-supported SOFC button cell considering anodic surface diffusion [J]. Journal of Power Sources, 2007,164(2):639-648.
    [167] Zhu, H.Y.,R.J. Kee. The influence of current collection on the performance of tubular anode-supported SOFC cells [J]. Journal of Power Sources, 2007, 169(2):315-326.
    [168] Magar, Y.N.,R.M. Manglik. Modeling of convective heat and mass transfer characteristics of anode-supported planar solid oxide fuel cells [J]. Journal of Fuel Cell Science and Technology, 2007,4(2): 185-193.
    [169] Liu, H.C., C.H. Lee, Y.H. Shiu, et al. Performance simulation for an anode-supported SOFC using Star-CD code [J]. Journal of Power Sources, 2007, 167(2):406-412.
    [170] 张小丹.熔融碳酸盐燃料电池试验研究及模拟计算[D].浙江大学硕士学位论文,2003.
    [171] Chan, S.H., X.J. Chen, K.A. Khor. A simple bilayer electrolyte model for solid oxide fuel cells [J]. Solid State Ionics, 2003,158(1-2):29-43.
    [172] Lin, C.K., T.T. Chen, Y.P. Chyou, et al. Thermal stress analysis of a planar SOFC stack [J]. Journal of Power Sources, 2007,164(1):238-251.
    [173] Chung, C.Y., Y.C. Chung, J. Kim, et al. Numerical modeling of micro single-chamber ceria-based SOFC [J]. Joumal of Electroceramics, 2006, 17(2-4):959-964.
    [174] Hussain, M.M., X. Li, I. Dincer. Mathematical modeling of transport phenomena in porous SOFC anodes [J]. International Joumal of Thermal Sciences, 2007,46(1):48-56.
    [175] Lu, N., Q. Li, X. Sun, et al. The modeling of a standalone solid-oxide fuel cell auxiliary power unit [J]. Journal of Power Sources, 2006,161 (2):938-948.
    [176] Kraines, S.B., M. Koyama, R. Batres. An emergent simulation modeling approach for discovery of knowledge on phenomena in chemical systems [J]. Journal of Chemical Engineering of Japan, 2006,39(9): 1010-1027.
    [177] 胡桂林.质子交换膜燃料电池内传递现象的数值模拟[D].浙江大学博士学位论文,2003.
    [178] Y. J. Leng, S. H. Chan, S. P. Jiang, et al. Low-temperature SOFC with thin film GDC electrolyte prepared in situ by solid-state reaction [J]. Solid State Ionics, 2004, 170(2004):9-15.
    [179] Liu, Y., S. Hashimoto, H. Nishino, et al. Fabrication and characterization of a co-fired La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_3-delta cathode-supported Ce_(0.9)Gd_(0.1)O_(1.95) thin-film for IT-SOFCs [J]. Journal of Power Sources, 2007, 164(1):56-64.
    [180] Sylvia, B., N. Brandon,_A. Atkinson, et al. The impact of wood-derived gasification gases on Ni-CGO anodes in intermediate temperature solid oxide fuel ceils [J]. Journal of Power Sources, 2004, 126(2004):58-66.
    [181] R. T. Leah, N. P. Brandon, P. Aguiar. Modelling of cells, stacks and systems based around metal-supported planar IT-SOFC cells with CGO electrolytes operating at 500-600℃ [J]. Journal of Power Sources, 2005,145(2005):336-352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700