用户名: 密码: 验证码:
CuO/TiO_2光催化水蒸气还原CO_2反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最重要的温室效应气体之一,CO2由于其稳定的化学性质,采用传统方式进行转化时存在条件苛刻能耗过高等问题。以TiO2为催化剂的光催化方法可以使得C02在较温和的条件下得到转化,并且以太阳光作为能量来源绿色环保,不会造成二次污染。基于以上考虑,本文尝试采用TiO2为催化剂对光催化水蒸气还原二氧化碳制备含碳有机物的反应进行了一系列的研究,并对催化剂进行改性,以期更好的催化效果
     通过溶胶凝胶法合成了锐钛矿型TiO2,以商品TiO2(P25)和自制TiO2为载体,采用浸渍法制备了不同CuO含量的CuO/TiO2纳米颗粒光催化剂;采用XPS、XRD、XRF、HRTEM、PL和BET等方法对催化剂样品的组成结构进行了一系列的分析表征;在自建的气固相光催化反应体系中对光催化H2O还原CO2反应进行了一系列考察,对催化剂的光催化性能进行评价;通过对产物的定性和定量分析考察了催化剂铺展方式、CuO含量、反应温度、光辐射时间、反应原料水碳比等因素对光催化反应的影响,探索了催化剂物化性质与光催化性能之间的内在关系。
     研究结果表明,在紫外光照射条件下,CuO/TiO2纳米光催化剂能够在温和条件下(常压和较低温度)用水蒸气为还原剂将CO2还原成CH4、C2H4和C2H6等含碳化合物;通过CuO的负载可有效提高TiO2的紫外光响应强度,从而提高催化活性。通过对CuO/TiO2纳米颗粒催化剂的研究,混合晶相的商品TiO2系列催化剂活性明显优于溶胶凝胶法自制TiO2系列催化剂活性,并且CuO具有最佳负载量1.5wt.%,333 K条件下,水碳比0.02,紫外光照射17h,主产物CH4生成量为6.375μmol·g·cat-1;提高水碳比、反应温度、紫外辐射强度等条件,采用涂膜方式铺展催化剂,均能有效提高CH4等产物的累积生成量。
CO2, as one of the important main greenhouse gases, is chemically stable, so the conversion of CO2 in conventional methods leads to several troubles such as high enegy-consuming and strict condition. The photocatalytic reaction can converts CO2 into more useful compounds such as methane, methanol,. and formaldehyde. In addition, by harnessing solar energy the photocatalytic process is less energy-consuming than the conventional methods. Therefore, the photocatalytic conversion of CO2 with water vaper in the presence of TiO2 has been studied in this paper and the photocatalyst has been modified for better activity.
     Nano-anatase-TiO2 particle has been synthesized via sol-gel methods. Different CuO content supported/composite photocatalysts were synthesized via impregnation methods. The composition and structure property of these photocatalysts were characterized by XPS, XRD, HRTEM, PL, BET and XRF. The photocatalytic conversion reaction of CO2 was examined in a self-designed fixed-bed photocatalytic reactor. The influence of different kind of CuO/TiO2, reaction temperature, H2O/CO2 ratio of the raw material and irradiation intensity were systematically studied in the photocatalytic reduction of CO2 with H2O.
     Methane (CH4), carbon monoxide(CO), ethene(C2H4) and trace amout of ethane has been found in the reactor as the prouduct of photocatalytic reduction of CO2 in contact with water using CuO/TiO2 catalysts under the UV irradiation at mild conditions of low pressure and temperature. The photocatalytic activity could be significantly improved with appropriate CuO content and the optimal content of CuO was 1.5 w.% in CuO/TiO2 nano particle catalysts which was prepared by P25, CH4 yield reached 6.375μmol·g·cat-1 after 17 h irradiation at 333 K with H2O/CO2=0.02. Meanwhile, the catalysts synthesized via sol-gel methods show lower reactivity than others. The CH4 yield can be enhanced by increasing the reaction temperature, H2O/CO2 ratio and UV irradiation duration. By using the coating treatment on the catalyst during the experimentation, efficiency of the reaction has been improved.
引文
[1]Riemer P. Greenhouse gas mitigation technologies, an overview of the CO2 capture, storage and future activities of the IEA Greenhouse Gas R&D programme [J]. Energy Conversion and Management,1996,37:665-670.
    [2]Meisen A., Shuai X. Research and development issues in CO2 capture[J]. Energy Conversion and Management,1997,38:37-42.
    [3]Masaaki Kitano, Masaya Matsuoka, Michio Ueshima, et al. Recent developments in titanium oxide-based photocatalysts[J]. Applied Catalysis A:General,2007,325, (1):1-14
    [4]Kosugi T.,Hayashi A.,Matsumoto T., et al. Time to realization:Evaluation of CO2 capture technology R&Ds by GERT (Graphical Evaluation and Review Technique) analyses.[J]. Energy,2004,29:1297-1308.
    [5]Fujishima A,Honda K. Nature,1972.
    [6]Inoue T.,Fujishima A.,Konishi S., et al. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders.[J]. Nature,1979,277:637-638.
    [7]G. R. Dey. Chemical Reduction of CO2 to Different Products during Photo Catalytic Reaction on TiO2 under Diverse Conditions:an Overview[J]. Journal of Natural Gas Chemistry,2007,16, (2):217-226.
    [8]Kamila Koci,Lucie Obalova,Zdenek Lacny. Photocatalytic reduction of CO2 over TiO2 based catalysts[J]. Chemical Papers,2008,62, (1):1-9.
    [9]Linsebigler A. L., Lu G., Yates J. T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chemical Reviews,1995,95:735-758.
    [10]Fujiwara H.,Hosokawa H.,Murakoshi K., et al. Effect of surface structures on photocatalytic CO2 reduction using quantized CdS nanocrystallites.[J]. Journal of Physical Chemistry B,1997,101:8270-8278.
    [11]Sayama K., Arakawa H. Photocatalytic decomposition of water and photocatalytic reduction of carbon-dioxide over zirconia catalyst[J]. Journal of Physical Chemistry,1993, 97:531-533.
    [12]Kohno Y.; Tanaka T.,Funabiki T., et al. Photoreduction of carbon dioxide with hydrogen over ZrO2[J]. Chemical Communications,1997,841-844.
    [13]Kohno Y., Tanaka T., Funabiki T., et al. Photoreduction of CO2 with H2 over ZrO2. A study on interaction of hydrogen with photoexcited CO2[J]. Physical Chemistry Chemical Physics,2000,2:2635-2639.
    [14]Kohno Y., Tanaka T., Funabiki T., et al. Reaction mechanism in the photoreduction of CO2 with CH4 over ZrO2. [J]. Physical Chemistry Chemical Physics,2000,2:5302-5307.
    [15]Kohno Y., Ishikawa H., Tanaka T., et al. Photoreduction of carbon dioxide by hydrogen over magnesium oxide[J]. Physical Chemistry Chemical Physics,2001, (3):1108-1113.
    [16]Teramura K.,Tanaka T.,Ishikawa H., et al. Photocatalytic reduction of CO2 to CO in the presence of H2 or CH4 as a reductant over MgO[J]. Journal Physical Chemistry B,2004, 108:346-354.
    [17]Gokon N., Hasegawa N., Kaneko H., et al. Photocatalytic effect of ZnO on carbon gasification with CO2 for high temperature solar thermochemistry[J]. Solar Energy Materials and Solar Cells,2003,80:335-341.
    [18]Anpo M.,Yamashita H., Ikeue K., et al. Photocatalytic reduction of CO2 with H2O on Ti-MCM-41 and Ti-MCM-48 mesoporous zeolite catalysts.[J]. Catalysis Today,1998,44: 327-332.
    [19]W. Y. Lin, H. X. Han, H. Frei. CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve [J]. Journal of Physical Chemistry B,2004,108:18269-18273.
    [20]Pan P.-W., Chen Y.-W. Photocatalytic reduction of carbon dioxide on NiO/InTaO4 under visible light irradiation[J]. Catalysis Communications,2007,8:1546-1549.
    [21]Ulagappan N., Frei H. Mechanistic study of CO2 photoreduction in Ti silicalite molecular sieve by FT-IR spectroscopy[J]. Journal of Physical Chemistry A,2000,104, 7834-7839.
    [22]Usubharatana P., McMartin D.,Veawab A., et al. Photocatalytic process for CO2 emission reduction from industrial flue gas streams[J]. Industrial & Engineering Chemistry Research,2006,45:2558-2568.
    [23]习彦花,田莉瑛,钟金梅等.纳米Ti02光催化机理及其毒理学研究进展[J].应用化工,2009,38,(2):273-276.
    [24]Hirano K, Inoue K,Yatsu T. Photocatalysed reduction of CO2 in aqueous TiO2 suspension mixed with copper powder[J]. Journal of Photochemistry and Photobiology A: Chemistry,1992,64:255-258.
    [25]Ishitani O, Inoue C, Suzuki Y, et al. Photocatalytic Reduction of Carbon Dioxide to Methane and Acetic Acid by an Aqueous Suspension of Metal-Deposited TiO2[J]. Photochemistry and Photobiology A:Chemistry,1993,72:269-271.
    [26]Adachi K., Ohta K., Mizuno M. Photocatalytic reduction of carbon dioxide to hydrocarbon using copperloaded titanium dioxide[J]. Solar Energy Materials and Solar Cells,1994,53:187-190.
    [27]Yamashita H., Shiga A., Kawasaki S., et al. Photocatalytic synthesis of CH4 and CH3OH from CO2 and H2O on highly dispersed active titanium oxide catalysts[J]. Energy Conversion and Management,1995,36:617-620.
    [28]Anpo M, Chiba K. Photocatalytic reduction of CO2 on anchored titanium oxide catalysts[J]. Journal of Molecular Catalysis,1992,74:207-212.
    [29]Kaneco S., Kurimoto H.,Ohta K., et al. Photocatalytic reduction of CO2 using TiO2 powders in liquid medium[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997,109:59-63.
    [30]Subrahmanyam M., Kaneco S.,Alonso-Vante N. A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1-C3 selectivity [J]. Applied Catalysis B:Environmental,1999,23:169-174.
    [31]吴树新,马智,秦永宁等.掺杂纳米TiO2光催化性能的研究[J].物理化学学报,2004,20:138-143.
    [32]Slamet. Photocatalytic reduction of CO2 on copper-doped Titania catalysts prepared by improved-impregnation method[J]. Catalysis Communications,2005,6, (34):313-319.
    [33]Jeffrey C.S. Wu,Hung-Ming Lin,Chao-Ling Lai. Photo reduction of CO2 to methanol using optical-fiber photoreactor[J]. Applied Catalysis A:General,2005,296, (1):194-200
    [34]Tan S. S., Zou L.,Hu E. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets[J]. Catalysis Today,2006,115:269-273.
    [35]Natarajan Sasirekha,Sheikh John Sardhar Basha,Kannan Shanthi. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide[J]. Applied Catalysis B:Environmental,2006,62, (1):169-180.
    [36]刘亚琴,徐耀,李志杰等.CO2在纳米SiO2/TiO2悬浮体系中的光催化还原[J].化学学报,2006,64,(6):453-457.
    [37]赵志换,范济民,王志忠.CoPc/TiO2催化剂的制备及其光催化还原C02的研究[J].应用化工,2005,34:632-634.
    [38]Xia X.-H.,Jia Z.-J.,Yu Y., et al. Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O[J]. Carbon,2007,45: 717-721.
    [39]范济民,赵志换,王志忠.原位合成法制备TiO2负载酞菁钴催化剂用于CO2光催化还原反应[J].影像科学与光学,2009,27:263-272.
    [40]樊君,刘恩周,曾波等.Fe3+掺杂纳米TiO2催化剂光催化还原CO2的性能[J].石油化工,2009,38:789-794.
    [41]Seng Sing Tan, Linda Zou, Eric Hu. Kinetic modelling for photosynthesis of hydrogen and methane through catalytic reduction of carbon dioxide with water vapour[J]. Catalysis Today,2007,10:258-275
    [42]Zhigang Zou,Jinhua Ye,Kazuhiro Sayama, et al. Photocatalytic hydrogen and oxygen formation under visible light irradiation with M-doped InTaO4 (M=Mn, Fe, Co, Ni and Cu)photocatalysts[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148, (1):65-69.
    [43]Masakazu Anpo, Masato Takeuchi. The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation[J]. Journal of Catalysis,2003,216, (3):505-516.
    [44]杨学灵,徐悦华.实用型TiO2光催化反应器的研究[J].应用化工,2009,38,(1):124-127.
    [45]Seng Sing Tan,Linda Zou,Eric Hu. Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO2 pellets[J]. Catalysis Today,2006,115:269-273.
    [46]Jianhua Chen,Maosheng Yao,Xiaolin Wang. Investigation of transition metal ion doping behaviors on TiO2 nanoparticles[J]. J Nanopart Res,2008,10, (1):163-171.
    [47]刘转年,蔡倩倩,韩晓刚等.纳米TiO2光催化剂的改性研究[J].2008,3,(5):11-14.
    [48]I-Hsiang Tseng, Wan-Chen Chang,Jeffrey C.S. Wu. Photoreduction of CO2 using sol-gel derived titania and titania-supported copper catalysts[J]. Applied Catalysis B: Environmental,2007,37, (1):37-48.
    [49]Naofumi N., Tomohiko T.,Shigeo G. Effect of Acid-base properties on copper catalysts for hydrogenation of carbon dioxide[J], React.Kinet.Catal.Lett.,1998,63, (1):21-25.
    [50]JING Liqiang, SUN Zhihua, YUAN Fulong. Effects of doping La and Cu on photoinduced charge properties of TiO2 and its relationships with photocatalytic activity [J]. Science in China Series B:Chemistry,2006,49, (4):345-350.
    [51]秦金兰,钱建华,杜金萍.掺杂铁离子和铜离子的TiO2光催化剂的研究[J].化学工业与工程技术,2008,29,(4):11-13.
    [52]I-Hsiang Tseng, Jeffrey C.S. Wu, Hsin-Ying Chou. Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction[J]. Journal of Catalysis,2004,221: 432-440.
    [53]Hiromi Yamashitaa,Yo Fujiia, Yuichi Ichihashi. Selective formation of CH3OH in the photocatalytic reduction of CO2 with H2O on titanium oxides highly dispersed within zeolites and mesoporous molecular sieves[J]. Catalysis Today,1998,45:221-227.
    [54]王正烈,周亚平,李松林等.物理化学(上)[M]. 高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700