用户名: 密码: 验证码:
有机小分子化合物在金红石TiO2表面吸附及迁移机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用基于密度泛函理论的理论计算方法,在原子尺度上研究了有关有机小分子在氧化物表面的吸附及迁移机理。
     首先,研究了邻苯二酚在含不同羟基含量的金红石TiO2(110)表面的各种迁移机理。TiO2(110)表面羟基化程度是邻苯二酚在表面迁移的关键。其解离吸附的分子的迁移只可能发生在含羟基的表面。室温下只有Hydrogenated Rotation机理是可行的,解离的邻苯二酚通过重新获得并再次释放H在表面进行迁移。然而,过度羟基化的表面会使迁移速度再次降低。该项研究成果对于从根本上认识氧化物表面吸附分子的动力学特征,实现调控材料表面性质,特别是二氧化钛等半导体材料的表面光催化性能具有十分重要的意义。
     其次,研究了乙酸在金红石TiO2(110)和(011)-2×1表面的解离吸附构型和迁移机理。室温下乙酸在TiO2(011)-2×1表面的初始吸附只发生在有缺陷处。当表面覆盖度较高时,形成准一维乙酸团簇。预先吸附的乙酸对后续乙酸的吸附影响很大。与Ti02(110)表面的双齿桥式吸附构型相比,乙酸在TiO2(011)-2×1表面最可能形成的是单齿吸附构型。室温下,乙酸在TiO2(110)表面的吸附是随机的,遵循Langmuirian吸附规律,而在(011)-2×1表面的吸附是以预先吸附的乙酸为团簇成核中心。此外,乙酸在金红石TiO2(110)表面的迁移,室温下只有经过一个双齿螯合中间态的Diffusion机理是可行的。表明分子构型的差异会影响分子在表面的迁移方式,以及表面羟基组位点的不同会影响分子迁移的势垒。
We studied adsorption and diffusion of organic molecules on oxide surfaces by destiny functional theory (DFT).
     We investigated the diffusion behavior of catechol on the rutile TiO2(110) surfaces under different conditions. It has been found that the degree of hydroxylation of the surface is essential for the facile diffusion of catechol at the surface. The diffusion of catecholate adsorbed on Ti02(110) surface can be possible only with the existence of surface hydroxyls. The so-called Hydrogenated Rotation Route is energetically the most feasible at room temperature, where the transfer of hydrogen from surface hydroxyls to the molecule and its interaction with surface hydroxyls substantially lowered the activation barrier for rotational motion across the surface. However, a heavily hydroxylated surface is not favorable to the diffusion of catechol. This work illustrates the essential role of hydrogen bonding in controlling dynamics during the initial stage of molecular assembly.
     We also investigated the adsorption behavior of acetic acid on the rutile Ti02(110) and (011)-2×1 surfaces, and the diffusion at TiO2(110) surface. DFT calculations showed that the initial sticking of adsorbed acetic acid at room temperature is low on the (011)-2×1 surface with initial chemisorption occurring at surface defects only, and for high acetic acid exposures we determined adsorption of quasi-one dimensional ordered acetate-clusters. Pre-adsorbed acetates act as nuclei for further adsorption, causing the formation of acetate islands. Furthermore, only monodendate adsorption is possible for the acetate in the clusters on TiO2(011)-2×1 surface, very different from the established bidentate bridging adsorption on TiO2(110). At room temperature, the adsorption kinetics on the (110) surface is randomly at low coverage and follows a Langmuirian adsorption, and adsorbed acetate arrange in an ordered 2×1 superstructure at saturation coverage. While on the (011)-2×1 surface acetate adsorbs to pre-adsorbed molecules in an island growth mechanism. Moreover, the most feasible diffusion route of acetic acid across TiO2(110) shows that the catecholate assumes a bidentate chelating intermediate state. Calculation results indicate that different molecular configurations can critically influence the way of diffusive motion, and different sites of the surface hydroxyl groups will affect the diffusion barrier.
引文
[1]A. Fujishima, T. N. Rao, D. A. Tyrk. Titanium dioxide phtocatalysis. J. Photochem. Photobiol. C:Photochem. Rev.2000,1:1-21.
    [2]B. Karunagaran, P. Uthirakumar, S. J. Chung, et al. Metal oxide semi-conductor gas sensors in environmental monitoring. Mater. Char act.2007,58:680-684.
    [3]G. X. Shen, R. G. Du, Y. C. Chen, C. J. Lin, et al. Study on hydrophobic nano-titanium dioxide coatings for improvement in corrosion resistance of type 316 L stainless steel. Corrosion 2005,61 (10):943-949.
    [4]M. Gratzel. Photoelectrochemical cells. Nature 2001,414:338-341.
    [5]B. Kasemo, J. Gold. Implant surfaces and interface processes. Adv. Dent. Res.1999,13: 8-20.
    [6]N. Serpone, E. Pelizzetti. Photocatalysis-funduamentals and applications. New York: John Wiley & Sons.1989.
    [7]D. C. Cronemeyer. Infrared absorption of reduced rutile TiO2 single crystals. Phys. Rev. 1959,113 (5):1222-1231.
    [8]W. Gopel, G. Rocker, R. Feierabend. Intrinsic defects of TiO2(110):interaction with chemisorbed O2, H2, CO, and CO2. Phys. Rev. B 1983,28:3427-3436.
    [9]H. K, Pulker, G. Paesold, E. Ritter. Refractive indices of TiO2 films produced by reactive evaporation of various titanium-oxygen phases. Appl. Optics.1976,15 (12):2986-2991.
    [10]U. Gesenhues, T. Rentschler. Crystal growth and defect structure of Al3+ -doped rutile. J. Solid State Chem.1999,143:210-218.
    [11]H. Perron, C. Domain, J. Roques, et al. Optimisation of accurate rutile TiO2(110), (100), (101) and (001) surface models from periodic DFT calculations. Theor. Chem. Acc.2007, 117:565-574.
    [12]N. N. Greenwood, A. Eamshaw. Chemistry of the elements.2nd Edition. Oxford: Butterworth-Heinemann.1997.
    [13]徐惠,孙涛.纳米二氧化钛制备技术的研究进展.菏泽学院学报.2007,29(2):59-63.
    [14]G. S. Herman, Z. Dohnalek, N. Ruzycki, et al. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). J. Phys. Chem. B 2003,107:2788-2795.
    [15]G. Charlton, P. Howes, C.L. Nicklin, et al. Relaxation of TiO2(110)-(1×1) using surface X-ray diffraction. Phys. Rev. Lett.1997,78 (3):495-498.
    [16]M. Ramamoorthy, D. Vanderbilt, et al. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 1994,49 (23):16721-16727.
    [17]S. P. Bates, G. Kresse, M. J. Gillan. A systematic study of the surface energetics and structure of TiO2(110) by first-principles calculations. Surf. Sci.1997,385 (2-3):386-394.
    [18]P. Murugan, V. Kumar, et al. Thickness dependence of the atomic and electronic structures of TiO2 rutile (110) slabs and the effects on the electronic and magnetic properties of supported clusters of Pd and Rh. Phys. Rev. B 2006,73:075401-1-075401-10.
    [19]X. Q. Gong, N. Khorshidi, A. Stierle, et al. The 2×1 reconstruction of the rutile TiO2(011) surface:a combined density functional theory, X-ray diffraction, and scanning tunneling microscopy study. Surf. Sci.2009,603:138-144.
    [20]X. Torrelles, G. Cabailh, R. Lindsay, et al. Geometric structure of TiO2(011)(2×1). Phys. Rev. Lett.2008,101 (18):185501-185504.
    [21]S. Yin, H. Hasegawa, D. Maeda, et al. Synthesis of visible-light-active nanosize rutile titania photocatalyst by low temperature dissolution-reprecipitation process. J. Photochem Photobiol A:Chem.2004,163:1-8.
    [22]H. Onishi, K. Fukui, Y. Iwasawa. Molecularly resolved observation of anisotropic intermolecular force in a formate-ion monolayer on a Ti02(110) surface by scanning tunneling microscopy. Colloids and Sur. A 1996,109:335-343.
    [23]R. Lindsay, A. Wander, A. Ernst, et al. Revisiting the surface structure of TiO2(110):a quantitative low-energy electron diffraction study. Phys. Rev. Lett.2005,94:246102-246105.
    [24]G. Charlton, P. B. Howes, C. L. Nicklin, et al. Relaxation of TiO2(110)-(1×1) using surface X-ray diffraction. Phys. Rev. Lett.1997,78 (3):495-498.
    [25]U. Diebold, J. Lehman, T. Mahmoud, et al. Intrinsic defects on a TiO2(110)(1×1) surface and their reaction with oxygen:a scanning tunneling microscopy study. Surf. Sci. 1998,411:137-153.
    [26]S. Fischer, A. W. Munz, K. D. Schierbaum, W. Gopel. The geometric structure of intrinsic defects at TiO2(110)surfaces:an STM study. Surf. Sci.1995,337:17-30.
    [27]P. W. Murray, N. G. Condon, G. Thornton. Effect of stoichiometry on the structure of TiO2(110). Phys. Rev. B 1995,51:10989-10997.
    [28]D. Novak, E. Garfunkel, T. Gustafsson. Scanning-tunneling-microscopy study of the atomic-scale structure of TiO2(110)-(1×1). Phys. Rev. B 1994,50:5000-5003.
    [29]Z. Zhang, P. Fenter, L. Cheng, N. C. Sturchio, et al. Zn2+ and Sr2+ adsorption at the TiO2(110)-electrolyte interface:influence of ionic strength, coverage, and anions. J. Coll. Int. Sci.2006,295 (1):50-64.
    [30]S. Agnoli, M. Sambi, G. Granozzi, et al. The growth of ultrathin films of vanadium oxide on TiO2(110). Surf. Sci.2004,562 (1-3):150-156.
    [31]R. E. Tanner, I. Goldfarb, M. R. Castell, G. A. D. Briggs. The evolution of Ni nanoislands on the rutile TiO2(110) surface with coverage, heating and oxygen treatment. Surf. Sci.2001,486 (3):167-184.
    [32]S. N. Towle, J. G. Brown, G. A. Parks. Sorption of Co(II) on metal oxide surfaces identification of specific binding sites of Co(II) on (110) and (001) surfaces of TiO2 (rutile) by grazing-incidence XAFS spectroscopy. J. Coll. Int. Sci.1999,217:299-311.
    [33]M. K. Ridley, M. L. Machesky, D. J. Wesolowski, D. A. Palmer. Aqueous systems at elevated temperatures and pressures:physical chemistry. Geochim. Cosmochim. Acta.1999, 63:3087-3096.
    [34]C. Den Auwer, R. Drot, E. Simoni, S. D. Conradson, et al. Grazing incidence XAFS spectroscopy of uranyl sorbed onto TiO2 rutile surfaces. New J. Chem.2003,27:648-655.
    [35]J. A. Rodriguez, J. Hrbek, Z. Chang, J. Dvorak, et al. Importance of O vacancies in the behavior of oxide surfaces:adsorption of sulfur on TiO2(110). Phys. Rev. B 2002,65: 235414-1-235414-12.
    [36]D. Robert, S. Parra, C. Pulgarin, A. Krzton, et al. Chemisorption of phenols and acids on TiO2 surface. Appl. Surf. Sci.2000,167:51-8.
    [37]T. Kubo, H. Orita, H. Nozoye. Surface structures of rutile TiO2(011). J. Am. Chem. Soc. 2007,129 (34):10474-10478.
    [38]S. C. Li, L. N. Chu, X. Q. Gong, U. Diebold. Hydrogen bonding controls the dynamics of catechol adsorbed on a rutile TiO2(110) surface. Science 2010,328:882-884.
    [39]See supporting material on Science Online of "Hydrogen bonding controls the dynamics of catechol adsorbed on a rutile TiO2(110) surface".
    [40]S. C. Li, Z. Zhang, D. Sheppard, et al. Intrinsic diffusion of hydrogen on rutile TiO2(110). J. Am. Chem. Soc.2008,130 (28):9080-9088.
    [41]Q. Guo, I. Cocks, E. M. Williams. The orientation of acetate on a TiO2(110) surface. J. Chem. Phys.1997,106:2924-2931.
    [42]S. Thevuthasan, G. S. Herman, Y. J. Kim, et al. The structure of formate on TiO2(110) by scanned-energy and scanned-angle photoelectron diffraction. Surf. Sci.1998,401:261-268.
    [43]A. G. Sosa, P. M. Escolano, H. Raza, et al. Orientation of carboxylates on TiO2(110). Surf. Sci.2001,471:163-169.
    [44]S. P. Bates, G. Kresse, M. J. Gillan. The adsorption and dissociation of ROH molecules on TiO2(110). Surf. Sci.1998,409:336-349.
    [45]P. Kackell, K. Terakura. Dissociative adsorption of formic acid and diffusion of formate on the TiO2(110) surface:the role of hydrogen. Surf. Sci.2000,461:191-198.
    [46]H. Onishi, Y. Iwasawa. STM observation of surface reactions on a metal oxide. Surf. Sci. 1996,357:773-776.
    [47]X. Torrelles, G. Cabailh, R. Lindsay, et al. Geometric structure of TiO2(011)(2×1). Phys. Rev. Lett.2008,101 (18):185501-185504.
    [48]Y. He, W. K. Li, X. Q. Gong, et al. Nucleation and growth of 1D water clusters on rutile TiO2(011)-2×1. J. Phys. Chem. C 2009,113:10329-10332.
    [49]K. S. Kim, M. A. Barteau. Structure and composition requirements for deoxygenation, dehydration, and ketonization reactions of carboxylic acids on TiO2(001) single-crystal surfaces. J. Catal.1990,125 (2):353-375.
    [50]S. C. Li, J. G. Wang, P. Jacobson P, et al. Correlation between bonding geometry and band gap states at organic-inorganic interfaces:catechol on rutile TiO2(110). J. Am. Chem. Soc.2009,131 (3):980-984.
    [51]J. Arana, J. M. Dona Rodriguez, O. Gonzalez Diaz, et al. The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol. Appl. Catal. A:General 2006,299: 274-284.
    [52]O. Lars, A. Christian, H. Pedersen, P.O. Kall. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. Colloid and Int. Sci. 2006,296:71-78.
    [53]L. Kieu, P. Boyd, H. Idriss. Modelling of the adsorption of formic acid and formaldehyde over rutile TiO2(110) and TiO2(011) clusters. J. Mol. Catal. A:Chem.2001, 176:117-125.
    [54]M. Watkins, T. Trevethan, M. L. Sushko, A. L. Shluger. Designing molecular architecture to control diffusion and adsorption on insulating surfaces. J. Phys. Chem. C 2009,113 (9):3751-3762.
    [55]P. Kackell, K. Terakura. Dissociative adsorption of formic acid and diffusion of formate on the TiO2(110) surface:the role of hydrogen. Surf. Sci.2000,461:191-198.
    [56]P. Raghunath, M. C. Lin. Adsorption configurations and decomposition pathways of boric acid on TiO2 rutile (110) surface:a computational study. J. Phys. Chem. C 2009,113 (9):3751-3762.
    [57]T. Trevethan, A. L. Shluger. Modeling the diffusive motion of large organic molecules on insulating surfaces. J. Phys. Chem. C 2008,112 (49):19577-19583.
    [58]J. V. Barth. Transport of adsorbates at metal surfaces:from thermal migration to hot precursors. Surf. Sci. Rep.2000,40 (3-5):75-149.
    [59]K. L. Wong, G. Pawin, K. Y. Kwon, et al. A molecule carrier. Science 2007,315 (5817):1391-1393.
    [60]T. Mitsui, M. K. Rose, E. Fomin, D. F. Ogletree, M. Salmeron. Water diffusion and clustering on Pd(111). Science 2002,297 (5588):1850-1852.
    [61]S. Horch, H. T. Lorensen, S. Helveg, et al. Enhancement of surface self-diffusion of platinum atoms by adsorbed hydrogen. Nature 1999,398 (6723):134-136.
    [62]X. Y. Wang, S. Kirn, C. Buda, et al. Direct spectroscopic observation of the role of humidity in surface diffusion through an ionic adsorbent powder. The behavior of adsorbed pyridine on nanocrystalline MgO. J. Phys. Chem. C2009,113 (6):2228-2234.
    [63]C. L. Pang, R. Lindsay, G. Thornton. Chemical reactions on rutile TiO2(110). Chem. Soc. Rev.2008,37 (10):2328-2353.
    [64]Z. Zhang, O. Bondarchuk, B. D. Kay, J. M. White, Z. Dohnalek. Imaging water dissociation on TiO2(110):evidence for inequivalent geminate OH groups. J. Phys. Chem. B 2006,110 (43):21840-21845.
    [65]A. Alavi, P. Hu, et al. CO Oxidation on Pt(111):an ab initio density functional theory study. Phys. Rev. Lett.1998,80 (16):3650-3653.
    [66]Z. P. Liu, P. Hu, A. Alavi. Catalytic role of gold in gold-based catalysts:a density functional theory study on the CO oxidation on gold. J. Am. Chem. Soc.2002,124 (49): 14770-14779.
    [67]黄美纯.密度泛函理论的若干进展.物理学进展.2000,9(3):200-204.
    [68]肖慎修,王崇愚,陈天朗.密度泛函理论的离散变分方法在化学和材料物理学中的应用.北京:科学出版社.1998.
    [69]邵晓红,张现仁,汪文川.密度泛函与分子模拟计算介孔孔径分布比较.物理化学学报.2003,19(6):538-539
    [70]A. R. Leach, et al. Molecular modeling:principle and application. London:Addison Wesley Longman Limited.1996.
    [71]Z. P. Liu, P. Hu. General rules for predicting where a catalytic reaction should occur on metal surfaces:a destiny functional theory study of C-H and C-0 bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc.2003,125 (7):1958-1967.
    [72]Z. P. Liu, S. J. Jenkins, D. A. King. Car exhaust catalysis from first principles:selective NO reduction under excess O-2 condition on Ir. J. Am. Chem. Soc.2004,126 (34): 10746-10756.
    [73]J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, et al. The SIESTA methord for ab initio order-N materials simulation. J. Phys. Condens. Matter 2002,14:2745.
    [74]J. Scaranto, S. Giorgianni. A systematic study of the influence of the slab thickness on the Lewis acidity of the rutile (110) surface:a quantum-mechanical simulation of CO adsorption. Chem. Phys. Lett.2009,473:179-183.
    [75]C. M. Wang, K. N. Fan, Z. P. Liu. Origin of oxide sensitivity in gold-based catalysts:a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO. J. Am. Chem. Soc.2007,129 (9):2642-2647.
    [76]E. Borgarello, J. Kiwi, M. Gratzel, E. Pelizzetti, M. Visca. Visible light induced water cleavage in colloidal solutions of chromium-doped titanium dioxide particles. J. Am. Chem. Soc.1982,104 (11):2996-3002.
    [77]E. Borgarello, J. Kiwi, E. Pelizzetti, M. Visca, M. Gratzel. Photochemical cleavage of water by photocatalysis. Nature 1981,289:158-160.
    [78]A. L. Linsebigler, G. Q. Lu, J. T. Yates. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem. Rev.1995,95:735-758.
    [79]U. Diebold. The surface science of titanium dioxide. Surf. Sci. Rep.2003,48:3-229.
    [80]T. L. Thompson, J. T. Yates. Monitoring hole trapping in photoexcited TiO2(110) using a surface photoreaction. J. Phys. Chem. B 2005,109 (39):18230-18236.
    [81]H. Uetsuka, H. Onishi, M. A. Henderson, J. M. White. Photoinduced redox reaction coupled with limited electron mobility at metal oxide surface. J. Phys. Chem. B 2004,108 (30):10621-10624.
    [82]M. A. Henderson, J. M. White, H. Uetsuka, H. Onishi. Photochemical charge transfer and trapping at the interface between an organic adlayer and an oxide semiconductor. J. Am. Chem. Soc.2003,125 (49):14974-14975.
    [83]J. N. Wilson, H. Idriss. Effect of surface reconstruction of TiO2(001) single crystal on the photoreaction of acetic acid. J. Catal.2003,214:46-52.
    [84]H. Uetsuka, C. Pang, A. Sasahara, H. Onishi. Photochemical reaction of trimethylacetates on Pt/TiO2(110). Langmuir 2005,21:11802-11805.
    [85]M. Ramamoorthy, D. Vanderbilt, R. D. K. Smith. First-principles calculations of the energetics of stoichiometric TiO2 surfaces. Phys. Rev. B 1994,49:16721-16727.
    [86]P. A. M. Hotsenpiller, J. D. Bolt, W. E. Farneth, et al. Orientation dependence of photochemical reactions on TiO2 surfaces. J. Phys. Chem. B 1998,102 (17):3216-3226.
    [87]J. B. Lowekamp, G. S. Rohrer, P. A. M. Hotsenpiller, et al. Anisotropic photochemical reactivity of bulk TiO2 crystals. J. Phys. Chem. B 1'998,102 (38):7323-7327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700