用户名: 密码: 验证码:
氧化钛色谱基质填料的评价及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钛具有高的机械强度、好的化学稳定性和热稳定性,可以作为一种良好的色谱填料。本论文采用自制的氧化钛作为色谱填料,首先采用不同化合物作为探针分子,分别考察了有机相含量、缓冲盐和pH对酸性化合物、碱性化合物、黄酮苷元和黄酮苷类化合物保留行为的影响,对其色谱性能进行了较为系统的评价。
     通过对不同类化合物在氧化钛色谱柱上的保留机理和保留规律的讨论,发现黄酮苷类在氧化钛柱上的保留很强,且和黄酮类化合物在氧化钛柱上的保留差异很大,推测是因为黄酮苷类中糖配基相邻的两个羟基与氧化钛表面的路易斯酸位点有配体交换作用。因此采用氧化钛作为基体分散固相萃取的填料选择性地富集降香中微量的黄酮苷类化合物。用液质联用的方法对富集的黄酮苷进行表征,表征出8个黄酮碳苷类化合物。
     为了验证糖苷类化合物在氧化钛上的保留机理,选择邻二苯酚作为探针物质,考察了其在不同流动相条件下的保留情况,间接验证了推测的机理。利用邻二酚羟基的配体交换作用,在氧化钛表面涂覆邻二苯酚以覆盖其表面的路易斯酸性位点,对氧化钛色谱柱进行改性,覆盖密度约为0.36μmol/m2。氧化钛表面涂覆邻二苯酚后,对其进行了基本的色谱性能评价。利用该机理可以对四环素进行富集。
Titania with higher mechanical, chemical and thermal stability, which can be used as an stationary phase. In this paper, titania produced in our laboratory was used for stationary phase of high performance liquid chromatography. At first its chromatographic properties have been systematically evaluated, that is, the effect of the mobile phase composition, different buffer and pH on the retention of acidic compounds, basic compounds, flavonoids and flavonoid glycosides on the titania column was examined, respectively.
     The retention mechanism and pattern was discussed according to the characteriztion result, it was found that the retention of flavonoid glycosides on the titania column was very strong, and the difference of retention between flavonoid and flavonoid glycosides is obvious. It is deduced that it may be due to the ligand-exchange interaction between the ortho hydroxyl groups of sugar glycoside and the strong Lewis acid sites on the surface of titania. Therefore trace flavonoid glycosides in Lignum Dalbergia Odorifera will be separated and enriched by matrix solid-phase dispersion (MSPD) using titania. At last enriched flavonoid glycosides were further analyzed by UPLC-MS/MS, eight flavonoid glycosides were proved as C-glycosyl flavonoid according to their fragmentation in MS2.
     In order to prove the retention mechanism of flavonoid glycosides on titania column, o-dihydroxybenzene which has the UV absorption was selected as probe compound, its retention under different condition was studied, the result proved our hypothesis indirectly.O-dihydroxybenzene was coated on a titania column to block the Lewis acid sites on the surface by the ligand-exchange interaction, the loading density was about 0.36μmol/m2. The basic chromatographic characteristics of the titania column modified by o- dihydroxybenzene were investigated. Tetracycline was enriched by the same mechanism.
引文
[1]R. E. Majors. Twenty-five years of HPLC column development-a commercial perspective. LC-GC.1994,12:508-518.
    [2]R. E. Majors. Current trends in HPLC column usage. LC-GC.1997,15:1009-1015.
    [3]G. Schomburg. Trends Anal. Chem.1991,10(5) 163.
    [4]K. K. Unger, U. Trudinger. High Performance Liquid Chromatography, Wiley, New York. 1989,145.
    [5]J. J. Glajch, J. J. Kirkland, J. Kohler. Effect of column degradation on the reversed-phase high-performance liquid chromatographic separation of peptides and proteins. J. Chromatography.1987,384:81-90.
    [6]D. V. McCalley. Effect of temperature and flow-rate on analysis of basic compounds in high-performance liquid chromatography using a reversed-phase column. J. Chromatogr. A.2000,902:311-321.
    [7]L. R. Snyder, J. L. Glajch, J. J. Kirkland. Practical HPLC method development, second ed. Wiley-Interscience, New York,1996.
    [8]B. C. Trammell, L. J. Ma, H. Luo, D. H. Jin, M. A. Hillmayer, P. W. Carr. Highly Cross-Linked Self-Assembled Monolayer Stationary Phases:An Approach to Greatly Enhancing the Low pH Stability of Silica-Based Stationary Phases. Anal. Chem.2002, 74:4634-4639.
    [9]K. K. Unger. Porous silica:its properties, and use as support in column liquid chromatography. Journal of Chromatography Library.1979, Vol.16, Elsevier, Amsterdam.
    [10]M. A. Stadalius, J. S. Berus, R. L. Snyde. Reversed-phase HPLC of basic samples. LC-GC.1988,6:494-500.
    [11]J. Nawrocki. Silica surface controversites, strong adsorption sites, their blockage and removal.1. Chromatographia.1991,31:177-192.
    [12]J. Nawrocki. Silica surface controversites, strong adsorption sites, their blockage and removal.2. Chromatographia.1991,31:193-205.
    [13]J. Nawrocki. The silanol group and its role in liquid chromatography. J. Chromatogr A. 1997,779:29-71.
    [14]G. Schomburg. Polymer coating of surfaces in column liquid-chromatography and capillary electrophoresis. Trends Anal. Chem.1991,10:163-169.
    [15]M. Hanson, A. Kurganov, K. K. Unger, V. A. Davankov. Polymer-coated reversed-phase packings in high-performance liquid chromatography. J. Chromatogr. A.1993,656: 369-380.
    [16]J. J. Kirkland, J. B. Adams, M. A. Van Straten, H. A. Claessens. Bidentate silane stationary phases for reversed phase high-performance liquid chromatography. Anal. Chem.1998,70:4344-4352.
    [17]J. J. Kirkland, M. A. Van Straten, H. A. Claessens. Reversed-phase high-performance liquid chromatography of basic compounds at pH 11 with silica-based column packings. J. Chromatogr. A.1998,797:111-120.
    [18]J. D. M. Patring, S. A. Lanina, J. A. Jastrebova. Applicability of alkyl-bonded ultra-pure silica stationary phases for gradient reversed-phase HPLC of folates with conventional and volatile buffers under highly aqueous conditions. J. Sep. Sci.2006,29:889-904.
    [19]K. K. Unger, N. Becker, P. Roumeliotis. Recent developments in the evaluation of chemically bonded silica packings for liquid chromatography. J. Chromatogr.1976,125: 115-127.
    [20]J. Kohler, D. B. Chase, R. D. Farlee, A. J. Vega, J. J. Kirkland. Comprehensive characterization of some silica-based stationary phase for high-performance liquid chromatography. J. Chromatogr.1986,352:275-305.
    [21]J. E. O'Gara, B. A. Alden, T. H. Walter, J. S. Petersen, C. L. Niederlander, U. D. Neue. Simlpe prepration of a C8 HPLC stationary-phase with an internal polar functional-group. Anal. Chem.1995,67:3809-3813.
    [22]S. Kaneko, T. Mitsuzawa, S. Ohmori, M. Nakamura, K. Nobuhara, M. Masatani. Separation behavior of silica-containing mixed oxides as column packing materials for liquid-chromatography. J. Chromatogr. A.1994,669:1-7.
    [23]Z. Iskandarani, D. J. Pletrzyk. Liquid chromatographic separation of amino acids, peptides, and derivatives on a porous polystyrene-divinylbenzene copolymer. Anal. Chem.1981,53:489-495.
    [24]Y. Kimura, H. Kitamura, T. Araki, K. Noguchi, M. Baba. Analytical and preparative methods for polymyxin antibiotics using high-performance liquid chromatography with a porous styrene-divinyllbenzene copolymer packing. J. Chromatogr.1981,206: 563-572.
    [25]D. J. Pietrzyk, W. J. Cahill, J. D. Stodola. Preparative liquid chromatographic separation of amino acids and peptides on amberlite XAD-4. J. Liq. Chromatogr.1982,5: 443-461.
    [26]K. A. Tweeten, T. N. Tweenten. Reversed-phase chromatography of proteins on resin-based wide-pore packings. J. Chromatogr.1986,359:111-119.
    [27]L. R. Snyder, J. L. Glajch, Kirkland. Practical HPLC method development.1997, Wiley, New York.
    [28]刘国诠,余兆楼.色谱柱技术,化学工业出版社.2001.
    [29]C. Stella, S. Rudaz, J. L. Veuthey, A. Tchapla. Silica and other materials as supports in liquid chromatography-chromatographic tests and their importance for evaluating these supports. Part Ⅰ.Chromatographia(supplement).2001,53:S113-S131.
    [30]J. Li, F. F. Cantwell. Intra-particle sorption rate and liquid chromatographic bandbroadening in porous polymer packings Ⅲ. Diffusion in the polymer matrix as the cause of slow sorption. J. Chromatogr. A.1996,726:37-44.
    [31]B. Ells, Y. Wang, F. F. Cantwell. Influence of solvent uptake and swelling by poly(styrene-divinylbenzene) column packings on sample sorption rate and band broadening in reversed-phase liquid chromatography. J. Chromatogr. A.1999,835: 3-18.
    [32]O. Chiantore, I. Novak, D. Berek. Characterization of porous carbons for liquid chromatography. Anal. Chem.1988,60:638-642.
    [33]R. Kaliszan, K. Osmiabowski, B. J. Bassler, R. A. Hartwick. Mechanism of retention in high-performance liquid chromatography on porous graphitic carton as revealed by principal component analysis of structural descriptors of soultes. J. Chromatogr.1990,499: 333-344.
    [34]G. Gu, C. K. Lim. Separation of anionic and cationic compounds of biomedical interest by high-performance liquid chromatography on porous graphitic carbon. J. Chromatogr. 1990,515:183-192.
    [35]张昌鸣.新型高效液相色谱固定相多孔石墨化炭.色谱.1992,10(2):78-81.
    [36]F. Belliardo,O. Chiantore, D. Berek, I. Novak, C. Lucarelli. Development and use of carbon adsorbents in the liquid chromatographic separation of isomers. J. Chromatogr. 1990,506:371-377.
    [37]M. Grun, A. A. Kurganov, S. Schacht, F. Schuth, K. K. Unger. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in normal-phase high-performance liquid chromatography. J. Chromatogr. A.1996,740(1):1-9.
    [38]刘勇,陈晓根.氧化铝热稳定性的研究进展.化学通报.2001,2:65-70.
    [39]B. C. Lippens. Active Alumina, in:B. G. Linsen(Ed.), Physical and Chemical Aspects of Adsorbents and Catalysts, Academic Press, London,1970.
    [40]T. Hiemstra, W. H. Van Riemsdijk, G. H. Bolt. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides:A new approach:Ⅰ. Model description and evaluation of intrinsic reaction constants. J. Colloid Interface Sci.1989,133(1):91-104.
    [41]T. Hiemstra, J. C. M. De Wit, W. H. Van Riemsdijk. Multisite proton adsorption modeling at the solid/solution interface of (hydr)oxides:A new approach:Ⅱ. Application to various important (hydr)oxides. J. Colloid Interface Sci.1989,133(1): 105-117.
    [42]A. L. Costa, C. Galassi, R. Greenwood. a-Alumina-H2O Interface Analysis by Electroacoustic Measurements. J. Colloid Interface Sci.1999,212(2):350-356.
    [43]G. L. Schmitt, D. J. Pietrzyk. Liquid chromatographic separation of inorganic anions on an alumina column. Anal. Chem.1985,57(12):2247-2253.
    [44]Y. Ghaemi, R. A. Wall. Hydrophobic chromatography with dynamically coated stationary phases. J. Chromatogr.1979,174:51-59.
    [45]M. Kawahara, H. Nakamara, T. Nakajima. Evaluation of new ceramics as column packing material for high liquid chromatography. Anal. Sci.1988,4:671-674.
    [46]J. Nawrocki, C. J. Dunlap, P. W. Carr, J. A. Blackwell. New Materials for Biotechnology: Chromatographic Stationary Phases Based on Zirconia. Biotechnol Prog.1994,10: 561-573.
    [47]J. Nawrocki, M. P. Rigney, A. McCormick, P. W. Carr. Chemistry of zirconia and its use in chromatography. J. Chromatogr. A.1993,657:229-282.
    [48]J. A. Blackwell, P. W. Carr. Study of the fluoride adsorption characteristics of porous microparticulate zirconium oxide. J. Chromatogr. A.1991,549:43-57.
    [49]K. K. Unger, U. Trudinger. Oxide Stationary Phases in Brown Ph. R, Hartwick R. A. High Performance Liquid Chromatography John Wiley & Sons, New York.1989, 145-188.
    [50]J. A. Blackwell, D. A. Whitman, T. P. Weber. Chemometric characterization of Lewis base-modified zirconia for normal phase chromatography. J. Chromatogr. A.1995,691: 205-212.
    [51]U. Trudinger, G. Muller, K. K. Unger. Porous zirconia and titania as packing materials for high-performance liquid chromatography. J. Chromatogr.1990,535:111-125.
    [52]J. Yu, Z. E. Rasi. Reversed-phase liquid chromatography with microspherical octadecyl-zirconia bonded stationary phases. J. Chromatogr.1993,631:91-106.
    [53]A. M. Clausen, P. W. Carr. Chromatographic characterization of phosphonate analog EDTA-modified zirconia support for biochromatographic applications. Anal. Chem. 1998,70:378-385.
    [54]Q. McNeff, Q. Zhao, P. W. Carr. High-performance anion exchange of small anions with polyethyleneimine-coated porous zirconia. J. Chromatogr. A.1994,684:201-211.
    [55]M. Kawahara, H. Nakamara, T. Nakajima. Anal. Sci.1989,5:485.
    [56]M. Kawahara, H. Nakamara, T. Nakajima. Titania and zirconia:possible new ceramic microparticulates for high-performance liquid chromatography. J. Chromatogr.1990, 515:149-158.
    [57]K. I. Hadjiivanov, D. J. Klissurski. Surface chemistry of titania(anatase) and titania-supported catalysts. Chem. Soc. Rev.1996,61-69.
    [58]K. Tani, E. Miyamoto. Investigation of chromatographic properties of titania. II. Influence of calcination temperature. J. Liq. Chromatogr. Rel. Technol.1999,22: 857-871.
    [59]J. D. Thompson, P. W. Carr. High-Speed Liquid Chromatography by Simultaneous Optimization of Temperature and Eluent Composition. Analytical Chemistry-Washington DC.2002,74(16):4150-4159.
    [60]M. Primet, P. Pichat, M. V. Mathieu. Infrared study of the surface of titanium dioxides. I. Hydroxyl groups. J. Phys. Chem.1971,75:1216-1220.
    [61]R. Ridrigez, M. A. Blesa, A. E. Regazzoni. Surface Complexation at the TiO2(anatase)/Aqueous Solution Interface:Chemisorption of Catechol. J. Colloid Interface Sci.1996,177:122-131.
    [62]A. Kurganov, U. Trudinger, T. Isaeva, K. K. Unger. Native and modified alumina, titania and zirconia in normal-and reversed-phase high performance liquid chromatography. Chromatographia.1996,42:217-222.
    [63]J. A. Blackwell, P. W. Carr. Development of an eluotropic series for the chromatography of lewis bases on zirconium oxide. Anal. Chem.1992,64,863-873.
    [64]S. M. T. Kaneko, S. Ohmori, M. Nakamura, K. Nobuhara, M. Masatni.Separation behaviour of silica-containing mixed oxides as column packing materials for liquid chromatography. J. Chromatogr. A.1994,669(1-2):1-7.
    [65]万剑砥,冯钰錡,胡玉玲,达世禄.锆-铝复合氧化物的制备及酸腐蚀对其表面性质的影响.分析科学学报.2001,17(5):371-374.
    [66]施治国,冯钰绮,徐丽,达世禄,刘云.液相色谱固定相基质材料锆-镁复合氧化物的制备研究.广西师范大学学报.2003,21:160-161.
    [67]Q. H. Zhang, Y. Q. Feng, S. L. Da. Anal. Sci.1999,15:767-772.
    [68]Q. H. Zhang, Y. Q. Feng, S. L. Da. Characterization and evaluation of magnesia-zirconia supports for normal-phase liquid chromatography. Chromatographia.1999,50: 654-660.
    [69]J. Y. Yan, X. L. Li, S. Y. Cheng, Y. X. Ke, X. M. Liang. Facile synthesis of titania-zirconia monodisperse microspheres and application for phosphopeptides enrichment. Chem. Commun.2009,20:2929-2931.
    [70]M. Kawahara, T. Nakamura, T. Nakajima. Titania and zircinia:possible new ceramic microparticulates for high-performance liquid chromatography. J. Chromatogr.1990, 515:149-158.
    [71]M. Grun, A. A. Kuranov, S. Schachi, F. Schuth, K. K. Unger. Comparison of an ordered mesoporous aluminosilicate, silica, alumina, titania and zirconia in nomal-phase high-performance liquid chromatography. J. Chromatogr.A.1996,740:1-9.
    [72]K. Tani, Y. Suzuki. Synthesis of spherical silica and titania from alkoxides on a laboratory-scale. Chromatographia.1994,38:291-294.
    [73]K. Tani, Y. Suzuki. Influence of titania matrix on retention behavior in reversed-phase liquid chromatography. J. Chromatogr.A.1996,722:129-134.
    [74]K. Tani, M. Ozawa. Investigation of chromatographic properties of titania. Ⅱ. Influence of calcination temperature. J. Liq. Chrom.& Rel. Technol.1999,22(6):857-871.
    [75]J. Winkler, S. Marme. Titania as a sorbent in normal-phase liquid chromatography. J. Chromatogr.A.2000,888(1-2):51-62.
    [76]K. Murayama, H. Nakamura, T. Nakajima, K. Takahashi, A. Yoshida. Preparation and evaluation of octadecyl titania as column-packing material for high-performance liquid-chromatography. Microchem. J.1994,49:362-367.
    [77]K. Tani, Y. Suzuki. Effect of octadecyl-modification on retention when using titania as a support. J. Liq. Chromatogr.& Rel. Technol.1996,19:3037-3048.
    [78]J. J. Pesek, M. T. Matyska, J. Ramakrishnan. Synthesis and characterization of titania based stationary phases using the silanization/hydrosilation method. Chromatograpgia. 1997.44:538-544.
    [79]A. Ellwanger, M. T. Matyska, K. Albert, J. J. Pesek. Comparison of octadecyl bonded titania phases. Chromatograpgia.1999,49:424-430.
    [80]Z.T. Jiang, D. Y. Zhang, Y. M. Zuo. Retention behaviors of polybutadiene-coated titania and comparison to boned phase on liner salvation energy relationships. J. Liq. Chromatogr.& Rel. Technol.2000,23(8):1159-1169.
    [81]Z. T. Jiang, Y. M. Zuo. Synthesis of porous titania microspheres for HPLC packings by polymerization-induced colloid aggregation (PICA). Anal. Chem.2001,73:686-688.
    [82]K. Tani, Y. Suzuki. Influence of titania matrix on retention behaviour in reversed-phase liquid chromatography. J. Chromatogr.1996,722:129-134.
    [83]K. Tani, Y. Suzuki. Investigation of the ion-exchange behaviour of titania:Application as a packing material for ion chromatography. Chromatographia.1997,46(11):623-627.
    [84]K. Tani, H. Kubojima. Separation of inorganic anions and cations on titania by use of acetic acid-sodium acetate and bicine-sodium hydroxide buffers. Chromatographia. 1998,47:655-658.
    [85]K. Tani, T. Sumizawa, M. Watanabe, M. Tachibana, H. Koizumi, T. Kiba. Evaluation of titania as an ion-exchanger and as a ligand-exchanger in HPLC. Chromatographia. 2002,55:33-37.
    [86]A. J. Alpert. Hydrophilic Interaction Chromatography (HILIC):A New Method for Separation of Peptides, Nucleic Acids, and Other Polar Solutes. J. Chromatogr.1990, 499:177-196.
    [87]T. Zhou, C. A. Lucy. Hydrophilic interaction chromatography of nucleotides and their pathway intermediates on titania. J. Chromatogr.A.2008,1187:87-93.
    [88]T. Zhou, C. A. Lucy. Separation of carboxylates by hydrophilic interaction liquid chromatography on titania. J. Chromatogr.A.2010,1217:82-88.
    [89]M. W. H. Pinkse, P. M. Uitto, M. J. Hilhorst, B. Ooms, A. J. R. Heck. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-nanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem.2004,76: 3935-3943.
    [90]K. Hata, H. Morisaka, K. Hara, J. Mima, N. Yumoto, Y. Tatsu, M. Furuno, N. Ishizuka, M. Ueda. Two-dimensional HPLC on-line analysis of phosphopeptides using titania and monolithic columns. Anal. Biochem.2006,350:292-297.
    [91]J. Y. Yan, X. L. Li, L. Yu, Y. Jin, X. L. Zhang, X. Y. Xue, Y. X. Ke, X. M. Liang. Selective enrichment of glycopeptides/phosphopepetides using porous titania microspheres. Chem. Commun.2010,46:5488-5490.
    [92]Y. Sekiguchi, N. Mitsuhashi, Y. Inoue, H. Yagisawa, T. Mimura. Analysis of sugar phosphates in plants by ion chromatography on a titanium dioxide column with pulsed amperometric detection. J. Chromatogr.A.2004,1039:71-76.
    [93]R.X. Liu, Q. Wang, H.Z. Guo, L. Li, K.S. Bi, D.A. Guo. Simultaneous determination of 10 major flavonoids in Dalbergia odorifera by high performance liquid chromatography. J. Pharm. Biomed. Anal.2005,39:469-476.
    [94]R.X. Liu, L. Li, Q. Wang, W. Wang, K.S. Bi, D.A. Guo. Simultaneous determination of nine flavonoids in Dalbergia odorifera by LC. Chromatographia.2005,61:409-413.
    [95]S.A. Barker, Matrix solid-phase dispersion. J. Chromatogr. A.2000,885:115-127.
    [96]S.A. Barker, J. Biochem. Matrix solid phase dispersion(MSPD). Bioph. Methods.2007, 70:151-162.
    [97]E.M. Kristenson, L. Ramos, U.A.T. Brinkman. Recent advances in matrix solid-phase dispersion. Trac-Trends Anal. Chem.2006,25:96-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700