用户名: 密码: 验证码:
肝细胞内新的核氧化固醇—3-硫酸-25-羟化胆固醇的生物合成通路、调节及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞内胆固醇平衡的维持需要胆固醇的合成,降解,脂化和分泌的协同调节。目前认为氧化的胆固醇衍生物(氧化固醇)在胆固醇平衡中发挥重要作用。最近我们发现一种新的氧化固醇,3-硫酸-25-羟化胆固醇(5-cholesten-3β,25-diol3-sulphate,25HC3S)。在原代培养的大鼠肝细胞中过表达一种线粒体胆固醇转运蛋白,类固醇激素合成急性调节蛋白(StARD1)后,该氧化类固醇在细胞核及线粒体内大量蓄积。作为一种核内氧化固醇,其也存在于正常人肝细胞核内。随后,用三乙胺-三氧化硫络合物成功地化学合成了25HC3S。在此基础上,我们进行了肝细胞内25HC3S的生物合成通路,调节及功能研究。
     第一部分:探讨了25HC3S的生物合成通路。依据5-cholesten-3β,25-diol3-sulphate(25-OH cholesterol 3β-sulfate)的分子结构,提出了一个假设的代谢通路,该通路有两个步骤,第一步:线粒体胆固醇27-羟化酶(CYP27A1)催化肝细胞线粒体合成25-羟化胆固醇。第二步:羟基类固醇硫酸基转移酶催化25-羟化胆固醇为25HC3S。在第一节中,我们发现蛋白酶K处理线粒体后,能显著增加27-羟化胆固醇的合成,在第二节中我们观察到生理性的蛋白酶也可发挥类似于蛋白酶K的作用,而且尝试着寻找是何种蛋白酶。在第三节中,我们探讨了合成25HC3S的整个生物通路。
     第一节:线粒体胆固醇27-羟化酶(CYP27A1)在维持细胞内胆固醇平衡中发挥重要作用。胆固醇进入线粒体内膜被认为是胆汁酸合成酸性通路的限速步骤。我们的实验显示蛋白酶K(proteinase K)处理线粒体可以显著提高CYP27A1的特异性活性。以内源性线粒体胆固醇为底物,蛋白酶K增加CYP27A1特异性活性5倍。当加入外源性溶解于β-环糊精(β-cyclodextrin)的胆固醇后,CYP27A1活性增加7倍以上。酶动力学实验显示蛋白酶K增加CYP27A1酶活性呈时间,蛋白酶K剂量及底物浓度依赖性。蛋白酶K处理将CYP27A1催化胆固醇羟化反应的Km值从400μM降到150μM。运用这个新的方法,我们观察到与新鲜制备的大鼠肝脏线粒体相比,在大鼠原代肝细胞的分离和培养过程中,线粒体CYP27A1的活性逐渐降低。
     第二节:我们已经观察到蛋白酶K显著增加体外线粒体CYP27A1的特异性活性。而蛋白酶在机体组织细胞中无处不在,在线粒体周围的环境中也广泛存在。在机体的生理或病理条件下,某些蛋白酶释放也可以影响线粒体的状态,是否可以改变CYP27A1的酶活性?分离的肝脏细胞浆可以使CYP27A1酶活性增加2倍,煮沸灭活抑制该效应。继而,我们观察到分离的溶酶体释放出的蛋白酶可以刺激27-羟胆固醇的合成。而EDTA和蛋白酶抑制剂AEBSF可以降低27-羟胆固醇生成,而二价钙离子则可以刺激其生成。因此,某种钙离子依赖的金属蛋白酶和某种丝氨酸蛋白酶都有可能是刺激CYP27A1活性的蛋白酶,但我们还不能明确是何种蛋白酶,而蛋白酶又是如何发挥作用的?这些都有待于进一步研究发现。这些现象也显示蛋白酶水解反应可能与控制线粒体胆固醇跨膜转运以及胆汁酸酸性合成途径有关。
     第三节:提出了肝细胞中25HC3S的合成通路。大鼠肝脏,野生型和CYP27A1基因敲除小鼠肝脏分离的线粒体与胆固醇孵育进行27-羟化酶反应的实验结果显示,25-羟化胆固醇可以在肝细胞线粒体中由CYP27A1催化产生。孵育纯化的肝脏线粒体和细胞浆可以生物合成25HC3S。RT-PCR和Western-blot显示肝细胞表达羟基胆固醇硫酸基转移酶SULT281b。25HC3S,而非25HC可以反馈性降低SULT281b表达。综上,我们认为CYP27A1催化胆固醇生成25-羟化胆固醇,进而3β羟基被硫酸化,从而合成25HC3S。
     第二部分:研究了催化25HC3S合成的羟基类固醇硫酸基转移酶的调节。近年来,一种新的羟基类固醇硫酸基转移酶SULT2B1b被克隆和研究。SULT281被报道表达于激素反应性器官,如胎盘、前列腺、皮肤和乳腺等。我们观察到在大鼠原代肝细胞的培养过程中,即使培养液中没有加入任何激素、血清,SULT281b表达随着培养时间的延长而显著增加。而同时其他羟基类固醇硫酸基转移酶SULT2A亚家族的SULT2A2和ST-40则显著降低。地塞米松对于SULT2A的表达具有重要性,而并不能影响SULT281b的表达。胰岛素可以显著增加SULT281b的mRNA和蛋白的表达,T4可以提高其mRNA水平,但幅度远小于胰岛素。可见,SULT281b是一种高度可调节性羟基类固醇硫酸基转移酶
     第三部分:观察了25HC3S对大鼠原代肝细胞脂质代谢的影响。加入不同剂量的25HC3S到原代培养的大鼠肝细胞中,孵育6小时后,显著抑制CYP7A1,而且该作用显著甚于25HC。25HC3S通过更有效地抑制SRBEP-1和SREBP-2mRNA表达,进而更强烈地抑制HMG辅酶A还原酶mRNA水平。25HC3S降低SREBP-1前体和活化形式的蛋白水平,而25HC升高SREBP-1前体蛋白水平,但不影响其活化蛋白表达。这些结果显示,25HC3S作为一种亲水性的氧化固醇,在大鼠原代肝细胞内脂质代谢中发挥不同于25HC的重要作用。
     总之,我们认为25HC3S是一种有功能的核氧化固醇,而且可以在体内生物合成,线粒体胆固醇27-羟化酶(CYP27A1)催化肝细胞线粒体合成25-羟化胆固醇,而后羟基胆固醇硫酸基转移酶SULT2B1b催化25-羟化胆固醇为25HC3S。而且,这两步生物反应都是高度可调节的。
Cellular cholesterol homeostasis is maintained through the coordinated regulation of cholesterol synthesis, degradation, and secretion. Nuclear receptors for oxygenated cholesterol derivatives(oxysterols) are known to play key roles in the regulation of cholesterol homeostasis. We recently identified a novel sulfatedoxysterol, 5-cholesten-3β, 25-diol 3-sulphate(25HC3S), whose concentration increased dramatically in the mitochondria and the nuclei of primary rat hepatocytes in response to over-expression of cholesterol mitochondria delivery protein, StarD1. This oxysterol was also found in human liver nuclei. Then we synthesized the 25HC3S chemically. In the present study, the metabolic pathway, regulation and functions of the nuclear oxysterol were investigated.
     In the first part, we studied the biosynthesis pathway of 25HC3S. According to the molecular structure of 25HC3S, we proposed a novel metabolic pathway of nuclear sulfate oxysterol in hepatocytes. The first step is that 25-OH Cholesterol is synthesized by CYP27A1 in mitochondria of hepatocytes. The second step is that 25-OH cholesterol is sulfonated to 25-OH cholesterol sulfate by hydroxysteroid sulfotransferase SULT2B1b in hepatocytes.
     Mitochondrial cholesterol 27-hydroxylase(CYP27A1) plays an important role in the maintenance of intracellular cholesterol homeostasis. Cholesterol delivery to the mitochondrial inner membrane is believed to be a rate-limiting step for the "acidic" pathway of bile acid synthesis. The present work reports that proteinase K treatment of mitochondria markedly increases CYP27A1 specific activity. With endogenous mitochondrial cholesterol, treatment with proteinase K increased CYP27A1 specific activity by 5-fold. Moreover, the addition of the exogenous cholesterol inβ-cyclodextrin plus proteinase K treatment increased the specific activity by 7-fold. Kinetic studies showed that the increased activity was time, proteinase K and substrate concentration dependent. Proteinase K treatment decreased the apparent Km of CYP27A1 for cholesterol from 400μM to 150μM. Using this new assay, we found that during rat hepatocyte preparation and cell culture, mitochondria gradually lose CYP27A1 activity as compared with mitochondria fleshly isolated from rat liver tissue.
     We already observed proteinase k stimulated CYP27A1 specific activity dramatically. Proteianses are located in the cells comprehensively, which is around mitochondria too. Incubation of isolated mitochondria with the cytosolic fraction stimulated CYP27A1 specific activity 2-fold. Heat-inactivation of the cytosolic fraction prevented this increase. Isolated crude lysosomal fraction stimulated the production of 27-hydroxycholesterol. However, EDTA and preteinase inhibitor AEBSF suppressed CYP27A1 activity, while CaCl_2 perform the opposite effect. These findings suggest that protelysis is involved in the control of transmembrane mitochndrial cholesterol movement and, therefore, in the "acidic" pathway of bile acid biosynthesis.
     The present study demonstrates a pathway for synthesis of 25HC3S in hepatocytes. Assays using mitochondria isolated from rats and Cyp27Al~- knockout mice indicated that 25-hydroxycholesterol(25HC) is synthesized by CYP27A1 in mitochondria. Incubation of mitochondrial and cytosol fractions resulted in synthesis of 25HC3S. RT-PCR analysis showed the presence of the hydroxysteroid sulfotransferase 2B1b(SULT2B1b) in the hepatocytes. Its expression was down regulated by 25HC3S but not by 25HC. The current findings suggest that the mitochondria synthesize 25HC, which is subsequently 3β-sulfated to form 25HC3S. A novel biosynthetic pathway of the nuclear oxysterol is proposed in this manuscript.
     In the second part, we focused on the regulation of the hydroxysteroid sulfotransferases in hepatocytes. Recently, a novel hydroxysteroid sulfotransferase SULT2B1b was cloned and studied. In contrast to the limited tissue distribution of SULT2A1, SULT2B1b was detected in a variety of hormone-responsive tissues including placenta, breast, skin and prostate. During the culture of primary rat hepatocytes, SULT2B1b mRNA and protein levels increased dramatically without any hormone added, meanwile, SULT2A2 and ST-40 mRNA expressions were suppressed significantly. Dexamethasone is important for SULT2A expression, but no effect on SULT2B1b expression. Insulin upregulated SULT2B1b mRNA and protein levels dose-dependently, but did not effect on SULT2A. T4 stimulated SULT2B1b mRNA expression, but not as strong as Insulin. In conclusion, SULT2B1b is a highly regulated hydroxysteroid sulfotransferase, which is different form the well-known SULT2A1.
     In the third part, we studied the effect of 25HC3S on intracellular lipids metabolism in primary rat hepatocytes. 25HC was studied parallelly as comparison. Addition of varying concentrations of 25HC3S to primary rat hepatocytes markedly inhibited CYP7A1 mRNA expression, which is much stronger than 25HC. 25HC3S shows more potent on inhibiting SREBP-1, and SREBP-2 mRNA expression, subsequently HMG CoA reductase than 25HC. 25HC3S decreases both protein levels of SREBP-1 precursor and mature forms. However, 25-HC increases SREBP-1 precursor and does not affect mature form. These results indicate that 25HC3S, a hydrophilic oxysterol, plays an important role, but in different manner from 25HC in intracellular lipids metabolism in primary rat hepatocytes.
     In summary, 25HC3S is a functional nuclear oxysterol in hepatocytes. 25-OH Cholesterol is synthesized by CYP27A1 in mitochondria of hepatocytes, and then sulfonated to 25-OH cholesterol sulfate by hydroxysteroid sulfotransferase SULT2B1b in hepatocytes. And the whole pathway is highly regulated.
引文
1. Meir, K., Kitsberg, D., Alkalay, I., Szafer, F., Rosen, H., Shpitzen, S., Avi, L. B., Staels, B., Fievet, C., Meiner, V. et al. 2002. Human sterol 27-hydroxylase (CYP27) overexpressor transgenic mouse model. Evidence against 27-hydroxycholesterol as a critical regulator of cholesterol homeostasis. J. Biol. Chem. 277: 34036-34041.
    2. Bjorkhem,I. and Leitersdorf, E. 2000. Sterol 27-hydroxylase deficiency: a rare cause of xanthomas in normocholesterolemic humans. Trends Endocrinol. Metab 11: 180-183.
    3. Cali, J. J., Hsieh, C. L., Francke, U., and Russell, D. W. 1991. Mutations in the bile acid biosynthetic enzyme sterol 27-hydroxylase underlie cerebrotendinous xanthomatosis. J. Biol. Chem. 266: 7779-7783.
    4. Goldstein, J. L. and Brown, M. S. 1990. Regulation of the mevalonate pathway. Nature 343: 425-430.
    5. Schroepfer, G. J., Jr. 2000. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 80: 361-554.
    6. Song, C. and Liao, S. 2000. Cholestenoic acid is a naturally occurring ligand for liver X receptor alpha. Endocrinology 141: 4180-4184.
    7. Honda, A., Salen, G., Matsuzaki, Y., Batta, A. K., Xu, G., Leitersdorf, E., Tint, G. S., Erickson, S. K., Tanaka, N., and Shefer, S. 2001. Differences in hepatic levels of intermediates in bile acid biosynthesis between Cyp27(-/-) mice and CTX. J. Lipid Res. 42: 291-300.
    8. Ishibashi, S., Schwarz, M., Frykman, P. K., Herz, J., and Russell, D. W. 1996. Disruption of cholesterol 7alpha-hydroxylase gene in mice. I. Postnatal lethality reversed by bile acid and vitamin supplementation. J. Biol. Chem. 271: 18017-18023.
    9. Hall, E., Hylemon, P., Vlahcevic, Z., Mallonee, D., Valerie, K., Avadhani, N., and Pandak,W. 2001. Overexpression of CYP27 in hepatic and extrahepatic cells: role in the regulation of cholesterol homeostasis. Am.J.Physiol Gastrointest.Liver Physiol 281 :G293-G301.
    10. Ren,S., Hylemon,P.B., Marques,D., Gurley,E., Bodhan,P., Hall,E., Redford,K., Gil,G, and Pandak,W.M. 2004. Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse. Hepatology 40:910-917.
    11. Pandak,W.M., Ren,S., Marques,D., Hall,E., Redford,K., Mallonee,D., Bohdan,R, Heuman,D., Gil,G, and Hylemon,P. 2002. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J.Biol.Chem. 277:48158-48164.
    12. Bissell,D.M. and Guzelian,P.S. 1980. Phenotypic stability of adult rat hepatocytes in primary monolayer culture. Ann.N.Y.AcadSci. 349:85-98.
    13. Hall,E.A., Ren,S., Hylemon,P.B., Redford,K., Del Castillo,A., Gil,G, and Pandak,W.M. 2005. Mitochondrial cholesterol transport: a possible target in the management of hyperlipidemia. Lipids 40:1237-1244.
    14. Petrack,B. and Latario,B.J. 1993. Synthesis of 27-hydroxycholesterol in rat liver mitochondria: HPLC assay and marked activation by exogenous cholesterol. J.Lipid Res. 34:643-649.
    15. Dubrac,S., Lear,S.R., Ananthanarayanan,M., Balasubramaniyan,N., Bollineni, J., Shefer,S., Hyogo,H., Cohen,D.E., Blanche,P.J., Krauss,R.M. et al. 2005. Role of CYP27A in cholesterol and bile acid metabolism. J. Lipid Res. 46:76-85.
    16. Souidi,M., Dubrac,S., Parquet,M., Volle,D.H., Lobaccaro, J.M., Mathe,D., Combes,O., Scanff,R, Lutton,C, and Aigueperse, J. 2004. [Oxysterols: metabolism, biological role and associated diseases]. Gastroenterol.Clin.Biol. 28:279-293.
    17. Adams,C.M., Reitz,J., De Brabander,J.K., Feramisco,J.D., Li,L., Brown,M.S., and Goldstein, J.L. 2004. Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J.Biol.Chem. 279:52772-52780.
    18. Bjorkhem, I. 2002. Do oxysterols control cholesterol homeostasis? J.Clin.Invest110:725-730.
    19. Corsini,A., Verri,D., Raiteri,M., Quarato,P., Paoletti,R., and Fumagalli,R. 1995. Effects of 26-aminocholesterol, 27-hydroxycholesterol, and 25-hydroxycholesterol on proliferation and cholesterol homeostasis in arterial myocytes. Arterioscler.Thromb. Vasc. Biol. 15:420-428.
    20. Fu,X., Menke, J.G., Chen,Y., Zhou,G, MacNaul,K.L., Wright,S.D., Sparrow,C.R, and Lund,E.G. 2001. 27-hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterol-loaded cells. J.Biol.Chem. 276:38378-38387.
    21. Pandak,W.M, Ren,S., Marques,D., Hall,E., Redford,K., Mallonee,D., Bohdan,R, Heuman,D., Gil,G., and Hylemon,P. 2002. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J.Biol.Chem. 277:48158-48164.
    22. Ren,S., Hylemon,P.B., Marques,D., Gurley,E., Bodhan,R, Hall,E., Redford,K., Gil,G., and Pandak,W.M. 2004. Overexpression of cholesterol transporter StAR increases in vivo rates of bile acid synthesis in the rat and mouse. Hepatology 40:910-917.
    23. Hall,E.A., Ren,S., Hylemon,P.B., Rodriguez-Agudo,D., Redford,K., Marques,D., Kang,D., Gil,G, and Pandak,W.M. 2005. Detection of the steroidogenic acute regulatory protein, StAR, in human liver cells. Biochim. Biophys. Acta 1733:111-119.
    24. Ren,S., Hylemon,P., Zhang,Z.P., Rodriguez-Agudo,D., Marques,D., Li,X., Zhou,H., Gil,G, and Pandak,W.M. 2006. Identification of a novel sulfonated oxysterol, 5-cholesten-3beta,25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria. J. Lipid Res. 47:1081 -1090.
    25. Her,C., Wood,T.C., Eichler,E.E., Mohrenweiser,H.W., Ramagli,L.S., Siciliano,M.J., and Weinshilboum,R.M. 1998. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene. Genomics 53:284-295.
    26. Javitt,N.B., Lee, Y.C, Shimizu,C., Fuda,H., and Strott,C.A. 2001. Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology 142:2978-2984.
    27. Dubrac,S., Lear,S.R., Ananthanarayanan,M., Balasubramaniyan,N., Bollineni, J., Shefer,S., Hyogo,H., Cohen,D.E., Blanche,P.J., Krauss,R.M. et al. 2005. Role of CYP27A in cholesterol and bile acid metabolism. J. Lipid Res. 46:76-85.
    28. Hall,E.A., Ren,S., Hylemon,P.B., Redford,K., Del Castillo,A., Gil,G., and Pandak,W.M. 2005. Mitochondrial cholesterol transport: a possible target in the management of hyperlipidemia. Lipids 40:1237-1244.
    29. Falany,C.N., He,D., Dumas,N., Frost,A.R., and Falany,J.L. 2006. Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization. J. Steroid Biochem. Mol. Biol. 102:214-221.
    30. He,D., Frost,A.R., and Falany,C.N. 2005. Identification and immunohistochemical localization of Sulfotransferase 2Blb (SULT2B1b) in human lung. Biochim.Biophys.Acta 1724:119-126.
    31. Dubrac,S., Lear,S.R., Ananthanarayanan,M, Balasubramaniyan,N., Bollineni,J., Shefer,S., Hyogo,H., Cohen,D.E., Blanche,P.J., Krauss,R.M. et al. 2005. Role of CYP27A in cholesterol and bile acid metabolism. J. Lipid Res. 46:76-85.
    32. Ren,S., Hylemon,P., Zhang,Z.P., Rodriguez-Agudo,D., Marques,D., Li,X., Zhou,H., Gil,G, and Pandak,W.M. 2006. Identification of a novel sulfonated oxysterol, 5-cholesten-3beta,25-diol 3-sulfonate, in hepatocyte nuclei and mitochondria. J.Lipid Res. 47:1081-1090.
    33. Kohjitani,A., Fuda,H., Hanyu,O., and Strott,C.A. 2006. Cloning, characterization and tissue expression of rat SULT2B1a and SULT2B1b steroid/sterol sulfotransferase isoforms: divergence of the rat SULT2B1 gene structure from orthologous human and mouse genes. Gene 367:66-73.
    34. Meloche,C.A. and Falany,C.N. 2001. Expression and characterization of the human 3 beta-hydroxysteroid sulfotransferases (SULT2B1a and SULT2B1b). J.Steroid Biochem. Mol.Biol 77:261-269.
    35. Wang,L.Q. and James,M.O. 2005. Sulfotransferase 2A1 forms estradiol-17-sulfate and celecoxib switches the dominant product from estradiol-3-sulfate to estradiol-17-sulfate. J.Steroid Biochem.Mol.Biol. 96:367-374.
    36. Cui,D., Booth-Genthe,C.L., Carlini,E., Carr,B., and Schrag,M.L. 2004. Heterotropic modulation of sulfotransferase 2A1 activity by celecoxib: product ratio switching of ethynylestradiol sulfation. Drug Metab Dispos. 32:1260-1264.
    37. Falany,C.N., He,D., Dumas,N., Frost,A.R., and Falany, J.L. 2006. Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization. J.Steroid Biochem.Mol.Biol. 102:214-221.
    38. Kohjitani,A., Fuda,H., Hanyu,O., and Strott,C.A. 2006. Cloning, characterization and tissue expression of rat SULT2B1a and SULT2B1b steroid/sterol sulfotransferase isoforms: divergence of the rat SULT2B1 gene structure from orthologous human and mouse genes. Gene 367:66-73.
    39. Javitt,N.B., Lee, Y.C, Shimizu,C, Fuda,H., and Strott,C.A. 2001. Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology 142:2978-2984.
    40. Falany,C.N. 1997. Enzymology of human cytosolic sulfotransferases. FASEB J. 11:206-216.
    41. Weinshilboum,R.M., Otterness,D.M., Aksoy, I.A., Wood,T.C, Her,C, and Raftogianis,R.B. 1997. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 11:3-14.
    42. Epstein,E.H., Williams,M.L., and Elias,P.M. 1984. The epidermal cholesterol sulfate cycle. J. Am.Acad.Dermatol. 10:866-868.
    43. Epstein,E.H., Jr., Williams,M.L., and Elias,P.M. 1981. Steroid sulfatase, X-linked ichthyosis, and stratum corneum cell cohesion. Arch. Dermatol. 117:761-763.
    44. Jiang,Y.J., Kim,P., Elias,P.M., and Feingold,K.R. 2005. LXR and PPAR activators stimulate cholesterol sulfotransferase type 2 isoform 1b in human keratinocytes. J. Lipid Res. 46:2657-2666.
    45. Meloche,C.A. and Falany,C.N. 2001. Expression and characterization of the human 3 beta-hydroxysteroid sulfotransferases (SULT2B1a and SULT2B1b). J.Steroid Biochem.Mol.Biol. 77:261-269.
    46. Falany,C.N. 1997. Enzymology of human cytosolic sulfotransferases. FASEB J. 11:206-216.
    47. Mesia-Vela,S. and Kauffman,F.C. 2003. Inhibition of rat liver sulfotransferases SULT1A1 and SULT2A1 and glucuronosyltransferase by dietary flavonoids. Xenobiotica 33:1211-1220.
    48. Fang,H.L., Abdolalipour,M., Duanmu,Z., Smigelski,J.R., Weckle,A., Kocarek,T.A., and Runge-Morris,M. 2005. Regulation of glucocorticoid-inducible hydroxysteroid sulfotransferase (SULT2A-40/41) gene transcription in primary cultured rat hepatocytes: role of CCAAT/enhancer-binding protein liver-enriched transcription factors. Drug Metab Dispos. 33:147-156.
    49. Duanmu,Z., Locke,D., Smigelski, J., Wu,W., Dahn,M.S., Falany,C.N., Kocarek,T.A., and Runge-Morris,M. 2002. Effects of dexamethasone on aryl (SULT1A1)- and hydroxysteroid (SULT2A1)-sulfotransferase gene expression in primary cultured human hepatocytes. Drug Metab Dispos. 30:997-1004.
    50. Geese, W. J. and Raftogianis,R.B. 2001. Biochemical characterization and tissue distribution of human SULT2B1. Biochem. Biophys. Res. Commun. 288:280-289.
    51. Falany,J.L., Lawing, L., and Falany,C.N. 1993. Identification and characterization of cytosolic sulfotransferase activities in MCF-7 human breast carcinoma cells. J.Steroid Biochem.Mol.Biol. 46:481-487.
    52. Pandak,W.M., Ren,S., Marques,D., Hall,E., Redford,K., Mallonee,D., Bohdan, P., Heuman,D., Gil,G., and Hylemon,P. 2002. Transport of cholesterol into mitochondria is rate-limiting for bile acid synthesis via the alternative pathway in primary rat hepatocytes. J.Biol.Chem. 277:48158-48164.
    53. Horton,J.D., Shah,N.A., Warrington,J.A., Anderson,N.N., Park,S.W., Brown,M.S., and Goldstein,J.L. 2003. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc.Natl.Acad.Sci.U.S.A 100:12027-12032.
    54. Horton, J.D., Goldstein,J.L., and Brown,M.S. 2002. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin .Invest 109:1125-1131.
    55. Schroepfer,G.J., Jr. 2000. Oxysterols: modulators of cholesterol metabolism and other processes. Physiol Rev. 80:361-554.
    56. Horton,J.D., Shah,N.A., Warrington, J.A., Anderson,N.N., Park,S.W., Brown,M.S., and Goldstein, J.L. 2003. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc.Natl.Acad.Sci.U.S.A 100:12027-12032.
    57. Horton, J.D., Shah,N.A., Warrington, J.A., Anderson,N.N., Park,S.W., Brown,M.S., and Goldstein, J.L. 2003. Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc.Natl.Acad.Sci.U.S.A 100:12027-12032.
    58. Bobard,A., Hainault, I., Ferre, P., Foufelle, F., and Bossard, P. 2004. Differential regulation of SREBP-1c transcriptional activity by insulin and LXR during liver development. J.Biol.Chem.
    59. Botolin,D. and Jump,D.B. 2003. Selective proteolytic processing of rat hepatic sterol regulatory element binding protein-1 (SREBP-1) and SREBP-2 during postnatal development. J.Biol.Chem. 278:6959-6962.
    60. Castillo-Olivares,A. and Gil,G. 2002. Differential effects of sterol regulatory binding proteins 1 and 2 on sterol 12 alpha-hydroxylase. SREBP-2 suppresses the sterol 12 alpha-hydroxylase promoter. J.Biol.Chem. 277:6750-6757.
    61. Dif,N., Euthine,V., Gonnet,E., Laville,M., Vidal,H., and Lefai,E. 2006. Insulin activates human sterol-regulatory-element-binding protein-lc (SREBP-lc) promoter through SRE motifs. Biochem. J. 400: 179-188.
    62. Seegmiller, A. C., Dobrosotskaya, I., Goldstein, J. L., Ho, Y. K., Brown, M. S., and Rawson, R. B. 2002. The SREBP pathway in Drosophila: regulation by palmitate, not sterols. Dev. Cell 2: 229-238.
    63. Wong, J., Quinn, C. M., and Brown, A. J. 2006. SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR. Biochem. J. 400: 485-491.
    64. Zeng, L., Liao, H., Liu, Y., Lee, T. S., Zhu, M., Wang, X, Stemerman, M. B., Zhu, Y., and Shyy, J. Y. 2004. Sterol-responsive element-binding protein (SREBP) 2 down-regulates ATP-binding cassette transporter A1 in vascular endothelial cells: a novel role of SREBP in regulating cholesterol metabolism. J. Biol. Chem. 279: 48801-48807.
    1. Weinshilboum,R.M., Otterness,D.M., Aksoy,I.A., Wood, T.C, Her,C., and Raftogianis,R.B. 1997. Sulfation and sulfotransferases 1: Sulfotransferase molecular biology: cDNAs and genes. FASEB J. 11:3-14.
    2. Falany,C.N. 1997. Enzymology of human cytosolic sulfotransferases. FASEB J. 11:206-216.
    3. Epstein,E.H., Williams,M.L., and Elias,P.M. 1984. The epidermal cholesterol sulfate cycle. J.Am.Acad.Dermatol. 10:866-868.
    4. Epstein,E.H., Jr., Williams,M.L., and Elias,P.M. 1981. Steroid sulfatase, X-linked ichthyosis, and stratum corneum cell cohesion. Arch. Dermatol. 117:761-763.
    5. Falany,C.N., He,D., Dumas,N., Frost,A.R., and Falany,J.L. 2006. Human cytosolic sulfotransferase 2B1: isoform expression, tissue specificity and subcellular localization. J.Steroid Biochem.Mol.Biol. 102:214-221.
    6. Freimuth,R.R., Raftogianis,R.B., Wood,T.C, Moon,E., Kim,U.J., Xu,J., Siciliano, M.J., and Weinshilboum,R.M. 2000. Human sulfotransferases SULT1C1 and SULT1C2: cDNA characterization, gene cloning, and chromosomal localization. Genomics 65:157-165.
    7. Watabe, T., Ogura,K., Satsukawa,M., Okuda,H., and Hiratsuka,A. 1994. Molecular cloning and functions of rat liver hydroxysteroid sulfotransferases catalysing covalent binding of carcinogenic polycyclic arylmethanols to DNA. Chem.Biol.Interact. 92:87-105.
    8. Kohjitani,A., Fuda,H., Hanyu,O., and Strott,C.A. 2006. Cloning, characterization and tissue expression of rat SULT2B1a and SULT2B1b steroid/sterol sulfotransferase isoforms: divergence of the rat SULT2B1 gene structure from orthologous human and mouse genes. Gene 367:66-73.
    9. Her,C., Wood, T.C, Eichler,E.E., Mohrenweiser,H.W., Ramagli,L.S., Siciliano,M.J., and Weinshilboum,R.M. 1998. Human hydroxysteroid sulfotransferase SULT2B1: two enzymes encoded by a single chromosome 19 gene. Genomics 53:284-295.
    10. Geese,W.J. and Raftogianis,R.B. 2001. Biochemical characterization and tissue distribution of human SULT2B1. Biochem.Biophys.Res.Commun. 288:280-289.
    11. Fuda,H., Lee,Y.C., Shimizu,C., Javitt,N.B., and Strott,C.A. 2002. Mutational analysis of human hydroxysteroid sulfotransferase SULT2B1 isoforms reveals that exon 1B of the SULT2B1 gene produces cholesterol sulfotransferase, whereas exon 1A yields pregnenolone sulfotransferase. J.Biol.Chem. 277:36161-36166.
    12. He,D., Meloche,C.A., Dumas,N.A., Frost,A.R., and Falany,C.N. 2004. Different subcellular localization of sulphotransferase 2B1b in human placenta and prostate. Biochem.J. 379:533-540.
    13. Strott,C.A. and Higashi,Y. 2003. Cholesterol sulfate in human physiology: what's it all about? J.Lipid Res. 44:1268-1278.
    14. Yanai,H., Javitt,N.B., Higashi,Y, Fuda,H., and Strott,C.A. 2004. Expression of cholesterol sulfotransferase (SULT2Blb) in human platelets. Circulation 109:92-96.
    15. He,D., Frost,A.R., and Falany,C.N. 2005. Identification and immunohistochemical localization of Sulfotransferase 2B1b (SULT2B1b) in human lung. Biochim.Biophys. Acta 1724:119-126.
    16. He,D., Meloche,C.A., Dumas,N.A., Frost,A.R., and Falany,C.N. 2004. Different subcellular localization of sulphotransferase 2Blb in human placenta and prostate. Biochem.J. 379:533-540.
    17. Jiang, Y.J., Kim, P., Elias,P.M., and Feingold,K.R. 2005. LXR and PPAR activators stimulate cholesterol sulfotransferase type 2 isoform 1b in human keratinocytes. J. Lipid Res. 46:2657-2666.
    18. Javitt,N.B., Lee,Y.C., Shimizu,C., Fuda,H., and Strott,C.A. 2001. Cholesterol and hydroxycholesterol sulfotransferases: identification, distinction from dehydroepiandrosterone sulfotransferase, and differential tissue expression. Endocrinology 142: 2978-2984.
    19. Shimizu, C., Fuda, H., Yanai, H., and Strott, C. A. 2003. Conservation of the hydroxysteroid sulfotransferase SULT2B1 gene structure in the mouse: preand postnatal expression, kinetic analysis of isoforms, and comparison with prototypical SULT2A1. Endocrinology 144: 1186-1193.
    20. Alomary, A. A., Fitzgerald, R. L., and Purdy, R. H. 2001. Neurosteroid analysis. Int. Rev. Neurobiol. 46: 97-115.
    21. Higashi, Y., Fuda, H., Yanai, H., Lee, Y., Fukushige, T., Kanzaki, T., and Strott, C. A. 2004. Expression of cholesterol sulfotransferase (SULT2B1b) in human skin and primary cultures of human epidermal keratinocytes. J. Invest Dermatol. 122: 1207-1213.
    1 Zimmermann H. 5'-nucleotidase: molecular structure and functional aspects [J]. Biochem J,1992,285:345-365.
    2 Airas J, Niemela J, Marko Salmi,et al. Differential Regulation and Function of CD73, a Glycosyl-Phosphatidylinositol-linked 70-KD Adhension Molecular,on Lynphocytes and Endothelial Cells [J]. The Jounal of Cell Biology, 1997,136:421-431.
    3 Moriwaki Y, Yamamoto T, Higashino K. Enzymes involved in purine metabolism—a review of histochemical localization and functional implications [J] .Histol Histopathol, 1999,14(4):1321-40.
    4 Rosi F,Carlucci F,Marinello E,et al. Ecto-5'-nucleotidase in B-cell chronic lymphocytic leukemia [J].Biomed Pharmacother, 2002,56:100-104.
    5 Rampazzo C ,Mazzon C, Reichard P , et al.5'-Nucleotidases: specific assays for five different enzymes in cell extracts [J]. Biochem Biophys Res Commun, 2002,293(1):258-63.
    6 Amici A,Magni G . Human erythrocyte pyrimidine 5'-nucleotidase, PN-I [J] . Arch Biochem Biophys, 2002 ,397(2): 184-90.
    7 Kawashima Y,Nagasawa T,Ninomiya H.Contribution of ecto-5'-nucleotidase to the inhibition of platelet aggregation by human endothelial cells [J].Blood,2000,96(6):2157-62.
    8 Airas L, Niemela J, Jalkanen S. CD73 Engagement Promotes Lymphocyte Binding to Endothelial Cells Via a Lymphocyte Function-Associated Antigen-1-Dependent Mechanism [J]. J Immunol, 2000,165(10):5411-7.
    9 Hansen KR, Resta R, Webb CF, et al. Isolation and characterization of the promoter of the human 5'-nucleotidase ( CD73 ) -encoding gene [J] .Gene ,1995,167:307-312
    10 Obata T. Adenosine production and its interaction with protection of ischemic and reperfusion injury of the myocardium [J]. Life Sci, 2002 ,71(18):2083-103.
    11 Synnestvedt K,Furuta GT,Comerford KM,et al. Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia [J] . J Clin Invest, 2002 ,110(7):993-1002.
    12 Henttinen T, Jalkanen S,Yegutkin GG. Adherent leukocytes prevent adenosine formation and impair endothelial barrier function by Ecto-5'-nucleotidase/CD73-dependent mechanism [J] . J Biol Chem, 2003 Apr 21 [epub ahead of print]
    13 Linden J.Molecular approch to adenosine receptor: receptor-mediated mechanisms of tissue protection [J]. Annu Rev Pharmacol Toxicol,2001,41:775-87.
    14 de Jong JW, de Jonge R,Keijzer E,et al.The role of adenosine in preconditioning [J] .Pharmacology & Therapeutics,2000,87:141 -149.
    15 Narravula S,Lennon PF,Mueller BU,et al. Regulation of endothelial CD73 by adenosine: paracrine pathway for enhanced endothelial barrier function [J]. J Immunol, 2000 ,165(9):5262-8.
    16 Gregg L,Semenza.HIF-1:mediator of physiological and pathophysiological responses to hypoxia[J]. J Appl Physiol,2000,88:1474-1480.
    17 Sesti C, Broekman MJ, Drosopoulos JH,et al. EctoNucleotidase in Cardiac Sympathetic Nerve Endings Modulates ATP-Mediated Feedback of Norepinephrine Release [J].J Pharmacol Exp Ther, 2002, 300: 605-611.
    18 Cunha RA. Regulation of the ecto-nucleotidase pathway in rat hippocampal nerve terminals [J] .Neurochem Res, 2001 ,26(8-9):979-91.
    19 Kalsi K,Lawson C,Dominguez M,et al. Regulation of ecto-5'-nucleotidase by TNF-alpha in human endothelial cells[J].Mol Cell Biochem, 2002,232(1-2): 113-9.
    20 Spychala J.Tumor-promoting function of adenosine[J].Pharmacology & Therapeutics,2000,87:161-173.
    21 Resta R, Yamashita Y, Thompson LF, et al.Ecto-enzyme and signaling functions of lymphocyte CD73[J]. Immunological Reviews, 1998,161:95-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700