用户名: 密码: 验证码:
三种酚在支撑离子液体膜中的传输分离研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
酚类化合物是重要的化工原料,在化工生产中应用广泛。然而酚类化合物是一种原型质毒物,对一切生物个体都有毒害作用,可使细胞失活,神经系统发生病变,毒性很大。因此含酚废水的处理是有机废水处理中的重要课题。离子液体(ILs)是一种新型“绿色溶剂”,具有热稳定性好,几乎不挥发,无毒不易燃等特性。本论文设计合成了一种咪唑类疏水性离子液体:1-丁基-3-乙基咪唑六氟磷酸盐([BEIM]+PF6-),确立了最佳合成条件。并以此代替传统的有机溶剂作为支撑液膜中的膜溶剂,研究了苯酚、对硝基苯酚、2,4-硝基苯酚在支撑离子液体膜(SILMs)中的传输分离规律,考察了料液相pH、水相离子强度、无机盐种类、酚类初始浓度、解析剂种类及其浓度对酚类传输的影响。取得以下实验结果:
     1 [BEIM]+PF6'离子液体的合成
     以溴代正丁烷、N-乙基咪唑和六氟磷酸铵为原料,采用微波合成法合成了疏水性离子液体[BEIM]+PF6-。最佳合成条件为:原料N-乙基咪唑、溴代正丁烷、六氟磷酸铵的摩尔比为1:1.2:1,T=95℃,t=4min。通过红外光谱对其结构进行了表征,并与标准图谱进行了对比,证明本实验合成的产品即是离子液体[BEIM]+PF6-。
     2三种酚在支撑离子液体膜中的传输分离
     以聚偏氟乙烯膜(PVDF)为支撑体,疏水性离子液体[BEIM]+PF6-为膜溶剂,分别研究了苯酚、对硝基苯酚、2,4-二硝基苯酚在支撑离子液体膜中的传输分离规律。
     苯酚的传输分离实验:适当降低料液相pH、提高水相离子强度可以提高传输率。最优的传输分离条件为:料液相pH 3.5、使用K28O4控制离子强度为0.2mol/L、解析相NaOH溶液浓度为0.2mol/L,当苯酚初始浓度为1.3×10-3mol/L时,传输120min传输率可达79.4%。
     对硝基苯酚(p-NP)的传输分离实验:适当提高料液相pH、水相离子强度及解析剂浓度可以提高传输率。最优的传输分离条件为:料液相pH 5.5、使用K2SO4控制离子强度为0.25mol/L、解析相NaOH溶液浓度为0.15mol/L,当p-NP的初始浓度为5.0×10-4mol/L时,传输120min传输率为64.2%。
     2,4-二硝基苯酚(DNP)的传输分离实验:适当提高料液相pH、水相离子强度及解析剂浓度可以提高传输率。最优的传输分离条件为:料液相pH 2.8、使用K2SO4控制离子强度为0.2mo1/L、解析相NaOH溶液浓度为0.15mo1/L,当DNP的初始浓度为1.0×10-3mol/L时,传输120min传输率为71.6%。
     3三种酚在SILMs的传质过程研究
     实验分别建立了三种酚在SILMs传输分离与渗透系数P相关的关系方程。
     苯酚在SILMs传输的传质过程分析:苯酚在SILMs传输的P与料液相[H+]、P与离子强度I、P与解析剂浓度之间的关系方程:PPh-OH=1.791×10-5(-1g[H+])-0.350,PPh-OH=1.262×10-5(I)-0.2037,PPh-OH=2.277×10-5(?);苯酚传输速率与初始浓度关系方程:νPh-OH=-1.3587(?)+4.3603c0+0.0536。
     对硝基苯酚在SILMs传输的传质过程分析:p-NP在SILMs传输的P与料液相[H+]、P与水相离子强度I的关系方程:Pp-NP=2.783×10-6(-1g[H+])0.115,Pp-NP=5.004×10-9(I)-4.647,传输速率与初始浓度关系方程:νp-NP=-0.0112c2+0.1121c+1.6805。
     2,4-二硝基苯酚在SILMs传输的传质过程分析:DNP在SILMs传输的P与料液相[H+]、P与离子强度I、P与解析剂浓度之间的关系方程:PDNP=-0.0306(-lg[H+])2+0.191(-lg[H+])+4.6055,PDNP=3.4911(I)-0.1593 PDNP=3.2631cNaOH-0.2018。
Phenolic compounds are important industrial chemicals,which are widely used in manufacturing production. However,they are also prototype poisons which do toxic action to all the biont,make cell inactive and nervous system sick.Therefore the treatment of waste water containing phenolic compounds is a significant issue in the organic waste water treatment.Ionic liquids,an novel "green solvent",have special properties:good thermal stability,non volatile,nontoxic,noniflammable.A kind of imidazole hydrophobic ionic liquids 1-butyl-3-ethylimidazolium hexafluorophosphate([BEIM]+PF6-) was designed synthesised in this paper and the optimum synthesis conditions were esbalished.This kind of ionic liquids was used to take place of traditional organic solvents as membrane solvent in supported liquid membrane and the transport separation discipline of phenol,p-nitrophenol,2,4-dinitrophenol through supported liquid membrane based on ionic liquids(SILMs) was studied.The experimental results are as follows: 1 Synthesis of ionic liquids [BEIM]+PF6-
     The hydrophobic ionic liquids [BEIM]+PF6- was synthesised by microwave method, using n-bromobutane, N-ethelimidazolium, hexafluorophosphate as raw material.The optimum synthesis conditions were:the mole ratio of raw material n-bromobutane, N-ethelimidazolium, hexafluorophosphate was 1:1.2:1,T=95℃,t=4 min.The product synthesised in this experiment was proved to be ionic liquids [BEIM]+PF6- by IR to identify its structure,comparing with standard spectra. 2 The transport separation of three kinds of phenolic compounds through supported liquid membrane based on ionic liquids.
     The transport separation discipline of phenol,p-nitrophenol,2,4-dinitrophenol through a supported liquid membrane consisting of polyvinylidene fluoride membrane as the liquid membrane support and hydrophobic ionic liquids [BEIM]+PF6- as the membrane solution was studied.
     The transport separation experiment of phenol:the transport rate can be increased by reducing pH in feed phase,raising ionic strength in aqueous phase appropriately. The optimum transport separation conditions of phenol were:feed phase pH was 3.5,potassium sulfate as inorganic salt to adjust ionic strength to 0.2mol/L,the stripping solvent was sodium hydroxide with concentration of 0.2mol/L.Under these conditions,when initial concentration of phenol was 1.3×10-3mol/L,the transport rate of phenol was 79.4% at 120 min.
     The transport separation experiment of p-nitrophenol(p-NP):the transport rate can be increased by increasing pH in feed phase, ionic strength in aqueous phase, concentration of stripping solvent appropriately. The optimum transport separation conditions ofp-nitrophenol were:feed phase pH was 5.5, potassium sulfate as inorganic salt to adjust ionic strength to 0.25mol/L,the stripping solvent was sodium hydroxide with concentration of 0.15mol/L. Under these conditions, when initial concentration of phenol was 5.0×10-4mol/L,the transport rate was 64.2% at 120 min.
     The transport separation experiment of 2,4-dinitrophenol(DNP):the transport rate can be increased by increasing pH in feed phase,ionic strength in aqueous phase,concentration of stripping solvent appropriately. The optimum transport separation conditions of p-nitrophenol were:feed phase pH was 2.8,potassium sulfate as inorganic salt to adjust ionic strength to 0.2mol/L,the stripping solvent was sodium hydroxide with concentration of 0.15mol/L.Under these conditions, when initial concentration of phenol was 1.0×10-3mol/L,the transport rate was 71.6% at 120 min. 3 The transport process study of three kinds of phenolic compounds
     The equations related to permeation coefficient P of three kinds of phenolic compounds transporting through SILMs were established respectively.
     The transport process study of phenol:the equations withP-[H+],P-I,P-c of phenol, transporting through SILMs:PPh-OH=1.791×10-5(-lg[H+])-0.350,PPh-OH=1.262×10-5(I)-0.2037, PPh-OH=2.277×10-5cNaOH0.3205;and equation related to speed rate and concentration: vPh-OH=-1.3587c02+4.3603c0+0.0536.
     The transport process study ofp-nitrophenol:the equations withP-[H+],P-I of p-nitrophenol,transporting through SILMs:Pp-NP=2.783×10-6 (-lg[H+])0.115, Pp-NP=5.004×10-9(I)-4.647;and equation related to speed rate and concentration: Vp-NP=-0.0112c2+0.1121c+1.6805
     The transport process study of 2,4-dinitrophenol:the equations with P-[H+],P-I,P-c of 2,4-dinitrophenol,transporting through SILMs: PDNP=-0.0306(-lg[H+])2+0.191(-lg[H+])+4.6055,PDNP=3.4911(I)-0.1593, PDNP=3.2631cNaOH-0.2018
引文
[1]Quyen T H L,Deborah S E,Mark M T,et al.Ultra-thin gates for the transport of phenol from supported liquid membranes to permanent surface modified membranes[J].Membrane Science, 2002,205(1/2):213-222.
    [2]张海涛,黄霞琼.近期含酚废水处理研究动态[J].上海化工,2001,14(3):4-6.
    [3]张锦,李圭白,马军.含酚废水的危害及处理方法的应用特点[J].北学工程师,2001,83(2):36-37.
    [4]徐伟辉,严叶卫.含酚废水处理工艺综述[J].上海船舶运输科学研究所学报,2005,28(1):53-55.
    [5]Paulo C F M,Jorge C M R.Recovery of phenol from phenolic resin plant effluents by emulsion liquid membranes[J].Membrane Science,2003,225(1/2):41-49.
    [6]张瑞华.液膜分离技术[M].江西:江西人民出版社,1984:189-205.
    [7]胡德荣,张新位,赵景芝.离子液体简介[J].首都师范大学学报,2005,26(2):40-44.
    [8]刁香,李德刚.离子液体的合成研究[J].精细石油化工进展,2006,7(5):29-30.
    [9]Koch V R.,Miller L L,Osteryoung R A.Electroinitiated Friedel-Crafts Transalky-lations in a Room Temperature Molten-Salt Medium[J]. Journal of the American Chemical Society, 1976,98(18):5277-5284.
    [10]Wilkes J S,Levisky J A,Wilson R A,et al.Dialkylimidazolium Chloroluminate Melts:A New of Room Temperature Ionic Liquids for Electrochemistry,Spectroscpoy, and Synthesis [J]. Inorganic Chemistry,1982,21(14):1263-1264.
    [11]Wilkes J S,Zaworotko M J.Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids[J].Journal of the Chemical Society Chemical Communications,1992,13(10):965-967.
    [12]Olivier H.Recent Developments in the Use of Non-aqueous Ionic Liquids for Two-phase Catalysis[J].Journal of Molecular Catalysis:Chemical,1999,146(14):285-289.
    [13]Olivier B H,Magna L.Ionic Liquids:Perspectives for Organic and Catalytic Reactions[J]. Journal of Molecular Catalysis:Chemical,2002,182(11):419-437.
    [14]李汝雄,王建基.绿色溶剂离子液体的制备与应用[J].化工进展,2002,21(1):43-48.
    [15]段海峰,张所波,林英杰,等.新型室温离子液体六烷基肌盐的制备及性质[J].高等学校化学学报,2003,24(11):2024-2026.
    [16]张青山,刘爱霞,郭炳南,等.新型N-甲基N-烯丙基吗啡啉季铵离子液体的合成[J].高等学校化学学报,2003,26(2):340-342.
    [17]Kubisa P.Application of ionic liquids as solvents for polymerization processes[J].Progress Polymerization Science,2004,29(1):3-12.
    [18]Heintz A.Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids.A review[J]. Chemical Thermodyna-mics,2005,37(2):525-535.
    [19]Wikes J S,Zaworotko M J.Air and Water Stable 1-Ethyl-3-methylimidazolium Based Ionic Liquids[J]. Journal of the Chemical Society Chemical Communications,1992,23(13):966-967.
    [20]李汝雄,王建基.离子液体的合成与应用[J].化学试剂,2001,23(4):211-215.
    [21]邹汉波,董新法,林维民.离子液体及其在绿色有机合成中的应用[J].化学世界,2004,45(2):107-109.
    [22]赵东滨,寇元.室温离子液体:合成、性质及应用[J].大学化学,2002,17(1):42-44.
    [23]胡和兵,吴勇民,王珍珍,等.离子液体合成及其应用研究[J].中国酿造,2007,(2):9-11.
    [24]Hirao M,Sugimoto H.Preparation novelroom-temperature molten salts by neutralization famines[J].Electrochemical Society,2000,147(11):4168-4172.
    [25]Bonhote P,Dias A P,Papageorigiou N,et al.Hydrophobic highly conductive ambient temperature molten-salts[J].Inorganic Chemistry,1996,35(5):1168-1178.
    [26]Demberelnyamba D,Chen B K,Lee H.Ionic liquids based on N-vinyl-gamma-butyrolactam: potentialliquid electrolytesand green solvents[J].Chemical Communications,2002,21(14): 1538-1539.
    [27]桑潇.离子液体的合成法研究[J].中国科技信息,2008,11(5):266-267.
    [28]Leadbeater N E,Torenius H M,Tye H.Ionic liquids as reagent and solvents in conjunction with microware heating:rapid synthesis of alkyl halides from alcohols and nitriles from arylhalides[J]. Tetrahedron,2003,5(2):59-64.
    [29]胡和兵,吴勇民,王珍珍,等.离子液体合成及其应用研究[J].中国酿造,2007,15(2):10-12.
    [30]张冲,房旭彬,田丹碧.微波法合成离子液体1-丁基-3-甲基咪唑四氟硼酸盐的研究[J].化学试剂,2007,29(2):72-74.
    [31]刘红霞,徐群.微波法合成烷基咪唑类离子液体[J].化学试剂,2006,28(10):581-582.
    [32]刘海燕,丁伟,曲广淼,等.微波辐射下卤化1,3-二烷基咪唑离子液体的合成[J].化学试剂,2008,30(2):92-94.
    [33]Leveque J M,Luche J L,Petrier C,et al.An improved preparation of ionic liquids byultrasound[J]. Green Chemistry,2002,4(4):357-360.
    [34]刁香,李德刚.离子液体的合成研究[J].精细石油化工进展,2006,7(5):32-34.
    [35]王俊九,褚立强,范广宇,等.支撑液膜分离技术[J].水处理技术,2001,27(4):187-188.
    [36]薛冠,胡小玲,赵亚梅,等.离子液体在支撑液膜中的应用[J].现代化工,2008,28(8):88-90.
    [37]Gan Q,Rooney D,Zou Y I.Supported ionic liquid membranes in nanopore structure for gas separation and transport studies[J].Desalination,2006,199(1/3):535-537.
    [38]Ilconich I,Myers C,Pennline H. Experimental investigation of the permeability and selectivity of supported ionic liquid membranes for CO2/He separation at temperatures up to 125℃[J].Membrane Science,2007,298(1/2):41-47.
    [39]Scovazzo P,Kieft J,Daniel A F.Gas separations using non-hexafluorophosphate[PF6]anion supported ionic liquid membranes[J].Membrane Science,2004,238(1/2):57-63.
    [40]Hanioka S,Maruyama T,Sotani T. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane[J].Membrane Science,2008,314(1/2):1-4.
    [41]Jiang Y Y,Wu Y T,Wang W T,et al.Permeability and Selectivity of Sulfur Dioxide and Carbon Dioxide in Supported Ionic Liquid Membranes [J]. Separation Science and Engineering, 2009,17(4):594-601.
    [42]吴锋,王保国.离子液体充填型支撑液膜分离乙醇/水混合物[J]膜科学与技术,2008,28(5):68-71.
    [43]曾昭容,吴锋,林佳,等.离子液体支撑液膜用于苯/环已烷体系分离研究[J].天津工业大学学报,2008,27(4):1-4.
    [44]Matsumoto M,Inomoto Y,Kondo K. Selective separation of aromatic hydrocarbons through supported liquid membranes based on ionic liquids[J].Membrane Science,2005,246(1):77-81.
    [45]Hernandez F F J,Antonia P R,Rubio M,et al. A novel application of supported liquid membranes based on ionic liquids to the selective simultaneous separation of the substrates and products of a transesterification reaction[J].Membrane Science,2007,293(1/2):73-80.
    [46]曾昭容,丁力,彭勇,等.用于芳烃/烷烃体系蒸汽渗透分离的离子液体支撑液膜研究[J].高校化学工程学报,2009,23(5):762-767.
    [47]于萍,姚琳,罗运柏.高浓度含酚废水处理的新工艺[J].工业水处理,2002,22(9):5-8.
    [48]杨义燕,李芮丽,党广悦,等.络合萃取法处理工业含酚废水[J].环境科学,1994,16(2):35-38.
    [49]葛宜掌,金红,张彤,等.含酚废水中酚类回收现状及研究进展[J].煤炭转化,1996,19(1):62-67.
    [50]刘晓超,马丽丽.大孔吸附树脂在有机废水处理中的应用的研究进展[J].交通环保,2004,25(4):35-38.
    [51]李恩斯,杨富学.大孔吸附树脂(XH-1)处理含酚废水的研究[J].四川环境,1995,14(4):23-27.
    [52]王学江,张全兴,赵建夫,等.新型聚苯乙烯树脂对酚酸物质的吸附性能[J].同济大学学报,2004,32(9):1183-1187.
    [53]宋新南,马东祝,李树山.树脂吸附法对含酚废水处理的应用及发展[J].工业水处理,2004,24(2):15-20.
    [54]陈金龙,张全兴,徐建平,等.树脂吸附法处理高浓度混甲酚生产废水的研究[J].南京大学学报,1995,31(4):598-605.
    [55]Brasquet C,Subrenat E,Cloirec P L.Removal of Phenolic Compounds from Aqueous Solution by Activated Carbon Cloths [J].Water Science Technology,1999,39(10/11):201-205.
    [56]Humayun R,Karakas G D,Ahlatrom P R. Supercritical Fluid Extraction and Its Oxidative Coupling Products from Activated Carbon[J].Industrial Engineering Chemical Resources,1998,37(8): 3089-3097.
    [57]Rengaraj S,Seung H N.Removal of phenol from aqueous solution and resin manufacturing industry waste water using an agricultural waste:rubber seed coat[J].Journal of Hazardous Materials,2002,89(2):185-196.
    [58]陈静.含酚废水的支撑液膜分离研究[D].西安:西安理工大学,2005:28-52.
    [59]李凭力.热致相分离聚丙烯中空纤维膜及其萃取特性的研究[D].天津:天津大学,2002:25-48.
    [60]姚秉华,陈静,永长幸雄,等.苯酚在N-503/煤油支撑液膜体系中的传输分离[J].分析科学学报,2006,22(2):129-132.
    [61]位方,姚秉华,余晓皎,等.对硝基酚在N-503/煤油支撑液膜体系中的传输研究[J].西安理工大学学报,2006,22(3):286-289.
    [62]王怡中,胡春,汤鸿霄.在TiO2催化剂上苯酚光催化氧化反应研究降解产物分布及反应途径[J].环境科学学报,1995,15(4):472-479.
    [63]陈集,饶小桐,赵波,等.水溶液中苯酚在阳光下催化氧化降解的初步研究[J].西南石油学院学报,2002,24(6):71-74.
    [64]阴和平.超临界状态下湿式氧化硝化工艺废水[J].辽宁城乡环境科技,1998,18(3):1-7.
    [65]阳立平,李子燕,门志明.臭氧氧化法在废水处理中的应用[J].资源开发与市场,2004,20(5):323-341.
    [66]阳立平,李子燕,宁平.臭氧氧化降解高浓度苯酚废水的研究[J].四川化工,2004,7(4):11-13.
    [67]周鑫玉,陈云华,潘玲,等.臭氧氧化去除水中芳香族化合物机理初探[J].北工环保,1998,18(2):74-78.
    [68]张瑞华.液膜分离技术[M].江西:江西人民出版社,1984:112-118.
    [69]谭亚军,蒋展鹏,祝万鹏.用于有机污染物湿式氧化的铜系催化剂活性研究[J].上海环境科学,1999,18(3):123-126.
    [70]张铭,魏炜,等.含酚工业废水处理的探讨[J].环境保护科学,1999,25(2):6-7.
    [71]刘利梅.处理废水的有效方法-活性污泥法[J].一重技术,2005,(4):68-69.
    [72]吴罡,韩中坚,葛梅.SBR工艺处理含酚废水的研究[J].交通环保,2002,23(1):21-23.
    [73]王春敏,李亚峰,陈健.含酚废水治理技术研究现状及其进展[J].辽宁化工,2004,33(5):276-279.
    [74]刘健连.典型的咪唑类离子液体的合成与表征[D].西安:西北大学,2006:5.
    [75]于颖敏.离子液体[BMIM]Br的光谱表征[J].中国石油大学胜利学院学报,2007,21(4):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700