用户名: 密码: 验证码:
具有可见光激发响应的纳米TiO_2光催化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用溶胶-凝胶法,制备了Eu3+、Ce3+以及Ce-Eu共掺杂纳米TiO2。对Ce-Eu共掺杂样品采用正交试验方法研究了外部因素和内部因素对其光催化活性的影响。选取最佳配方对赤泥质陶瓷滤球进行涂覆试验并将其用于水处理。通过TG-DTA、XRD、FE-SEM、TEM、SEM、UV-Vis吸收谱等测试手段对样品进行了结构及性能表征,探讨了Eu3+、Ce3+以及Ce-Eu共掺杂纳米TiO2的光催化机理。
     稀土元素Eu3+、Ce3+的掺杂量与样品的光催化性有一定的关系。在样品加入量为0.15g/50mL,亚甲基蓝溶液的初始浓度为10mg/L、pH=6.5、热处理温度为550℃的条件下,掺杂浓度(摩尔比)分别为n(Eu3+):n(TiO2)=0.5%, n(Ce3+):n(TiO2)=0.05%时,其对亚甲基蓝的降解率可以分别达到85.36%、85.15%,各比同等条件下制备的未掺杂YiO2提高了22.08%和21.78%。Ce3+掺杂TiO2可使出现金红石相的温度降低为650℃左右,金红石相的生成,对光催化活性有促进作用,掺杂浓度为n(Ce3+):n(TiO2)=0.05%的Ce3+掺杂TiO2样品的光催化降解率上升为85.52%。
     正交试验结果表明,内部因素对掺杂TiO2光催化活性影响的主次顺序为:热处理温度>Ce的掺杂量>Eu的掺杂量。样品制备的优化配方为:Ce的掺杂量为0.02mol%、Eu的掺杂量为0.2mol%、热处理温度为550℃。外部因素对TiO2光催化活性影响的主次顺序为:亚甲基蓝溶液的初始浓度>催化剂加入量>溶液的pH值。优化的外部光催化条件为:光催化剂加入量为0.15g/50mL、亚甲基蓝溶液的初始pH值及浓度分别为6.5和10 mg/L。
     掺杂样品的光催化活性研究表明,Ce-Eu共掺杂TiO2>Eu3+掺杂TiO2>Ce3+掺杂TiO2>未掺杂TiO2。其中掺杂浓度(摩尔比)为n(Eu3+):n(Ce3+) : n(TiO2)=0.2:0.02:100的共掺杂样品的光催化效率可达到86.23%,比同等条件下制备的未掺杂TiO2提高了22.95%。晶粒尺寸为19.7nm,晶格畸变为0.5259,晶胞体积为136.26×10-3 nm3,光催化反应动力学常数为7.766×10-3。其吸收阈值为445nm,相应的禁带宽度为2.87 eV,比纯TiO2红移了53nm。本研究中,掺杂浓度为n(Ce3+):n(TiO2)=0.2%(摩尔百分数)的样品吸收边红移最多,吸收阈值达到446nm。
     单掺杂和共掺杂纳米TiO2的光催化机理是:Eu3+的电子层结构[Xe]4f6和其较大的半径,造成Eu3+掺杂样品电荷不平衡,影响电子-空穴对的复合;产生的空位附加能级则会拓宽吸收光谱。Ce3+掺杂TiO2使Ce3+、Ce4+共存、产生晶格畸变,造成晶格中电荷不平衡,减小光生电子-空穴对的复合率;Ce3+掺杂形成光敏化结构,使激发电子注入TiO2的导带,扩大TiO2的光谱响应范围。Ce-Eu共掺杂纳米TiO2中,Ce3+作为敏化离子将能量传递给Eu3+,Eu3+捕获光生电子并传递给表面吸附的O2,增加有效的空穴电子数,另一方面可使样品吸收更低能量的波长而被激发。
     在亚甲基蓝溶液浓度为15mg/L,pH值为6.5,滤球的加入量为5g/50mL的条件下,涂覆时间为10min、涂覆次数为2次的赤泥质陶瓷滤球光催化性能最佳可达到73.40%,优于未镀膜滤球的70.28%。涂覆时间为10min,热处理温度为550℃的赤泥质陶瓷滤球,其表面有一层厚度为2μm左右的均匀TiO2膜层。该滤球在As(v)离子的浓度为2mg/L,pH值为2,吸附时间为240min,样品加入量为2g的条件下,对As(v)离子去除率最高,可达95.96%。
Eu3+, Ce3+doped nano-TiO2 and Ce-Eu co-doped TiO2 were synthesized by sol-gel method. The effects of internal and external factors on photocatalystic activity of the Ce-Eu co-doped TiO2 were discussed by designing the orthogonal experiments. The red mud ceramic filter materials were coated with the optimal formula of TiO2, which was used for water treatment. The samples were characterized by the testing techniques such as TG-DTA, XRD, FE-SEM, TEM, SEM, UV-Vis absorption spectra and so on. The photocatalystic mechanism of Eu3+, Ce3+doped TiO2 and Ce-Eu co-doped TiO2 was discussed.
     The photocatalystic properties of samples had some relation with the doping amount of rare earth Eu3+and Ce3+. The photocatalystic degradation on methyl blue of samples can reach 85.36% and 85.15% respectively, when the addition amount is 0.15g/50mL, the initial concentration of MB solution is 10mg/L, the pH value is 6.5, the heating temperature is 550℃and doping amount (molar ratio) was n(Eu3+): n(TiO2)=0.5% or n(Ce3+):n(TiO2)=0.05%. They showed better photocatalystic properties than the undoped TiO2, the degradation rate was increased by 22.08% and 21.78% accordingly. The temperature when the Rutil appeared was decreased to 650℃because of the addition of Ce3+. The Rutil was beneficial to the photocatalystic properties of the sample. The degradation rate of the sample whose doping amount was n(Ce3+):n(TiO2)=0.05% increased to 85.52%.
     The results of the orthogonal experiments showed that the important order of the internal factors that affect the photocatalystic properties of doped TiO2 were heating temperature, the amount of Ce3+, the amount of Eu3+in turn. The optimal formula of the sample is that the amount of Ce3+ and Eu3+ is 0.02mol% and 0.02mol% respectively, heating temperature is 550℃. The important order of the external factors that affect the photocatalystic properties were the initial concentration of MB, the addition amount of samples, the pH value in turn. The photocatalystic activity was the best when the addition amount is 0.15g/50mL, the initial concentration is 10mg/L and the pH value is 6.5.
     The study on the photocatalystic properties of the rare earth doped TiO2 showed that the photocatalytic activity were Co-doped TiO2> Eu3+doped> Ce3+doped> undoped samples. When the doping amount (molar ratio) was n(Eu3+):n(Ce3+): n(TiO2)=0.2:0.02:100, the photocatalystic degradation can reach 86.23%, which increased by 22.95% compared to the un-doped TiO2 samples.The grain size was 19.7nm, lattice distortion was 0.5259, unit cell volume was 136.26×10-3nm3, the kinetic constant of the photocatalytic reaction was 7.766×10-3. The absorption threshold was 445nm, and the band gap was 2.87 eV, which had 53nm red shifted than that of pure TiO2. The sample with the doping amount (molar percent) n(Ce3+): n(TiO2)=0.2%, had the maximum red shift, and the absorption threshold reached 446nm.
     The photocatalystic mechanism of Eu3+, Ce3+doped TiO2 and Ce-Eu co-doped TiO2 was as follows:A charge imbalance was caused because of the electron structure ([Xe]4f6)and radius of Eu3+, which had an effect on the recombination of e- and h+, the additional energy band of h+ broaden the absorption spectra. Ce3+ doped TiO2 brought out a series of poor results, like Ce3+, Ce4+co-exist, lattice distortion, the charge imbalance, low recombination of e-and h+; It made up of photosensitive structure formation, leading to excited electrons entered into the conduction band and enlarged the spectral response range of TiO2. When Ce-Eu co-doped nano-TiO2, Ce3+as a sensitizer ion transfer the energy to Eu3+, it captured and passed electrons to the O2 be absorbed on the surface, which resulted in the increase of effective electron and hole, also made the sample be excited by wavelength with lower energy.
     The photocatalystic properties of the filter coated with TiO2 for 10min twice was 73.40%, when the amount of filter is 0.15g/50mL, the concentration of MB is 15mg/L and the pH value is 6.5, and this value was higher than that of uncoated filter, which was 70.28%.There was a 2μm TiO2 film on the surface of the red mud ceramic filter which was heated at 550℃. The removal rate of As(v) by TiO2 modified filter was 95.96%, when 2g TiO2 modified filter absorbing in a solution of 2mg/L As (v)at pH=2 for 240min.
引文
[1]严进,金文斌.废水处理工培训教材.北京:化学工业出版社.2009,1~3
    [2]胡冬娜.可见光响应型光催化剂的制备及其降解有机污染物的研究:[硕士学位论文].北京:北京交通大学,2007
    [3]孙晓君,冯玉杰,蔡伟民,等.废水中难降解有机物的高级氧化技术.化工环保,2001.21(5):264~269
    [4]雷乐成,汪大.水处理高级氧化技术.北京:化学工业出版社,2001
    [5]杨国营.光催化氧化法处理污水的研究.河北化工,2002(1):11~12
    [6]Yamashita H., Harada M., Misaka J., et al. Photocatalytic degradation of organic compounds diluted in water using visible light-responsive metal ion-implanted TiO2 catalysts:Fe ion-implanted TiO2. Catalysis Today,2003,84:191~196
    [7]Xu An-wu, Gao Yuan, Liu Han-qin. The preparation, characterization, and their photocatalytic activities of rare-erath-doped TiO2 nanoparticles.Journal of Catalysis, 2002,207(2):151~157
    [8]Zhao Wei, Ma Wanhong, Chen Chuncheng, et al. Efficient degradation of toxic organic pollutants with Ni2O3lTiO2-xBx under visible irradiation. Am.Chem. Soc.2004,126: 4782~4783
    [9]Youngmin Cho, Hyunsook Kyung, Wonyong Choi. Visible light activity of TiO2 for the photoreduction of CC14 and Cr(VI) in the presence of nonionic surfactant. Applied Catalysis B:Environmental,2004,52:23~32
    [10]孙俊英,孟大维,汪新星,等.稀土元素掺杂对纳米Ti02光催化剂的影响及机理.材料导报,2007,11(21):70~73
    [11]Yang Ping, Lu Cheng, Hua Napping, et al. Materials Letters,2002,57:794~801
    [12]陈崧哲,徐盛明,徐刚,等.稀土元素在光催化剂中的应用及作用机理.稀有金属材料与工程,2006,35(4):505~509
    [13]刘春艳.纳米光催化及光催化环境净化材料.北京:化学工业出版社,2008.18~20
    [14]张金龙,陈峰.光催化.上海:华东理工大学出版社,2004,5,-6
    [15]高濂,郑珊.纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002,42~45
    [16]刘守新,刘鸿.光催化及光电催化基础与应用,北京:化学工业出版社,2006,51~55
    [17]任民,张玉军,刘素文,等.稀土离子(La3+、Y3+)掺杂对纳米Ti02光催化剂性能影响分析.陶瓷,2006,(7):26~33
    [18]陈俊涛,李新军,杨莹,等.稀土元素掺杂对TiO2薄膜光催化性能的影响.中国稀土学报,2003,21(12):67~71
    [19]马建华,刘晓东.Ce3+掺杂TiO2光催化性能研究.化工技术与开发,2008,4:47~48
    [20]高远,徐安武,祝静艳,等.RE/TiO2用于NO2-光催化氧化的研究.催化学报,2001,22(1):53~56
    [21]杨秋景,徐自力,谢超,等.铕掺杂对纳米TiO2的光催化活性的影响.高等学校化学学报,2004,9:1711~1714
    [22]石建稳,郑经堂,胡燕,等.Ho掺杂纳米TiO2光催化性能研究.太阳能学报,2007,10:1120~1124
    [23]Vaclav Stengl, Snejana Bakardjieva, Nataliya Murafa, et al. Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Materials chemistry and physics.2009,114, 217~226
    [24]An-Wu Xu, Yuan Gao, Han-Qin Liu, et al. The preparation, characterization, and their photo-catalytic activitiesof rare-earth-doped TiO2 nanoparticles. Journal of catalysis.2002, 207,151-157
    [25]Yibing Xie, Chunwei Yuan. Photocatalysis of neodymium ion modified TiO2 sol under visible light irradiation. Applied surface science.2004,221,17~24
    [26]Meera Sidheswaran, Lawrence L Tavlarides. Visible Light Photocatalytic Oxidation of Toluene Using a Cerium-Doped TitaniaCatalyst. Industrial & Engineering Chemistry Research2008,47:3346~3357
    [27]郭光美,丁士文,李景印.可见光响应光催化材料研究进展.河北化工,2004,5:6-9
    [28]卢维奇,王德清,何肖群,等.钆及双稀土元素掺杂TiO2可见光催化降解罗丹明B的研究.中国稀土学报,2007,8:427~731
    [29]Ping Yang, Cheng Lu, Nanping Hua, et al. Titanium dioxide nanoparticles co-doped with Fe3+and Eu3+ions for photocatalysis. Materials Letters,2002,57:794~801
    [30]赵斯琴,郭敏,张梅等.Y3+和Eu3+离子共掺杂TiO2纳米材料的制备及其光催化性能.北京科技大学学报,2010,32(3):355~359
    [31]於煌,郑旭煦,王颖,等.可见光响应TiO2光催化剂的研究进展.重庆工商大学学报(自然科学版),2006,4:141~145
    [32]尹晓敏,程永清.掺杂方式对纳米二氧化钛性能的影响研究.人工晶体学报,2006,2:45~49
    [33]Yin Zhao, Chun zhong Li, Xiu hong Liu, et al. Zn-doped TiO2 nanoparticles with high photocatalytic activity synthesized by hydrogen-oxygen diffusion flame. Environmental, 2008,79:208~215
    [34]陈崧哲,张彭义,祝万鹏,等.可见光响应光催化剂研究进展.化学进展,2004,7:613~619
    [35]蔡河山,刘国光,吕文英,等.纳米TiO2光催化剂可见光响应的改性研究.水资源保护,2008,3:86~88
    [36]薛寒松,李华基,陈永盛.纳米二氧化钛光催化性能的研究进展及应用前景.材料导报,2007,5:21~23
    [37]张颖,姚明明,陶珍东,等.金属离子共掺杂TiO2薄膜的光催化性能研究.电镀与精饰,2007,11:8-11
    [38]Jae Han Jho, Dong Hyun Kim, Sun-Jae Kim, et al. Synthesis and photocatalytic property of a mixture of anatase and rutile TiO2 doped with Fe by mechanical alloying process. Journal of Alloys and Compounds 2008,459:386~389
    [39]Engu De, Chaoyang Bang, Dahu Yong. A novel method for preparing V-doped titanium dioxide thin film photocatalysts with high photocatalytic activity under visible light irradiation. Catal Lett 2007,118:254~259
    [40]L. Gomathi Devi, B. Narasimha Murthy.Characterization of mo doped TiO2 and its enhanced photocatalytic activity under visible light. Catal Lett 2008,125:320~330
    [41]Hongyan Liu, Lian Gao. Preparation and Properties of Nanocrystallinea-Fe2O3-Sensitized TiO2 Nanosheets as a Visible Light Photocatalyst.Communications of the American Ceramic Society,2006,89(1):370~373
    [42]李芳柏,古国榜,黎永津.WO3/TiO2复合半导体的光催化性能研究.环境科学,1999,7:75~78
    [43]吕媛,倪伶俐,杨平,等.铬和硫共掺杂二氧化钛催化剂的制备及其可见光催化性能.催化学报,2007,11:987~992
    [44]Jiaoxian Yu, Suwen Liu, Zhiliang Xiu, et al. Synthesis of sulfur-doped TiO2 by solvothermal method and its visible-light photocatalytic activity. Journal of Alloys and Compounds,2008,112:313-315
    [45]Larry Erickson, Xiangxin Yang, Chundi Cao, et al. Synthesis of visible-light-active TiO2-based photocatalysts by carbon and nitrogen doping. Journal of Catalysis,2008,260: 128~133
    [46]Gonghu Li, Le Chen, Nada M. Dimitrijevic, et al. Visible light photocatalytic properties of anion-doped TiO2 materials prepared from a molecular titanium precursor. Chemical Physics Letters 2008,451:75~79
    [47]阮广福,叶勤.掺氮可见光响应TiO2-xNx光催化薄膜的制备及性能初探.暨南大学学报(自然科学版),2007,2:88~91
    [48]Kenji Yamada, Hirokazu Yamane, Shigenori Matsushima, et al. Effect of thermal treatment on photocatalytic activity of N-doped TiO2 particles under visible light. Thin Solid Films, 2008,17:125~131
    [49]王宜超,刘中清,燕青芝,等.可见光响应氮掺杂TiO2光催化剂的水热法制备与性能.北京科技大学学报,2008,5:540~543
    [50]S. Livraghi, A.M.Czoska, M.C.Paganini, et al. Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile). Journal of Solid State Chemistry,2009,182:160~164
    [51]於煌,郑旭煦,殷钟意,等.可见光响应N掺杂TiO2的制备及光催化性能研究.化工新型材料,2006,11:29~31
    [52]Vaclav S tengl, Snejana Bakardjieva, Nataliya Murafa, et al. Visible-light photocatalytic activity of TiO2/ZnS nanocomposites prepared by homogeneous hydrolysis. Microporous and Mesoporous Materials,110 (2008) 370~378
    [53]K.S. Yao, T.C.Cheng, S.J. Li, et al. Comparison of photocatalytic activities of various dye-modified TiO2 thin films under visible light. Surface & Coatings Technology,2008, 203:922~924
    [54]Sopyan. I, Wata.M. J. Electro. Chem,1996,415:183
    [55]张颖,姚明明,陶珍东,等.金属离子共掺杂TiO2薄膜的光催化性能研究.电镀与精饰,2007,11:8~11
    [56]周志强.纳米TiO2光催化剂制备及其可见光响应改性研究:[硕士学位论文].哈尔滨:哈尔滨理工大学,2006
    [57]孙奉玉,吴鸣,李文钊,等.二氧化钛的尺寸与光催化活性的关系.催化学报,1998,19(5):229~233
    [58]王怡中,符雁,汤鸿霄,等.二氧化钛悬浮体系太阳光催化降解甲基橙研究.环境科学学报,1999,19(1):63~67
    [59]伍洪标,武七德,陈文,等.无机非金属材料实验.武汉:武汉工业大学出版社,1994
    [60]王华馥,吴自勤.固体物理实验方法.北京:高等教育出版社,1990,33~93
    [61]黄惠忠.纳米材料分析.北京:化学工业出版社.2003,295~313
    [62]杨南如.无机非金属材料测试方法.武汉:武汉理工大学出版社,2004:63~70
    [63]郁志勇,王文华,彭安.4-氯苯酚在水溶液中的光化学反应(Ⅱ)反应动力学研究.环境化学学报,1997,7(3):317~320
    [64]Kormann C., Bahnemann D. W., Hoffmann M. R. Preparation and characterization of quantum-size titanium dioxide. J. Phys. Chem.1988,92:5196-5201
    [65]Satoko H, Yasuaki K, IsaoY etal. Development of Hydrophilic Outside Mirror Coated with Titania Photocatalyst. JSAE Review,2000,21(1):97~102
    [66]陈建华,龚竹青.二氧化钛半导体光催化材料离子掺杂.科学出版社,2006,12
    [67]李芳柏,古国榜.亚甲基蓝溶液的光催化脱色及降解.环境污染与防治,1999,21(6):1-4
    [68]Bard A J. Photoelectrochemistry and heterogeneous Photo-catalysis at semiconduetors. J.Photochem,1979,10(1):59
    [69]张希艳,卢利平,柏朝辉,等.稀土发光材料.北京:国防工业出版社,2005:19~27
    [70]沈毅,任富建,刘红娟.掺杂Ti02的光催化性能研究.稀有金属材料与工程,2006,35(11):1841~1845
    [71]石建稳,郑经堂,胡燕,等.铕掺杂对二氧化钛光催化降解甲基橙性能的影响.稀土,2007,28(3):68~70
    [72]Rodriguez T R, Vargas S, Arroyo R, et aL Modification of the phase transition temperature in titania doped with vari-ous cations. J Mater Res,1997,12(2):439
    [73]崔洪梅,刘宏,王继扬,等.纳米粉体的团聚与分散.机械工程材料,2004,28(8):38~41
    [74]龚丽芬,余彬彬,陈曦.光敏剂修饰纳米Ce/TiO2在可见光下光催化降解有机氯农药.厦门大学学报(自然科学版),2008,47(1):79~82
    [75]张慧,陈建华,陈鸿博,等.纳米TiO2混晶的形成及其对光催化性能的影响在可.分子催化,2006,20(3):250~251
    [76]Lawrence H E, Andreas M G. Role of particle substructure in the sintering of nanosized titania. J A m Ceram Soc,1988,71(1):225
    [77]K.T.Ranjit, I.Willner, S. H.Bossmann, et al. Lanthanide oxide-doped titanium dioxide photocatalysts:novel photocatalysts for the enhanced degradation of p-chlorophenoxyacetic acid. Environmentall science & technology 2001,35,1544~1549
    [78]北京大学数学力学概率统计组.正交设计法.北京:石油化学工业出版社,1976:3~10
    [79]彭海滨.正交试验设计与数据分析方法.计量与测试技术,2009,36(12):38~40
    [80]李雁,易永胜,高全,等.高性能化海砂混凝土配合比设计的正交试验研究.建筑技术,2010,41(2):162~164
    [81]吴翊,李永乐,胡庆军,等.应用数理统计.长沙:国防科技大学出版社,2005:405~414
    [82]魏亚光,施朝淑,戚泽明,等.Gd2O3:(Ce3+,Eu3+)微晶中稀土离子间的级联能量传递.发光学报,2001,22(3):243~247
    [83]陈俊涛,李新军,杨莹,等.稀土元素掺杂对TiO2薄膜光催化性能的影响.中国稀土学报,2003,21(12):67~71
    [84]张献明,苏海全,叶泽人,等.BaY2F8:Ce,Eu中Ce3+→Eu2+的能量传递和Ce3+→Eu3+的电子转移.高等学校化学学报,2001,22(3):358~361
    [85]周艺,黄可龙,朱志平,等.酸催化溶胶-凝胶法Eu2+、Gd3+共掺杂TiO2的制备及光催化活性.无机材料学报,2008,23(5):1085~1088
    [86]祖成奎,陈江,赵慧峰,等.稀土离子(Gd3+,Ce3+/Ce4+,Eu3+)对Tb3+掺杂硅酸盐玻璃发光性能的影响.玻璃与搪瓷,2009,37(2):2-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700