用户名: 密码: 验证码:
Na_2O,K_2O及其引入顺序对过渡金属催化剂HDS的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境问题已经成为世界范围关注的焦点,环保法规中越来越严格的气体排放标准使炼油企业面临深度脱硫的压力。而柴油中的含硫化合物如二苯并噻吩(DBT)以及其衍生物等,由于取代基空间位阻效应,导致反应活性低,使深度脱硫问题近年来变得更加棘手。在加氢脱硫过程中,DBT通过两条平行反应途径进行脱硫。预加氢脱硫途径是先将DBT的一个苯环加氢后再脱去硫原子,进而生成苯基环己烷(CHB)。在直接脱硫途径中,硫原子的脱除是通过直接断裂C-S键而生成联苯(BP)。两条路径对比不难看出,预加氢脱硫途径伴随着氢气的高消耗,从而降低了加氢脱硫过程中的经济性。因此,在研发催化剂过程中加氢脱硫(HDS)活性以及直接脱硫产物BP选择性应该得到均衡考虑。
     通过不同的引入顺序将碱金属组分Na2O和K20引入到NiMo和NiW催化剂前躯体中,并以质量分数0.8%DBT的十氢萘溶液作模型化合物,考察了硫化物催化剂的HDS反应性能。对于NiMo体系的催化剂,XRD和TPR结果表明,引入Na2O和K20促进了过渡金属硫化物催化剂前驱体中β-NiMoO4物种的生成,不利于活性组分的分散,同时还抑制了其还原。UV-Vis结果则表明引入Na2O和K20对催化剂中物种的分布和配位状态有一定的影响。反应结果表明,Na20和K20引入以后DBT在硫化物催化剂上主要是以直接脱硫途径进行反应的。
     Na20引入顺序对NiMo/MCM-41催化剂活性有较大影响。共浸渍法引入Na20时,同时抑制了催化剂加氢反应路径(HYD)和直接脱硫反应路径(DDS)活性,因此其HDS活性最低。而在活性组分之前引入Na2O,对催化剂HYD活性影响最小,但DDS活性显著增加,提高了NiMo/MCM-41总的HDS反应活性,降低了氢耗。
     K20的引入顺序的影响与Na20基本一致,但是由于其碱性更强,因此更加抑制了催化剂HYD活性,使其BP选择性更高。同时对于加氢活性更强的NiW体系催化剂,Na2O,K20的引入造成HDS反应活性的下降。
     以上结果也说明可以通过控制碱金属氧化物的引入顺序,调变催化剂活性和选择性,是一种对硫化物催化剂有效的改性方法。
In recent years, much attention has been paid to air pollution and production of clean diesel by deep hydrodesulfurization(HDS) has attracted increasing attention due to the implemen-tation of more stringent specifications in many countries. Among all sulfur-containing compounds present in diesel, dibenzothiophene(DBT) and its alkylated derivatives are the most refractory compounds to desulfurize due to steric hindrance. The HDS of DBT proceeds through two parallel pathways. In the hydrogenation (HYD) pathway, the aromatic ring is hydrogenated and the sulfur is removed subsequently to form cyclohexylbenzene (CHB), while in the so-called hydrogenolysis (HYG) pathway, the sulfur atom is directly removed from the molecule via C-S bond cleavage, leading to the formation of biphenyl (BP). We can conclude that the HYD pathway needs more hydrogen consumption from the contrast. Hence, studies on both the activity and the BP selectivity of HDS catalysts are needed for developing better deep HDS catalysts.
     Na2O and K2O was introduced to transitional metal sulfide catalysts precursor by different sequences, and the hydrodesulfurization (HDS) performances of the prepared catalysts were studied using a model fuel containing 0.8 wt% DBT in decalin. The hydrodesulfurization (HDS) performances of the transitional metal sulfide catalysts were studied using a model fuel containing 0.8 wt% DBT in decalin. As to NiMo catalysts, the XRD and TPR results indicated that introduction of Na2O and K2O not only facilitated the formation ofβ-NiMoO4, leading to decrease in dispersion of active species, but also hindered the reducibility of NiMo/MCM-41 catalyst precursor. The UV-Vis results indicated that both the distributions and the coordination states of the active species were affected by introduction of Na2O and K2O to NiMo/MCM-41. The results show that the HDS of DBT predominately takes the route of direct desulfurization (DDS) over the transitional metal sulfide catalysts when K2O and Na2O were introduced.
     The HDS activity of NiMo/MCM-41 was strongly affected by the Na2O introduction sequence. For the catalyst in which Na2O was introduced by the co-impregnation method, both the activities of the hydrogenation pathway (HYD) and direct desulfurization pathway (DDS) were inhibited, resulting in a decrease in the overall HDS activity. The addition of Na2O before the loading of the active components showed a minimum influence on the HYD activity of NiMo/MCM-41, but significantly enhanced its DDS activity, leading to the improvement in the overall HDS activity and decrease in the H2 consumption.
     The K2O introduction sequence has the same effect as Na2O, a decrease in the catalyst hydrogenation activity and increase the BP selectivity are caused by increase the alkaline of catalyst. Nevertheless, neither the Na20 nor K2O can play positive effects on the HDS activity for NiW catalysts.
     The results suggested that both the activity and selectivity of the sulfide catalysts can be modified by controlling the addition sequence of the alkali-metal oxides, which is showed to be an effective way for the modification of the catalysts.
引文
[1]SCHULZ H, BOHRINGER W, WALLER P, et al. Gas oil deep hydrodesulfurization:refractory compounds and retarded kinetics [J].Catal Today,1999,49 (1-3):87-97.
    [2]WHITEHURST D D, ISODA T, MOCHIDA I. Present State of the Art and Future Challenges in the Hydrodesulfurization of Polyaromatic Sulfur Compounds. Adv. Catal.1998,42, 345-471.
    [3]MURE T, CRAIG F, ZBIGNIEW R. Oxidation reactivity of dibenzothiophenes In polyoxometalate/H2O2 and formic acid/H2O2 systems [J].Appl Catal:A,2001,219 (1-2): 267-280.
    [4]ISHIHARA A, WANG D, DUMEIGNIL F, et al. Oxidative desulphurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process [J].Appl Catal:A,2005,279(1-2):279-287.
    [5]MA X, SAKANISHI K, ISODA T, et al. Determination of sulfur compounds in non-polar fraction of vacuum gas oil [J].Fuel,1997,76(4):329-339.
    [6]WEI C L, SONG C S. Temperature-programmed retention indices for g. c. and g. c.-m. s. analysis of coal-and petroleum-derived liquid fuels [J]. Fuel,1995,74(10):1436-1451.
    [7]LANDAU M V. Deep hydrotreating of middle distillates from crude and shale oils [J]. Catal Today,1997,36(4):393-429.
    [8]凌凤香,姚银堂,马波,王少军.气相色谱-原子发射光谱联用技术测定柴油中硫化物燃料.化学学报[J].2002,30(6):535-539.
    [9]NAG N K, SAPRE A V, BRODERICK D H, et al. Hydrodesulfurization of polycyclic aromatics catalyzed by sulfided Co-Mo/Al2O3:The relative reactivities [J].J Catal,1979, 57:509-512.
    [10]HOUALLA M, BRODERICK D H, SAPRE A V, et al. Hydrodesulfurization of methyl-substituted dibenzothiophenes catalyzed by sulfided Co-Mo/γ-Al2O3 [J]. J Catal,1980,61:523-527.
    [11]SHAFI R, HUTCHINGS G J. Hydrodesulfurization of hindered dibenzothiophenes:An overview [J]. Catal Today,2000,59:423-442.
    [12]KABE T, ISHIHARA A, ZHANG Q. Deep desulfurization of light oil. Part 2: Hydrodesulfurization of dibenzithiophene,4-menthydibenzothiophene and 4,6-dimenthydibenzoth-iophene [J]. Appl Catal:A,1993,97:L1-9.
    [13]HOUALLA M, NAG N K, SAPRE A V, et al. Hydrodesulphurization of dibenzothiophene catalyzed by sulfided CoO-MoO3/γ-Al2O3:the reaction network. A. I. C. H. E Journal,1978, 24(6):1015-1021.
    [14]SINGHAL G H, ESPINO R L, SOBEL J E, et al. Hydrodesulfurization of sulfur heterocyclic compounds:Kinetics of dibenzothiophene [J]. J Catal,1981,67(2):457-468
    [15]MIJOIN J, PEROT G, BATAILLE F, et al. Mechanistic considerations on the involvement of dihydrointermediates in the hydrodesulfurization of dibenzothiophene-type compounds over molybdenum sulfide catalysts [J]. Catal Lett,2001 71(3-4),139-145
    [16]FRANK J P, LE PAGE J F. Catalysts for the hydrogenation of heavy gas oils into middle distillates [C]. Proc 7th Int. Congr. Catal,1981:792-803.
    [17]韩崇仁,加氢裂化工艺与工程[M].北京:中国石化出版社,2001.
    [18]SONG C S, REDDY K M. Malodorous molecular sieve MCM-41 supported Co-Mo catalyst for Hydrodesulfurization of dibenzothiophene in distillate fuels [J]. Appl Catal:A,1999, 176:1-10.
    [19]王桂茹.催化剂与催化作用[M].大连:大连理工大学出版社,2000.
    [20]RATNASAMY P, SIVASANKER S. Structural chemistry of Co-Mo alumina catalysts [J]. Catal Rev-Sci Eng.1980,22(3):401-429
    [21]DAAGE M, CHINNELLI R R. Structure-function relations in molybdenum sulfide catalysts: The rim-edge model [J].J Catal,1994,149:414-427.
    [22]WANG A J, WANG Y, KABE T, et al. Hydrodesulphurization of dibenzothiophene over siliceous MCM-41-supported catalysts:1.Sulfided Co-Mo catalysts [J].J Catal,2001, 199:19-29.
    [23]WANG A, WANG Y, KABE T, et al. Hydrodesulphurization of dibenzothiophene over siliceous .MCM-41-supported catalysts:∏. Sulfided Ni-Mo catalysts [J].J Catal,2001, 210:319-327.
    [24]STARTSEV A N, ARTAMONOV E V, YERMAKOV Y.1. Shipside catalysts on silica as a support Ⅶ.Isotope exchange of hydrogen sulphide with sulphide catalyst [J]. Appl Catal: A,1988,45:183-190.
    [25]STARTSEV A N. Concerted mechanisms in heterogeneous catalysis by sulfides [J].J Mol Catal.A,2000,152:1-13
    [26]BYSKOV L S, BOLLINGER M, NORSKOV J K, et al. Molecular aspects of the H2 activation on MoS2 based catalysts-the role of dynamic surface arrangements [J]. J Mol Catal. A, 2000,163:117-122
    [27]TANAKA K, OKUHARA T. Regulation of intermediates on sulfided nickel and MoS2 catalysts [J]. Catal Rev-Sci Eng.1977,15(2):249-292.
    [28]PAUL J F, CRISTOL S, PAYEN E. Computational studies of (mixed) sulfide hydrotreating catalysts [J]. Catal Today,2008,130(1):139-148.
    [29]HINNEMANN B,GEORG M,N(?)RSKOV. Recent density functional studies of hydrodesulfurization catalysts:Insight into structure and mechanism [J]. J Phys:Condens Matter,2008, 20:064236-064244.
    [30]SCHUIT G C A, GATES B C. Chemistry and engineering of catalytic hydrodesulfurization
    [J]. AICHE J.1973,19:417-423.
    [31]TOPS(?)E N Y, TOPS(?)E H. Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorptions [J].J Catal,1983, 84:386-401.
    [32]GRIMBLOT J. Genesis, architecture and nature of sites of Co (Ni)-MoS2 supported hydroprocessing catalysts [J]. Catal Today 1998,41:111-128.
    [33]HAGENBACH G, COURTY P H, DELMON B. Physicochemical investigations and catalytic activity measurements on crystallized molybdenum sulfided-cobalt sulfided mixed catalysts [J].J Catal,1973,31:264-273.
    [34]DELMON B, GARNGE P. in Portela M F (Ed.). Proceedings 2nd conferee on industrial catalysis, Gercat Lisbon,1988[C], P83.
    [35]KARROUA M, CENTENNO A, MATRALIS H K, et al. Synergy in hydrodesulfurization and hydrogenation on mechanical mixture of cobalt Sulphide on carbon and MoS2 on alumina Proceedings. Appl Catal:A,1989,51:L21-26.
    [36]TOPS(?)E H, CLAUSEN B S, TOPS(?)E N-Y, et al. Progress in the design of hydrotreating catalysts based on fundamental molecular insight [J].Stud Surf Sci Catal,1989. 53:77-102.
    [37]TOPS(?)E H, CLAUSEN B S. Active sites and support effects on hydrodesulfurization catalyst [J].Appl Catal:A,1986,25(2):273-293
    [38]CANDIA R, CLAUSEN B S, BARTHOLDY J, et al. In Proceedings of the 8th International Congress on Catalysts [C], Weinheim:Chemie,1984,1:375
    [39]Sorensen 0, Clausen B S, Candia R, et al. Hrem and Aem studies of HDS catalysts:Direct evidence for the edge location of cobalt in Co-Mo-S [J].Appl Catal,1985,13:363
    [40]KREBS E, SILVI B, RAYBAUD P. Mixed sites and promoter segregation:A DFT study of the manifestation of Le Chatelier's principle for the Co(Ni)MoS active phase in reaction conditions [J]. Catal Today,2008,130(1):160-169.
    [41]TOPS(?)E H, CLAUSEN B S, MASSOTH F E. Hydrotreating Catalysis [J]. Springer. Berlin, 1996,128:153-169.
    [42]祁兴国,董群,马守波,等.硫化钼催化剂边缘结构的研究进展[J].化工进展,2004,23(12):1291-1295.
    [43]LAURITSEN J V, BOLLINGER M V, L(?)GSGAARD E, et al. Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts [J].J Catal, 2004,221 (2):510-522.
    [44]HELVEG S, LAURITSEN J V, L(?)GSGAARD E, et al. Atomic-scale structure of single-layer MoS2 nanoclusters [J].Phys Rev Lett,2000,84(5):951-954.
    [45]DAAGE M, CHIANELLI R R. Structure-function relations in molybdenum sulfide catalysts: the "Rim-Edge" model [J].J Catal,1994,149(2):414-427.
    [46]KAUFMANN T G, KALDOR A, STUNTZ G F, et al. Catalysis science and technology for cleaner transportation fuels [J].Catal Today,2000,62(1):77-90.
    [47]CHUNG K S, MASSOTH F E. Studies on molybdenum-alumina catalysis Ⅶ:Eeffect of cobalt on catalyst status and reducibility [J].J Catal.1980,64:320-331.
    [48]WIVEL C, CANDIA R, CLAUSEN B S, et al. On the catalytic significance of a Co-Mo-S-Phase in CoMo/Al2O3 hydordesulfurization catalysis:Combined in situ Mossbauer emission spectroscopy and activity studies [J].J Catal,1981,68:453-463.
    [49]Li C P, Hercules D M. A surface Spectroscopic study of sulfided molybeden-alumina catalysts [J].J PhysChem.1984,88:456-464.
    [50]MURALIDHAR G, MASSOTH F E, SHABTAI J. Catalytic functionalities of supported sulfides: I. Effect of support and additives on the CoMo catalyst [J].J. Catal,1984,85(1): 44-52
    [51]ISHIHARA A, SHIROUCHI K, KABE T. Hydrodesulfurization of Dibenzothiophene Catalyzed by Silica-Alumina Supported Anionic Molybdenum Carbonyl Complexes [J]. CHEM LETT,1993, 22(4):589
    [52]CHARY K V R, RAMA RAO K S, MURALIDHAR G, et al. Hydrodeoxygenation of furan by carbon supported molybdenum sulphide catalysts [J]. Carbon,1991,29(3):478-479
    [53]CINIBULK J, KOOYMAN P J, VIT Z, et al. Magnesia-Supported Mo, CoMo and NiMo Sulfide Catalysts Prepared by Nonaqueous Impregnation:Parallel HDS/HDN of Thiophene and Pyridine and TEM Microstructure [J]. Catal Lett,2003,89(1/2):147
    [54]DATYE A K, SRINIVASAN S, ALLARD L F, et al. Oxide Supported MoS2 Catalysts of Unusual Morphology [J].J Catal,1996,158(1):205-216
    [55]FARAG H, WHITEHURST D D, MOCHIDA I. Synthesis of active hydrodesulfurization carbon-supported Co-Mo catalysts:Relationships between preparation methods and activity/selectivity [J]. Ind Eng Chem Res,1998,37:3533-3539.
    [56]WELRERSW J J, DEBEERV H J, VANSANTEN R A. Influence of zeolite acidity on thiophene catalysts:A review [J], Catal Today,2003,86:45-60.
    [57]LI D, NISHIJIMA A, MORRIS D E. Zeolite-Supported Ni and Mo Catalysts for Hydrotreatments: I. Catalytic Activity and Spectroscopy [J]. J Catal,1999,182:339-348.
    [58]VASUDEVAN P T, WELLER S W. Essay of molybdenum sulfide ex ammonium tetrathiomolybdate [J]. J Catal,1986,99:235-238
    [59]RATNASAMY P, SIVASANKER S. Structural chemistry of Co-Mo alumina catalysts [J]. Catal Rev Sci Eng.1980,22(3):401-429
    [60]李惠云,孙渝,乐英红等.水解对MCM-41分子筛的结构破坏作用[J].高等学校化学学报,1999,20(2):272-276.
    [61]JENTYS A, KLEESTORFER K, VINEK H. Concentration of surface hydroxyl groups on MCM-41[J]. Micropor Mesopor Mater,1999,27:321-328.
    [62]TRONG O D, ZAIDI S M J, KALIAGUINE S. Stability of mesoporous aluminosilicate MCM-41 under vapor treatment, acidic and basic conditions [J]. Micropor Mesopor Mater,1998, 22:211-214.
    [63]HE J, DUAN X, LI C. Improving the stability of MCM-41 by monolayer dispersion of a metal oxide[J]. Mat Chem Phy,2001,71:221-225.
    [64]金英杰,沈健,袁兴东等.厚壁MCM-41中孔分子筛的合成[J].石油化工,1999,28:524-527.
    [65]COMRA A, MARTINEZ A, MARTINEZ S V, et al. Hydrocracking of vacuum gas oil on the novel mesoporous MCM-41 aluminosilicate catalyst [J]. J Catal,1995,153:25-31.
    [66]REDDY K M, WEI B, SONG C S. Mesoporous molecular sieve MCM-41 supported Co-Mo catalyst for hydrodesulfurization of petroleum resides [J]. Catal Today,1998,43:261-272.
    [67]LI X, WANG A J, SUN Z C, et al. Effect of surface proton exchange on hydrodesulfurization performance of MCM-41-supported catalysts [J]. Appl Catal:A,2003,254:309-326.
    [68]LI X, WANG An J, ZHANG S, et al. Effect of surface Na+ or K+ ion exchange on hydrodesulfurization performance of MCM-41supported Ni-W catalyst [J]. Appl Catal: A,2007,316(2):134-141.
    [69]IWAMOTO R, GRIMBLOT J. Influence of Phosphorus on the Properties of Alumina-Based Hydrotreating Catalysts [J]. Adv Catal,2000,44:417-503
    [70]LEWIS J M, KYDD R A. The MoO3-Al2O3 interaction:Influence of phosphorus on MoO3 impregnation and reactivity in thiophene HDS [J].J Catal,1992,136(2):478-486
    [71]PRINS R. Catalytic hydrodenitrogenation [J].Adv Catal,2002,46:399-464
    [72]CUEVAS R, RAMIREZ J, BUSCA G, et al. Fluoride modification of Mo/Al2O3 catalysts Characterization of the changes induced in support and Mo phases [J]. J Fluorine Chem, 2003,122:151-158
    [73]KWAK C, LEE J J, BAE J S, et al. Hydrodesulfurization of DBT,4-MDBT, and 4,6-DMDBT on fluorinated CoMoS/Al2O3 catalysts [J].Appl. Catal. A,2000,200(1-2):233-242
    [74]FUJIKAWA T, KIMURA H, KIRIYAMA K, et al. Development of ultra-deep HDS catalyst for production of clean diesel fuels [J]. Catal. Today,2006,111 (3-4):188-193
    [75]MORAWECK B, BERGERET, G, CATTENOT M, et al. The nature of ruthenium sulfide clusters encaged in a Y zeolite [J].J Catal,1997,165(1):45-56.
    [76]BREYSSE M, CATTENOT M, KOUGIONAS V. Hydrogenation properties of ruthenium sulfide clusters in acidic zeolites [J].J Catal,1997,168(2):143-153.
    [77]LEYRIT P, CSERI T, MARCHAL N, et al. Aromatic reduction properties of molybdenum sulfide clusters in HY zeolite [J].Catal Today,2001,65 (2-4):249-256.
    [78]MALLMANA D, BARTHOMEUF A. Correlation between benzene hydrogenation activity and zeolite basicity in platinum faujasites [J]. Journal de Chimie Physique et de
    Physico-Chimie Biologique,1990,87(4):535-538.
    [79]VENEZIA A. M., LA PAROLA V, LONGO A., et al. Effect of Alkali Ions on the Amorphous to Crystalline Phase Transition of Silica [J]. Journal of Solid State Chemistry,2001, 161,373-378
    [80]VENEZIA A. M., LA PAROLA V, LONGO A., et al. Influence of the preparation method on the thiophene HDS activity of silica supported CoMo catalysts [J]. Appl Catal A,2002, 229,261-271
    [81]LA POARLA V, DEGNAELLO G, VENEZIA A M. CoMo catalysts supported on aluminosilicates: Synegry between support and sodium effects [J]. Appl Catal:A,2004,260:237-247.
    [82]HATANAKA S, YAMADA M, SADAKANA 0. Inhibiting effects of olefins on HDS of alkyl-(benzo)-thiophenes contained in catalytic cracked gasoline[C]. Book of Abstracts, 212th ACS National Meeting. Orlando,1996.
    [83]LYCOURGHIOTIS A, VATTIS D. Hydrodesulfrization of thiophene over Na-doped CoMo/Al2O3 catalysts prepared by inwerse impregnation [J]. React. Kinet. Catal. Lett,1982, 21(1-2):23-27
    [84]ZENON S. Acidity and catalytic activity of cobalt-molybdena catalyst supported on alumina. The effect of incorporation sequence of sodium and fluoride ions [J]. Appl Catal A,1997,164, (1):13-19
    [85]MEY D, BRUMET S, CANAFF C. HDS of a model FCC gasoline over a sulf ided CoMo/Al2O3 catalyst: Effect of the addition of potassium [J].J Catal,2004,227(2):436-447.
    [86]果崇申,李翔,王安杰.K20对Co-Mo/MCM-41催化剂加氢脱硫性能的影响[J].石油学报(石油加工),2009,25(5):640-645.
    [87]TRONGON D, ZAIDS M J, KALIAGUINE S. Stability of mesoporous aluminosilicate MCM-41 under.vapor treatment, acidic and basic conditions[J]. Micro Meso Materials,1998, 22(1):211-224.
    [88]崔峻,乐英红,刘毅等.MCM-41分子筛和催化剂的特殊吸附等温线[J].化学学报,1997,55:974-978.
    [89]LI X, ZHOU F, WANG An J, et al. Influence of Templates on the Overgrowth of MCM-41 over HY and the Hydrodesulfurization Performances of the Supported Ni-Mo Catalysts [J]. Ind Eng Chem Res,2009,48(6):2870-2877.
    [90]LI X, WANG An J, Wang Y, et al. Hydrodesulfurization of Dibenzothiophene Over Ni-Mo Sulfides Supported by Proton-Exchanged Siliceous MCM-41[J]. Catal Lett,2002, 84(1-2):107-113.
    [91]KLIMOVA T, REYES J, GUTIERREZ O, et al. Novel bifunctional NiMo/Al-SBA-15 catalysts for deep hydrodesulfurization:Effect of support Si/Al ratio [J]. Appl Catal:A,2008, 335(2):159-171.
    [92]QIAN W, ISHIHARA A, OGAWA S, et al. Study of hydrodesulfurization by the use of 35S-labeled dibenzothiophene 1 Hydrodesulfurization mechanism on sulfided Mo/A1203 [J]. J Phys Chem,1994,98(3):907-911.
    [93]QIAN W, ISHIHARA A,O KOSHI Y, et al. Elucidation of molybdenum-based catalysts using a radioisotope tracer method part 2 Promotion effects of cobalt on molybdena/alumina catalyst [J]. J Chem Soc, Faraday Trans,1997,93(24):4395-4400.
    [94]李翔,王安杰,孙仲超,等.全硅MCM-41担载的Ni-W催化剂上二苯并噻吩加氢脱硫反应动力学研究[J].石油学报(石油加工),2003,19(4):1-7.
    [95]EGOROVA M, PRINS R. Mutual influence of the HDS of dibenzothiophene and HDN of 2-methylpyridine [J]. J Catal,2004,221(1):11-19.
    [96]李翔,王安杰,孙仲超,等.Ni-W/Si-MCM-41加氢脱硫催化剂中Ni的助剂作用[J].石油学报(石油加工),2005,21(4):67-74.
    [97]TODOROVA T, PRINS R, WEBER T. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2 [J]. J Catal, 2005,236(2):190-204.
    [98]BATAILLE F, LEMBERTEN J L, MICHAUD P, et al. Alkyldibenzothiophenes hydrodesulfurization-Promoter Effect, Reactivity, and Reaction Mechanism [J]. J Catal,2000,191(2):409-422.
    [99]Comparative study of β-nickel molybdate phase obtained by conventional precipitation and the sol-gel method
    [100]REN J, WANG An J, LI X, et al. Hydrodesulfurization of dibenzothiophene catalyzed by Ni-Mo sulfides supported on a mixture of MCM-41 and HY zeolite[J]. Appl Catal: A,2008,344(1-2):175-182.
    [101]UNER D 0, PRUSKI M, KING T S. The role of alkali promoters in Fischer-Tropsch synthesis on Ru/SiO2 surfaces [J]. Topics in Catalysis,1995,2(1-4):59-69.
    [102]ZEPEDA T A, PAWELEC B, FIERRO J L G, et al. Effect of Al and Ti content in HMS material on the catalytic activity of Ni-Mo and Co-Mo hydrotreating catalysts in the HDS of DBT [J]. Micro Meso Materials,2008,111(1):157-170.
    [103]ZHENG L, CHEN L. Spectroscopic Studies on Tetragonal ZrO-Supported Mo03 and NiO-MoO3 Systems [J].J Catal,1998,177(2):314-324.
    [104]RAMIREZ J CONTRERAS R, CASTILLO P, et al. Characterization and catalytic activity of CoMo HDS catalysts supported on alumina-MCM-41 [J]. Appl Catal:A,2000,197: 69-78.
    [105]RAMIREZ J, CASTILLO P, CEDENO L, et al. Effect of boron addition on the activity and selectivity of hydrotreating CoMo/Al2O3 catalysts [J]. Appl Catal. A,1995,132(2): 317-334
    [106]GARG S, SONI P, KUMARAN G M, et al. Effect of Zr-SBA-15 support on catalytic functionalities of Mo, CoMo, NiMo hydrotreating catalysts [J]. Catal Today,2008, 130(2-4):302-308.
    [107]李翔.以全硅MCM-41作载体制备W系深度加氢脱硫催化剂[D].大连:大连理工大学化工学院,2003.
    [108]SCHEFFER B, MANGNUS P J, MOULIJN J A. A temperature-programmed sulfiding study of NiO-W03/Al2O3 catalysts [J]. J Catal,1990,121(1):18-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700