用户名: 密码: 验证码:
SUMO2/3基因对神经细胞生长的调控及在缺血神经细胞中表达变化的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分SUMO2/3基因的特异性MicroRNA干扰表达载体的构建
     目的:构建SUMO2/3 (small uniquitin-like modifier 2/3)基因的MicroRNA特异性干扰质粒,为探讨抑制SUMO2/3基因在细胞中表达对B35细胞的影响的研究奠定基础。
     方法:根据GeneBank数据库提供的SUMO2和SUMO3的DNA序列,首先克隆出SUMO2和SUMO3的功能性基因片段,并将基因片段连接到pcDNA3.1载体;然后分别设计对SUMO2和SUMO3基因特异的miRNA片段,分别命名为miR2和miR3,同时设计一条非特异性序列作为阴性对照,命名为negative-miR,并将这些片段克隆到pcDNA6.2-GW/EmGFP-miR载体上。通过转化感受态大肠杆菌,挑选阳性克隆,提取重组质粒,并对抽提的质粒进行限制性酶切反应,DNA测序鉴定。然后将pcDNA6.2-GW/EmGFP-miR2和pcDNA6.2-GW/EmGFP-miR3通过酶切和连接反应将miR2和miR3同时连接到同一pcDNA6.2-GW/EmGFP-miR载体上,称之为pcDNA6.2-GW/EmGFP-miR2/3,同时抑制SUMO2和SUMO3的表达。分别将相应的功能基因片段和其对应的抑制性质粒共转染到HT22细胞中,并用50μM H2O2作用转染的细胞10 min,激活SUMO化通路的表达,用Western-Blot在蛋白水平检测SUMO2和SUMO3化蛋白的表达。
     结果:重组质粒成功转化感受态大肠杆菌,经酶切和电泳证明序列成功插入到pcDNA6.2-GW/EmGFP-miR载体预计位点,经DNA测序进一步证明序列完全正确。Western-Blot结果证明pcDNA6.2-GW/EmGFP-miR2和pcDNA6.2-GW/EmGFP-miR3分别成功沉默SUMO2和SUMO3基因的表达,并且pcDNA6.2-GW/EmGFP-miR2/3能够同时沉默SUMO2/3基因的表达。
     结论:成功构建针对SUMO2/3基因特异性的miRNA真核表达载体,转染细胞后能够明显抑制SUMO2/3基因的表达,为进一步研究其基因功能奠定了基础。
     第二部分SUMO2/3基因沉默对B35细胞生长的影响和OGD作用后细胞的SUMO化蛋白表达的变化
     目的:构建稳定转染pcDNA6.2-GW/EmGFP-miR2/3及pcDNA6.2-GW/EmGFP-negative-miR质粒的B35细胞系,观察SUMO2/3基因沉默对细胞生长的影响,并用OGD体外缺血模型对细胞进行处理,然后根据不同的再灌注时间观察SUMO家族蛋白表达的变化。
     方法:用携带CMV的pcDNA6.2-GW/EmGFP-miR2/3质粒和对照质粒pcDNA6.2-GW/EmGFP-negative-miR转染B35细胞系,用blasticidin筛选出稳定株,用Western-Blot检测SUMO2/3基因表达的改变,然后用CellTiter-Blue reagent试剂盒检测细胞的生长速度。将稳定转染的细胞用体外缺血模型OGD干预后,用Western-Blot检测SUMO家族蛋白表达的变化。
     结果:稳定转染pcDNA6.2-GW/EmGFP-miR2/3质粒的B35细胞在受到应激刺激后,SUMO2/3蛋白表达和对照组相比明显降低;并且其细胞生长速度和对照组相比3天后降低为对照组的64%。细胞经过OGD作用后,对照组SUMO1蛋白的表达在0min时降低,然后升高,30min时到达高峰,然后有所降低,但趋势并不是很明显;SUMO2/3沉默组和对照组相比没有明显差别。对照组和正常细胞组SUMO2/3化蛋白表达变化为:在0 min时先降低,然后逐渐升高,30 min达到高峰,然后逐渐降低,至3h后基本恢复正常。和对照组及正常细胞组相比,SUMO2/3沉默组的每个时间段的SUMO2/3化蛋白表达均明显降低,各时间段表达变化不明显。
     结论:SUMO2/3基因沉默后可以明显降低细胞的生长速度;稳定转染对照载体的细胞和稳定转染pcDNA6.2-GW/EmGFP-miR2/3质粒载体的细胞经OGD作用后SUMO1蛋白表达没有明显区别;SUMO2/3在稳定转染pcDNA6.2-GW/EmGFP-miR2/3质粒的B35细胞中表达相对正常细胞组及对照组明显降低,而对照组和正常细胞组相比没有明显区别。
     第三部分SUMO基因的表达在脊髓缺血性损伤中的改变及机制研究
     目的:建立小鼠脊髓缺血的简单易重复的动物模型,并检测SUMO蛋白在其中表达的变化。
     方法:将成年雌性C57B1/6J小鼠用异氟咪麻醉后,取右侧卧位,保持肛温在37.0±0.5℃,于胸8肋间切开1 cm的切口,将一个小动脉瘤夹放置在胸主动脉的胸8部位,根据夹闭时间的不同,将小鼠分为对照组、8 min、10 min和12 min夹闭组,用激光多普勒探头检测夹闭后小鼠腰段脊髓表面血流的变化;同时对各组小鼠在缺血后1h、1d、3d、5d、7d进行BBB评分检查和Rotarod检测;在手术7天后将腰段脊髓取出包埋固定后行HE染色,对脊髓前脚的存活神经元进行计数;同时将另外一批10 min夹闭组和对照组的腰段脊髓组织,用Western-Blot检测脊髓损伤后SUMO蛋白表达的变化。为了研究本模型对小鼠长期存活的影响,我们使另一10 min夹闭组和对照组存活至术后28天,并对其病理生理功能进行检测。
     结果:在8 min缺血组,BBB评分在1h后下降到15分,24h基本恢复正常,而10 min和12 min组,BBB评分在7天时与对照组和8 min组相比均明显降低,差距具有显著的统计学意义;Rotarod检测结果和BBB评分相似,在7天时,8min组和对照组相比没有明显区别,而10 min或12 min组与对照组或8 min组相比差别有显著统计学意义(p<0.01,10 min or 12 min vs.0 min or 8 min);胸段脊髓夹闭后可以引起腰段脊髓表面血流降低到夹闭前的10%;神经功能障碍和神经元细胞的死亡和缺血时间密切相关。长时程10min夹闭检测组的小鼠有80%存活到28天,BBB评分和Rotarod检测和对照组相比差异显著的统计学意义(p<0.01)。
     结论:成功建立了小鼠的脊髓缺血模型,脊髓缺血后SUMO2/3蛋白表达和对照组相比明显升高,这和脑缺血后SUMO化蛋白表达变化相似。
PartⅠConstruction of the SUMO2/3 Gene specific MicroRNA expression vector
     Objectives To Construct the SUMO2/3(small uniquitin-like modifier 2/3) gene specific MicroRNA expression vector, and prepare well for investigating the effect of silencing the SUMO2/3 gene in the B35 cell line.
     Methods Genomic sequences of SUMO2 and SUMO3 gene were retrieved from Genbank. Firstly the functional sequence of SUMO2 and SUMO3 gene were cloned and then they were inserted to pcDNA3.1 vector. Secondly miRNA specific silencing the SUMO2 and SUMO3 gene were designed which were called miR2 and miR3, at the same time we dedigned a negative control called negative-miR. All these sequences were inserted to pcDNA6.2-GW/EmGFP-miR. Recombinant vectors were then transformed to E-coli, The positive colony were selected and recombinant plasmids were extracted. After restricted enzyme digestion and sequencing, the plasmids were identified correctly. Then miR2 and miR3 were colonied into the same pcDNA6.2-GW/EmGFP-miR vector called pcDNA6.2-GW/EmGFP-miR2/3.The pcDNA6.2-GW/EmGFP-miR2/3 and counterpart pcDNA3.1-SUMO2 or SUMO3 vector were co-transfected into HT22 cells. After co-transfection, the cells were treated with 50μM H2O2, for 10 min. The cells were extracted with lysis buffer and runned Western-Blot to test expression of the SUMO2and SUMO3 proteins
     Results Recombinant plasmids were successfully transformated to E-coli cells, using the restricted enzyme and electrophoresis identified the right position of the sequence, the DNA sequencing was futher to prove the right position. pcDNA6.2-GW/EmGFP-miR2,pcDNA6.2-GW/EmGFP-miR3 and pcDNA6.2-GW/EmGFP-miR2/3 can successfully down-regulate the proteins respectively which were verified by Western-blot.
     Conclusions The correctly plasmids were constructed, after transfected into HT22 cells, it can obviously silence the SUMO2/3 gene expression. These plasmids were obstained for the future study.
     Part II The effection on B35 cell growth after SUMO2/3 gene silencing and the SUMO family protein changes after OGD treatment
     Objectives To establish the stably transfected B35 cell line using pcDNA6.2-GW/EmGFP-miR2/3 plasmid and investigation the effection of the SUMO2/3 on B35 cell growth. And the stable B35 cell was treated using OGD which is common used for the ischemia model in vitro, and then we observed the changes of SUMO protein family using Western-blot.
     Methods The pcDNA6.2-GW/EmGFP-miR2/3 plasmid which has CMV promotor and the control plasmid were used to transfect into B35 cell line, then the stale cell line was selected by blasticidin, the changes of SUMO2/3 protein family was tested by Westen-blot and the cell growth was evaluated using CellTiter-Blue reagent; B35 cell was treated using OGD and then the SUMO protein family were investigated by Western-blot.
     Results SUMO2/3 protein decreased significantly in B35 cell experssed pcDNA6.2-GW/EmGFP-miR2/3 plasmid comparing to miR-Neg B35 cell. After silencing of the SUMO2/3 expression, B35 growth and proliferation decreased to 64% comparing to miR-Neg B35 cell at 3 days. SUMO1 protein didn't change after OGD treatment, while the SUMO2/3 in miR-Neg B35 cell decreased at Omin, then increased gradually and reached highest-level at 30 min, after this it decreased little by little and became normal at 3 h. In B35 cell stably expressed the pcDNA6.2-GW/EmGFP-miR2/3 plasmid, SUMO2/3 protein decreased obviously comparing control cell with all the time points because of the silencing of the SUMO2/3 gene.
     Conclusions Silencing of the SUMO2/3 using miR significantly repressed B35 cell growth and differentiation. SUMO2/3 protein expression in B35 cell stably expressed pcDNA6.2-GW/EmGFP-miR2/3 plasmid was drastically reduced after OGD treatment at all time points comparing to the normal B35 cell and miR-Neg B35 cell.
     Part III The alteration of SUMO gene expression in spinal cord ischemia injury and investigtion of its mechnism
     Objectives To development of mice spinal cord ischemia animal model and investigation the SUMO2/3 changes in this model.
     Methods Male C57B1/6J mice were anesthetized with isoflurane and endotracheally intubated. The middle segment of the thoracic aorta was clamped for 0,8,10 or 12 min via left lateral thoracotomy. Rectal temperature was maintained at 37.0±0.5℃. A laser Doppler probe was used to measure lumbar spinal cord blood flow during thoracic aorta cross-clamping. Open field locomotor function (BBB score)and rotarod performance were evaluated at 1 h and 1,3,5, and 7 days post-injury. Surviving neurons in the lumbar ventral horn were counted at 7 days post-injury using HE staining.
     Results In the 8 min ischemia group, the BBB score declined to 15 at 1 hour post-injury and then recovered to almost normal by 24 hours. In the groups of 10 or 12 min of ischemia, mice had a more severe decline in BBB scores and a slower recovery, there was significantly differences comparing to 8 min or control group. Similar to the BBB score, Rotarod performance were significantly different in 10 min and 12 min group from control and 8 min group(p<0.01,10 min or 12 min vs.0 min or 8 min). Cross-clamping the middle segment of the thoracic aorta resulted in approximately 90% blood flow reduction in the lumbar spinal cord. Neurological deficit and neuronal cell death were associated with ischemia duration. Another set of mice were subjected to 10 min aortic clamping or sham surgery,4 of 5 mice (80%) in the injured group survived 28 days and had significantly different BBB score and Rotarod performance comparing to control group(p<0.01).
     Conclusions Cross-clamping of the aorta via left thoracotomy is a simple and reliable method to induce spinal cord ischemia in mice allowing definition of long-term outcome. The SUMO2/3 was significantly increased comparing to the control group, this was similar to the cerebral ischemia.
引文
[1]A. D. Lopez, C. D. Mathers, M. Ezzati, et al., Global and regional burden of disease and risk factors,2001:systematic analysis of population health data.Lancet,2006,367:1747-1757.
    [2]V. L. Feigin, C. M. Lawes, D. A. Bennett, et al., Stroke epidemiology:a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century.Lancet Neurol,2003,2:43-53.
    [3]C. J. Murray and A. D. Lopez, Alternative projections of mortality and disability by cause 1990-2020:Global Burden of Disease Study. Lancet,1997,349: 1498-1504.
    [4]M. J. Matunis, E. Coutavas and G. Blobel, A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.J Cell Biol,1996,135:1457-1470
    [5]P. Bayer, A. Arndt, S. Metzger, et al., Structure determination of the small ubiquitin-related modifier SUMO-1.J Mol Biol,1998,280:275-286.
    [6]F. Melchior,SUMO--nonclassical ubiquitin.Annu Rev Cell Dev Biol, 2000,16:591-626.
    [7]J. M. Desterro, J. Thomson and R. T. Hay,Ubch9 conjugates SUMO but not ubiquitin.FEBS Lett,1997,417:297-300.
    [8]E. S. Johnson, I. Schwienhorst, R. J. Dohmen, et al., The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer.Embo J,1997,16:5509-5519
    [9]E. S. Johnson and G Blobel, Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p.J Biol Chem,1997,272:26799-26802.
    [10]Y. J. Lee, S. Miyake, H. Wakita, et al., Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells.J Cereb Blood Flow Metab,2007,27:950-962.
    [11]W. Yang, H. Sheng, D. S. Warner, et al., Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation.J Cereb Blood Flow Metab,2008,28:892-896.
    [12]C. Cogoni, N. Romano and G Macino, Suppression of gene expression by homologous transgenes.Antonie Van Leeuwenhoek,1994,65:205-209.
    [13]C. Napoli, C. Lemieux and R. Jorgensen, Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans.Plant Cell,1990,2:279-289.
    [14]C. Cogoni and G Macino, Isolation of quelling-defective (qde) mutants impaired in posttranscriptional transgene-induced gene silencing in Neurospora crassa.Proc Natl Acad Sci U S A,1997,94:10233-10238.
    [15]C. Cogoni and G. Macino, Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature,1999,399: 166-169.
    [16]A. L. Jones, C. L. Thomas and A. J. Maule, De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus.Embo J,1998,17:6385-6393.
    [17]17 O. Voinnet, Y. M. Pinto and D. C. Baulcombe,Suppression of gene silencing: a general strategy used by diverse DNA and RNA viruses of plants.Proc Natl Acad Sci U S A,1999,96:14147-14152.
    [18]D. P. Bartel, MicroRNAs:genomics, biogenesis, mechanism, and function. Cell, 2004,116:281-297.
    [19]Y. Lee, M. Kim, J. Han, et al., MicroRNA genes are transcribed by RNA polymerase II.Embo J,2004,23:4051-4060.
    [20]Y. Zeng, R. Yi and B. R. Cullen, Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha.Embo J,2005, 24:138-148.
    [21]M. T. Bohnsack, K. Czaplinski and D. Gorlich, Exportin 5 is a RanGTP- dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna,2004,10:185-191.
    [22]B. R. Cullen, Transcription and processing of human microRNA precursors.Mol Cell,2004,16:861-865.
    [23]B. R. Cullen, Derivation and function of small interfering RNAs and microRNAs. Virus Res,2004,102:3-9.
    [1]M.Hochstrasser. Ubiquitin-dependent protein degradation.Annu Rev Genet, 1996,30:405-439.
    [2]S. Jentsch and G. Pyrowolakis. Ubiquitin and its kin:how close are the family ties? Trends Cell Biol,2000,10:335-342.
    [3]M. Hochstrasser. Evolution and function of ubiquitin-like protein-conjugation systems. Nat Cell Biol,2000,2:E153-157.
    [4]M. J. Matunis, E. Coutavas and G. Blobel. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.J Cell Biol,1996,135: 1457-1470.
    [5]P. Bayer, A. Arndt, S. Metzger, et al. Structure determination of the small ubiquitin-related modifier SUMO-1.J Mol Biol,1998,280:275-286.
    [6]F. Melchior. SUMO--nonclassical ubiquitin.Annu Rev Cell Dev Biol,2000,16: 591-626.
    [7]D. Guo, M. Li, Y. Zhang, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes.Nat Genet,2004,36:837-841.
    [8]S. S. Kwek, J. Derry, A. L. Tyner, et al. Functional analysis and intracellular localization of p53 modified by SUMO-1.Oncogene,2001,20:2587-2599.
    [9]L. Chen and J. Chen. MDM2-ARF complex regulates p53 sumoylation. Oncogene,2003,22:5348-5357.
    [10]W. Yang, H. Sheng, D. S. Warner, et al. Transient global cerebral ischemia induces a massive increase in protein sumoylation.J Cereb Blood Flow Metab, 2008,28:269-279.
    [11]V. Dorval and P. E. Fraser. SUMO on the road to neurodegeneration.Biochim Biophys Acta,2007,1773:694-706.
    [12]M. Jinek and J. A. Doudna. A three-dimensional view of the molecular machinery of RNA interference.Nature,2009,457:405-412.
    [13]A. C. Vertegaal. Small ubiquitin-related modifiers in chains.Biochem Soc Trans,2007,35:1422-1423.
    [14]D. Hoeller and I. Dikic. Targeting the ubiquitin system in cancer therapy. Nature, 2009,458:438-444.
    [15]D. Tempe, M. Piechaczyk and G. Bossis, SUMO under stress.Biochem Soc Trans,2008,36:874-878.
    [16]Y. J. Lee, S. Miyake, H. Wakita, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells.J Cereb Blood Flow Metab,2007,27:950-962.
    [17]W. Yang, H. Sheng, D. S. Warner, et al. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation.J Cereb Blood Flow Metab,2008,28:892-896.
    [18]B. P. Lewis, C. B. Burge and D. P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets.Cell,2005,120:15-20.
    [19]Y. Lee, M. Kim, J. Han, et al. MicroRNA genes are transcribed by RNA polymerase II.Embo J,2004,23:4051-4060.
    [20]B. R. Cullen. Transcription and processing of human microRNA precursors.Mol Cell,2004,16:861-865.
    [21]G Hutvagner and M. J. Simard. Argonaute proteins:key players in RNA silencing. Nat Rev Mol Cell Biol,2008,9:22-32.
    [1]R. S. Schmid, W. M. Pruitt and P. F. Maness. A MAP kinase-signaling pathway mediates neurite outgrowth on L1 and requires Src-dependent endocytosis.J Neurosci,2000,20:4177-4188.
    [2]L. Liu, S. Haines, R. Shew, et al. Axon growth is enhanced by NCAM lacking the VASE exon when expressed in either the growth substrate or the growing axon.J Neurosci Res,1993,35:327-345.
    [3]C. P. Reboulleau. Extracellular calcium-induced neuroblastoma cell differentiation:involvement of phosphatidylinositol turnover.J Neurochem, 1986,46:920-930.
    [4]G Wu and R. W. Ledeen. Stimulation of neurite outgrowth in neuroblastoma cells by neuraminidase:putative role of GM1 ganglioside in differentiation.J Neurochem,1991,56:95-104.
    [5]M. J. Matunis, E. Coutavas and G Blobel. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.J Cell Biol,1996,135: 1457-1470.
    [6]P. Bayer, A. Arndt, S. Metzger, et al. Structure determination of the small ubiquitin-related modifier SUMO-1.J Mol Biol,1998,280:275-286.
    [7]F. Melchior. SUMO--nonclassical ubiquitin. Annu Rev Cell Dev Biol,2000,16: 591-626.
    [8]D. Guo, M. Li, Y. Zhang, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes.Nat Genet,2004,36: 837-841.
    [9]J. S. Seeler and A. Dejean. Nuclear and unclear functions of SUMO.Nat Rev Mol Cell Biol,2003,4:690-699.
    [10]A. Pichler and F. Melchior. Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport.Traffic,2002,3:381-387.
    [11]G Gill. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity.Curr Opin Genet Dev,2003,13:108-113.
    [12]D. Mukhopadhyay and M. Dasso. Modification in reverse:the SUMO proteases.Trends Biochem Sci,2007,32:286-295.
    [13]J. M. Desterro, J. Thomson and R. T. Hay. Ubch9 conjugates SUMO but not ubiquitin.FEBS Lett,1997,417:297-300.
    [14]W. Yang, H. Sheng, D. S. Warner, et al. Transient global cerebral ischemia induces a massive increase in protein sumoylation.J Cereb Blood Flow Metab, 2008,28:269-279.
    [15]W. Yang, H. Sheng, D. S. Warner, et al. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation.J Cereb Blood Flow Metab,2008,28:892-896.
    [16]D. Schubert, S. Heinemann, W. Carlisle, et al. Clonal cell lines from the rat central nervous system.Nature,1974,249:224-227.
    [17]S. A. Vinores, P. J. Marangos, J. M. Bonnin, et al. Immunoradiometric and immunohistochemical demonstration of neuron-specific enolase in experimental rat gliomas.Cancer Res,1984,44:2595-2599.
    [18]D. Baines, B. S. Mallon and S. Love. Effects of sodium butyrate on the expression of sodium channels by neuronal cell lines derived from the rat CNS. Brain Res Mol Brain Res,1992,16:330-338.
    [19]M. Erecinska and I. A. Silver. Tissue oxygen tension and brain sensitivity to hypoxia.Respir Physiol,2001,128:263-276.
    [1]L. G Svensson, E. S. Crawford, K. R. Hess, et al. Experience with 1509 patients undergoing thoracoabdominal aortic operations.J Vasc Surg,1993,17:357-368; discussion 368-370.
    [2]D. H. Stone, D. C. Brewster, C. J. Kwolek, et al. Stent-graft versus open-surgical repair of the thoracic aorta:mid-term results.J Vasc Surg,2006,44:1188-1197.
    [3]H. J. Safi, C. C. Miller,3rd, A. Azizzadeh, et al. Observations on delayed neurologic deficit after thoracoabdominal aortic aneurysm repair. J Vasc Surg,1997,26:616-622.
    [4]J. S. Coselli, S. A. Lemaire, C. Koksoy, et al. Cerebrospinal fluid drainage reduces paraplegia after thoracoabdominal aortic aneurysm repair:results of a randomized clinical trial.J Vasc Surg,2002,35:631-639.
    [5]J. Tschop, S. Czerner, M. Nuscheler, et al. [Epidural cooling. Neuroprotective treatment of thoracoabdominal aortic aneurysms]. Anaesthesist,2008,57:988-997.
    [6]K. Tiesenhausen, W. Amann, G. Koch, et al.. Cerebrospinal fluid drainage to reverse paraplegia after endovascular thoracic aortic aneurysm repair.J Endovasc Ther,2000,7:132-135.
    [7]H. J. Safi, C. C. Miller,3rd, T. T. Huynh, et al. Distal aortic perfusion and cerebrospinal fluid drainage for thoracoabdominal and descending thoracic aortic repair:ten years of organ protection.Ann Surg,2003,238:372-380; discussion 380-371.
    [8]L. Lang-Lazdunski, K. Matsushita, L. Hirt, et al. Spinal cord ischemia. Development of a model in the mouse.Stroke,2000,31:208-213.
    [9]P. J. Casey, J. H. Black, C. Szabo, et al.. Poly(adenosine diphosphate ribose) polymerase inhibition modulates spinal cord dysfunction after thoracoabdominal aortic ischemia-reperfusion.J Vasc Surg,2005,41:99-107.
    [10]M. Gaviria, H. Haton, F. Sandillon, et al. A mouse model of acute ischemic spinal cord injury.J Neurotrauma,2002,19:205-221.
    [11]W. Yang, H. Sheng, D. S. Warner, et al. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation.J Cereb Blood Flow Metab,2008,28:892-896.
    [12]W. Yang, H. Sheng, D. S. Warner, et al. Transient global cerebral ischemia induces a massive increase in protein sumoylation.J Cereb Blood Flow Metab,2008,28:269-279.
    [13]D. M. Basso, M. S. Beattie and J. C. Bresnahan. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection.Exp Neurol,1996,139:244-256.
    [14]J. C. Wellons,3rd, H. Sheng, D. T. Laskowitz, et al. A comparison of strain-related susceptibility in two murine recovery models of global cerebral ischemia. Brain Res,2000,868:14-21.
    [15]Y. Taira and M. Marsala. Effect of proximal arterial perfusion pressure on function, spinal cord blood flow, and histopathologic changes after increasing intervals of aortic occlusion in the rat.Stroke,1996,27:1850-1858.
    [16]G. K. Kanellopoulos, H. Kato, C. Y. Hsu, et al. Spinal cord ischemic injury. Development of a new model in the rat.Stroke,1997,28:2532-2538.
    [17]M. Marsala and T. L. Yaksh. Transient spinal ischemia in the rat: characterization of behavioral and histopathological consequences as a function of the duration of aortic occlusion.J Cereb Blood Flow Metab,1994,14:526-535.
    [18]N. Yamamoto, H. Takano, H. Kitagawa, et al. Changes of evoked action potentials and histology of the spinal cord, and hind limb dysfunction in spinal cord ischemia of cats.J Spinal Disord,1994,7:285-295.
    [19]M. J. Matunis, E. Coutavas and G Blobel. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAPl between the cytosol and the nuclear pore complex.J Cell Biol,1996,135:1457-1470.
    [20]P. Bayer, A. Arndt, S. Metzger, et al. Structure determination of the small ubiquitin-related modifier SUMO-1.J Mol Biol,1998,280:275-286.
    [21]E. Mossessova and C. D. Lima. Ulpl-SUMO crystal structure and genetic analysis reveal conserved interactions and a regulatory element essential for cell growth in yeast.Mol Cell,2000,5:865-876.
    [22]F. Melchior. SUMO--nonclassical ubiquitin.Annu Rev Cell Dev Biol,2000,16: 591-626.
    [23]D. Guo, M. Li, Y. Zhang, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes.Nat Genet,2004,36:837-841
    [24]J. M. Desterro, J. Thomson and R. T. Hay. Ubch9 conjugates SUMO but not ubiquitin.FEBS Lett,1997,417:297-300.
    [25]E. S. Johnson, I. Schwienhorst, R. J. Dohmen, et al. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer. Embo J,1997,16:5509-5519.
    [26]F. Melchior, M. Schergaut and A. Pichler. SUMO:ligases, isopeptidases and nuclear pores.Trends Biochem Sci,2003,28:612-618.
    [27]Y. J. Lee, S. Miyake, H. Wakita, et al.. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells.J Cereb Blood Flow Metab,2007,27:950-962.
    [1]K. Abe, M. Aoki, J. Kawagoe, et al. Ischemic delayed neuronal death. A mitochondrial hypothesis. Stroke,1995,26:1478-1489.
    [2]S. A. Lipton. Similarity of neuronal cell injury and death in AIDS dementia and focal cerebral ischemia:potential treatment with NMDA open-channel blockers and nitric oxide-related species.Brain Pathol,1996,6:507-517.
    [3]J. Takahashi-Fujigasaki, K. Arai, N. Funata, et al. SUMOylation substrates in neuronal intranuclear inclusion disease.Neuropathol Appl Neurobiol,2006, 32:92-100.
    [4]T. Kristian and B. K. Siesjo. Calcium in ischemic cell death. Stroke, 1998,29:705-718
    [5]W. Paschen and J. Doutheil. Disturbances of the functioning of endoplasmic reticulum:a key mechanism underlying neuronal cell injury?J Cereb Blood Flow Metab,1999,19:1-18.
    [6]G. Fiskum. Mitochondrial participation in ischemic and traumatic neural cell death.J Neurotrauma,2000,17:843-855.
    [7]A. Lewen, P. Matz and P. H. Chan. Free radical pathways in CNS injury.J Neurotrauma,2000,17:871-890.
    [8]W. Paschen. Shutdown of translation:lethal or protective? Unfolded protein response versus apoptosis.J Cereb Blood Flow Metab,2003,23:773-779.
    [9]R. G Giffard, L. Xu, H. Zhao, et al. Chaperones, protein aggregation, and brain protection from hypoxic/ischemic injury.J Exp Biol,2004,207: 3213-3220.
    [10]D. W. Koh, T. M. Dawson and V. L. Dawson. Poly(ADP-ribosyl)ation regulation of life and death in the nervous system.Cell Mol Life Sci,2005, 62:760-768.
    [11]S. Ogawa, Y. Kitao and O. Hori. Ischemia-induced neuronal cell death and stress response.Antioxid Redox Signal,2007,9:573-587.
    [12]S. Althausen, T. Mengesdorf, G. Mies, et al. Changes in the phosphorylation of initiation factor eIF-2alpha, elongation factor eEF-2 and p70 S6 kinase after transient focal cerebral ischaemia in mice.J Neurochem,2001,78:779-787.
    [13]D. J. DeGracia and H. L. Montie. Cerebral ischemia and the unfolded protein response. J Neurochem,2004,91:1-8.
    [14]D. J. DeGracia and B. R. Hu. Irreversible translation arrest in the reperfused brain.J Cereb Blood Flow Metab,2007,27:875-893.
    [15]W. Paschen, C. G Proud and G. Mies. Shut-down of translation, a global neuronal stress response:mechanisms and pathological relevance.Curr Pharm Des,2007,13:1887-1902.
    [16]J. Burda, M. E. Martin, A. Garcia, et al. Phosphorylation of the alpha subunit of initiation factor 2 correlates with the inhibition of translation following transient cerebral ischaemia in the rat.Biochem J,1994,302 (Pt 2):335-338.
    [17]D. J. DeGracia, R. W. Neumar, B. C. White, et al. Global brain ischemia and reperfusion:modifications in eukaryotic initiation factors associated with inhibition of translation initiation.J Neurochem,1996,67:2005-2012.
    [18]J. M. Bronstein, D. B. Farber and C. G. Wasterlain. Regulation of type-Ⅱ calmodulin kinase:functional implications.Brain Res Brain Res Rev,1993, 18:135-147.
    [19]K. Nozaki, M. Nishimura and N. Hashimoto. Mitogen-activated protein kinases and cerebral ischemia.Mol Neurobiol,2001,23:1-19.
    [20]K. Domanska-Janik. Protein serine/threonine kinases (PKA, PKC and CaMKII) involved in ischemic brain pathology.Acta Neurobiol Exp (Wars),1996,56: 579-585.
    [21]F. C. Barone, E. A. Irving, A. M. Ray, et al. Inhibition of p38 mitogen-activated protein kinase provides neuroprotection in cerebral focal ischemia. Med Res Rev,2001,21:129-145.
    [22]E. A. Irving and M. Bamford. Role of mitogen-and stress-activated kinases in ischemic injury.J Cereb Blood Flow Metab,2002,22:631-647.
    [23]C. Bonny, T. Borsello and A. Zine. Targeting the JNK pathway as a therapeutic protective strategy for nervous system diseases.Rev Neurosci,2005,16:57-67.
    [24]A. M. Planas, R. Gorina and A. Chamorro. Signalling pathways mediating inflammatory responses in brain ischaemia.Biochem Soc Trans,2006,34:1267-1270.
    [25]M. A. Perez-Pinzon, K. R. Dave and A. P. Raval. Role of reactive oxygen species and protein kinase C in ischemic tolerance in the brain.Antioxid Redox Signal,2005,7:1150-1157.
    [26]B. R. Hu, M. E. Martone, Y. Z. Jones, et al. Protein aggregation after transient cerebral ischemia.J Neurosci,2000,20:3191-3199.
    [27]P. Ge, Y. Luo, C. L. Liu, et al. Protein aggregation and proteasome dysfunction after brain ischemia.Stroke,2007,38:3230-3236.
    [28]J. S. Seeler and A. Dejean. Nuclear and unclear functions of SUMO.Nat Rev Mol Cell Biol,2003,4:690-699.
    [29]A. Pichler and F. Melchior. Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport.Traffic,2002,3:381-387.
    [30]G. Gill. Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr Opin Genet Dev,2003,13:108-113.
    [31]D. Mukhopadhyay and M. Dasso. Modification in reverse:the SUMO proteases. Trends Biochem Sci,2007,32:286-295.
    [32]R. T. Hay. SUMO:a history of modification.Mol Cell,2005,18:1-12
    [33]M. J. Matunis, E. Coutavas and G Blobel. A novel ubiquitin-like modification modulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex.J Cell Biol,1996,135: 1457-1470.
    [34]P. Bayer, A. Arndt, S. Metzger, et al. Structure determination of the small ubiquitin-related modifier SUMO-1.J Mol Biol,1998,280:275-286.
    [35]F. Melchior. SUMO--nonclassical ubiquitin.Annu Rev Cell Dev Biol,2000,16: 591-626.
    [36]D. Guo, M. Li, Y. Zhang, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes.Nat Genet,2004,36:837-841.
    [37]H. Saitoh and J. Hinchey. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3.J Biol Chem,2000,275:6252-6258.
    [38]G Rosas-Acosta, W. K. Russell, A. Deyrieux, et al. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers.Mol Cell Proteomics,2005,4:56-72.
    [39]A. C. Vertegaal. Small ubiquitin-related modifiers in chains.Biochem Soc Trans,2007,35:1422-1423.
    [40]A. G Fraser, R. S. Kamath, P. Zipperlen, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature,2000, 408:325-330.
    [41]S. A. Saracco, M. J. Miller, J. Kurepa, et al. Genetic analysis of SUMOylation in Arabidopsis:conjugation of SUMO1 and SUMO2 to nuclear proteins is essential.Plant Physiol,2007,145:119-134.
    [42]K. Nacerddine, F. Lehembre, M. Bhaumik, et al. The SUMO pathway is essential for nuclear integrity and chromosome segregation in mice.Dev Cell,2005,9:769-779.
    [43]F. S. Alkuraya, I. Saadi, J. J. Lund, et al. SUMO1 haploinsufficiency leads to cleft lip and palate.Science,2006,313:1751.
    [44]J. M. Desterro, J. Thomson and R. T. Hay. Ubch9 conjugates SUMO but not ubiquitin.FEBS Lett,l997,417:297-300.
    [45]E. S. Johnson, I. Schwienhorst, R. J. Dohmen, et al. The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aoslp/Uba2p heterodimer.Embo J,1997,16:5509-5519.
    [46]E. S. Johnson and G. Blobel. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p.J Biol Chem,1997,272:26799-26802.
    [47]F. Melchior, M. Schergaut and A. Pichler. SUMO:ligases, isopeptidases and nuclear pores.Trends Biochem Sci,2003,28:612-618.
    [48]R. Geiss-Friedlander and F. Melchior. Concepts in sumoylation:a decade on.Nat Rev Mol Cell Biol,2007,8:947-956.
    [49]E. S. Johnson. Protein modification by SUMO.Annu Rev Biochem, 2004,73:355-382.
    [50]Y. Li, H. Wang, S. Wang, et al. Positive and negative regulation of APP amyloidogenesis by sumoylation.Proc Natl Acad Sci U S A,2003,100:259-264.
    [51]V. Dorval, M. J. Mazzella, P. M. Mathews, et al. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins.Biochem J,2007,404:309-316.
    [52]S. J. Moschos and Y. Y. Mo. Role of SUMO/Ubc9 in DNA damage repair and tumorigenesis.J Mol Histol,2006,37:309-319.
    [53]V. Hietakangas, J. K. Ahlskog, A. M. Jakobsson, et al. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1.Mol Cell Biol,2003,23:2953-2968.
    [54]A. Carbia-Nagashima, J. Gerez, C. Perez-Castro, et al. RSUME, a small RWD-containing protein, enhances SUMO conjugation and stabilizes HIF-lalpha during hypoxia.Cell,2007,131:309-323.
    [55]T. T. Huang, S. M. Wuerzberger-Davis, Z. H. Wu, et al. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress.Cell,2003,115:565-576.
    [56]T.Higashi, A; Nakai, Y. Uemura, et al. Activation of heat shock factor 1 in rat brain during cerebral ischemia or after heat shock.Brain Res Mol Brain Res,1995,34:262-270.
    [57]J. C. Chavez and J. C. LaManna,Activation of hypoxia-inducible factor-1 in the rat cerebral cortex after transient global ischemia:potential role of insulin-like growth factor-1.J Neurosci,2002,22:8922-8931.
    [58]C. A. Kassed, T. L. Butler, G W. Patton, et al. Injury-induced NF-kappaB activation in the hippocampus:implications for neuronal survival.Faseb J,2004,18:723-724.
    [59]S. Martin, K. A. Wilkinson, A. Nishimune, et al. Emerging extranuclear roles of protein SUMOylation in neuronal function and dysfunction.Nat Rev Neurosci,2007,8:948-959.
    [60]S. Martin, A. Nishimune, J. R. Mellor, et al. SUMOylation regulates kainate-receptor-mediated synaptic transmission.Nature,2007,447:321-325.
    [61]E. A. van Niekerk, D. E. Willis, J. H. Chang, et al. Sumoylation in axons triggers retrograde transport of the RNA-binding protein La.Proc Natl Acad Sci U S A,2007,104:12913-12918.
    [62]G. Kadare, M. Toutant, E. Formstecher, et al. PIAS1-mediated sumoylation of focal adhesion kinase activates its autophosphorylation.J Biol Chem,2003,278: 47434-47440.
    [63]S. K. Mitra, D. A. Hanson and D. D. Schlaepfer. Focal adhesion kinase:in command and control of cell motility.Nat Rev Mol Cell Biol,2005,6:56-68.
    [64]N. Hayashi, H. Shirakura, T. Uehara, et al. Relationship between SUMO-1 modification of caspase-7 and its nuclear localization in human neuronal cells.Neurosci Lett,2006,397:5-9.
    [65]M. Nowak and M. Hammerschmidt,Ubc9 regulates mitosis and cell survival during zebrafish development.Mol Biol Cell,2006,17:5324-5336.
    [66]F. Giorgino, O. de Robertis, L. Laviola, et al. The sentrin-conjugating enzyme mUbc9 interacts with GLUT4 and GLUT1 glucose transporters and regulates transporter levels in skeletal muscle cells.Proc Natl Acad-Sci U S A,2000,97:1125-1130.
    [67]X. Long and L. C. Griffith. Identification and characterization of a SUMO-1 conjugation system that modifies neuronal calcium/calmodulin-dependent protein kinase Ⅱ in Drosophila melanogaster.J Biol Chem,2000,275:40765-40776.
    [68]Y. J. Lee, S. Miyake, H. Wakita, et al. Protein SUMOylation is massively increased in hibernation torpor and is critical for the cytoprotection provided by ischemic preconditioning and hypothermia in SHSY5Y cells.J Cereb Blood Flow Metab,2007,27:950-962.
    [69]A. Pichler, A. Gast, J. S. Seeler, et al. The nucleoporin RanBP2 has SUMO1 E3 ligase activity.Cell,2002,108:109-120.
    [70]M. H. Tatham, S. Kim, E. Jaffray, et al. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat Struct Mol Biol,2005,12:67-74.
    [71]O. Kirsh, J. S. Seeler, A. Pichler, et al. The SUMO E3 ligase RanBP2 promotes modification of the HDAC4 deacetylase.Embo J,2002,21:2682-2691.
    [72]M. H. Kagey, T. A. Melhuish and D. Wotton. The polycomb protein Pc2 is a SUMO E3.Cell,2003,113:127-137.
    [73]M. H. Kagey, T. A. Melhuish, S. E. Powers, et al. Multiple activities contribute to Pc2 E3 function.Embo J,2005,24:108-119.
    [74]D. Bailey and P. O'Hare. Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1.J Biol Chem,2004,279:692-703.
    [75]L. Gong and E. T. Yeh. Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3 J Biol Chem,2006, 281:15869-15877.
    [76]S. J. Li and M. Hochstrasser. The Ulpl SUMO isopeptidase:distinct domains required for viability, nuclear envelope localization, and substrate specificity.J Cell Biol,2003,160:1069-1081.
    [77]J. Hang and M. Dasso. Association of the human SUMO-1 protease SENP2 with the nuclear pore.J Biol Chem,2002,277.19961-19966.
    [78]T. Nishida, H. Tanaka arid H. Yasuda. A novel mammalian Smt3-specific isopeptidase 1 (SMT3IP1) localized in the nucleolus at interphase.Eur J Biochem,2000,267:6423-6427.
    [79]L. Gong, S. Millas, G. G. Maul, et al. Differential regulation of sentrinized proteins by a novel sentrin-specific protease.J Biol Chem,2000,275: 3355-3359.
    [80]K. I. Kim, S. H. Baek, Y. J. Jeon, et al. A new SUMO-1-specific protease, SUSP1, that is highly expressed in reproductive organs.J Biol Chem,2000, 275:14102-14106.
    [81]K. U. Frerichs, C. Kennedy, L. Sokoloff, et al. Local cerebral blood flow during hibernation, a model of natural tolerance to "cerebral ischemia". J Cereb Blood Flow Metab,1994,14:193-205.
    [82]K. U. Frerichs and J. M. Hallenbeck. Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia:an in vitro study in hippocampal slices.J Cereb Blood Flow Metab,1998,18:168-175.
    [83]K. B. Storey. Mammalian hibernation. Transcriptional and translational controls.Adv Exp Med Biol,2003,543:21-38.
    [84]H. Cimarosti, C. Lindberg, S. F. Bomholt, et al. Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology,2008, 54:280-289.
    [85]W. Yang, H. Sheng, D. S. Warner, et al. Transient global cerebral ischemia induces a massive increase in protein sumoylation.J Cereb Blood Flow Metab, 2008,28:269-279.
    [86]W. Yang, H. Sheng, D. S. Warner, et al. Transient focal cerebral ischemia induces a dramatic activation of small ubiquitin-like modifier conjugation.J Cereb Blood Flow Metab,2008,28:892-896.
    [87]S. Malhotra, S. I. Savitz, L. Ocava, et al. Ischemic preconditioning is mediated by erythropoietin through PI-3 kinase signaling in an animal model of transient ischemic attack.J Neurosci Res,2006,83:19-27.
    [88]K. B. Mackay, T. H. Stiefel and A. C. Foster. Ischemic preconditioning reduces infarct volume after subdural hematoma in the rat.Brain Res,2002,930:200-205.
    [89]M. Gustavsson, M. F. Anderson, C. Mallard, et al. Hypoxic preconditioning confers long-term reduction of brain injury and improvement of neurological ability in immature rats.Pediatr Res,2005,57:305-309.
    [90]M. Gustavsson, C. Mallard, S. J. Vannucci, et al. Vascular response to hypoxic preconditioning in the immature brain.J Cereb Blood Flow Metab,2007,27: 928-938.
    [91]R. Shao, F. P. Zhang, F. Tian, et al. Increase of SUMO-1 expression in response to hypoxia:direct interaction with HIF-1 alpha in adult mouse brain and heart in vivo.FEBS Lett,2004,569:293-300.
    [92]H. V. Nguyen, J. L. Chen, J. Zhong, et al. SUMOylation attenuates sensitivity toward hypoxia-or desferroxamine-induced injury by modulating adaptive responses in salivary epithelial cells.Am J Pathol,2006,168:1452-1463.
    [93]L. L. Manza, S. G Codreanu, S. L. Stamer, et al. Global shifts in protein sumoylation in response to electrophile and oxidative stress.Chem Res Toxicol, 2004,17:1706-1715.
    [94]Y. Hong, R. Rogers, M. J. Matunis, et al.,Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification.J Biol Chem, 2001,276:40263-40267.
    [95]R. S. Hilgarth, Y. Hong, O. K. Park-Sarge, et al. Insights into the regulation of heat shock transcription factor 1 SUMO-1 modification.Biochem Biophys Res Commun,2003,303:196-200.
    [96]G. Bossis and F. Melchior,Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes.Mol Cell,2006,21:349-357.
    [97]Z. Xu, L. S. Lam, L. H. Lam, et al. Molecular basis of the redox regulation of SUMO proteases:a protective mechanism of intermolecular disulfide linkage against irreversible sulfhydryl oxidation.Faseb J,2008,22:127-137.
    [98]L. Bernstam and J.Nriagu,Molecular aspects of arsenic stress.J Toxicol Environ Health B Crit Rev,2000,3:293-322.
    [99]B. Guo, S. H. Yang, J. Witty, et al. Signalling pathways and the regulation of SUMO modification.Biochem Soc Trans,2007,35:1414-1418.
    [100]T. Ohshima and K. Shimotohno. Transforming growth factor-beta-mediated signaling via the p38 MAP kinase pathway activates Smad-dependent transcription through SUMO-1 modification of Smad4.J Biol Chem,2003,278: 50833-50842.
    [101]P. H. Chan. Reactive oxygen radicals in signaling and damage in the ischemic brain.J Cereb Blood Flow Metab,2001,21:2-14.
    [102]M. Orth and A. H. Schapira. Mitochondria and degenerative disorders.Am J Med Genet,2001,106:27-36.
    [103]W. Paschen and A. Frandsen. Endoplasmic reticulum dysfunction--a common denominator for cell injury in acute and degenerative diseases of the brain?J Neurochem,2001,79:719-725.
    [104]A. N. Hegde and S. C. Upadhya. The ubiquitin-proteasome pathway in health and disease of the nervous system.Trends Neurosci,2007,30:587-595.
    [105]M. P. Mattson. Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders.Antioxid Redox Signal,2006,8:1997-2006.
    [106]V. Dorval and P. E. Fraser. SUMO on the road to neurodegeneration.Biochim Biophys Acta,2007,1773:694-706.
    [107]V. Dorval and P. E. Fraser,Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein.J Biol Chem,2006,281: 9919-9924.
    [108]S. L. Gibb, W. Boston-Howes, Z. S. Lavina, et al. A caspase-3-cleaved fragment of the glial glutamate transporter EAAT2 is sumoylated and targeted to promyelocytic leukemia nuclear bodies in mutant SOD1-linked amyotrophic lateral sclerosis.J Biol Chem,2007,282:32480-32490.
    [109]N. Zhong, C. Y. Kim, P. Rizzu, et al. DJ-1 transcriptionally up-regulates the human tyrosine hydroxylase by inhibiting the sumoylation of pyrimidine tract-binding protein-associated splicing factor.J Biol Chem,2006,281: 20940-20948.
    [110]J. W. Um and K. C. Chung. Functional modulation of parkin through physical interaction with SUMO-1.J Neurosci Res,2006,84:1543-1554.
    [111]E. Fei, N. Jia, M. Yan, et al. SUMO-1 modification increases human SOD1 stability and aggregation.Biochem Biophys Res Commun,2006,347:406-412.
    [112]J. S. Steffan, N. Agrawal, J. Pallos, et al. SUMO modification of Huntingtin and Huntington's disease pathology.Science,2004,304:100-104.
    [113]D. L. Pountney, Y. Huang, R. J. Burns, et al. SUMO-1 marks the nuclear inclusions in familial neuronal intranuclear inclusion disease.Exp Neurol, 2003,84:436-446.
    [114]H. Y. Chan, J. M. Warrick, I. Andriola, et al. Genetic modulation of polyglutamine toxicity by protein conjugation pathways in Drosophila.Hum Mol Genet,2002,11:2895-2904.
    [115]S. Muller, A. Ledl and D. Schmidt. SUMO:a regulator of gene expression and genome integrity.Oncogene,2004,23:1998-2008.
    [116]E. Appella and C. W. Anderson. Post-translational modifications and activation of p53 by genotoxic stresses.Eur J Biochem,2001,268:2764-2772.
    [117]S. Muller, M. Berger, F. Lehembre, et al. c-Jun and p53 activity is modulated by SUMO-1 modification.J Biol Chem,2000,275:13321-13329.
    [118]S. S. Kwek, J. Derry, A. L. Tyner, et al. Functional analysis and intracellular localization of p53 modified by SUMO-1.Oncogene,2001,20:2587-2599.
    [119]L. Chen and J. Chen. MDM2-ARF complex regulates p53 sumoylation. Oncogene,2003,22:5348-5357.
    [120]D. Girdwood, D. Bumpass, O. A. Vaughan, et al. P300 transcriptional repression is mediated by SUMO modification.Mol Cell,2003,11:1043-1054.
    [121]V. Gottifredi and C. Prives. P53 and PML:new partners in tumor suppression. Trends Cell Biol,2001,11:184-187.
    [122]J. S. Lee and S. S. Thorgeirsson. Genome-scale profiling of gene expression in hepatocellular carcinoma:classification, survival prediction, and identification of therapeutic targets.Gastroenterology,2004,127:S51-55.
    [123]Y. Y. Mo, Y. Yu, E. Theodosiou, et al. A role for Ubc9 in tumorigenesis. Oncogene,2005,24:2677-2683.
    [124]L. Wang and S. Banerjee. Differential PIAS3 expression in human malignancy. Oncol Rep,2004,11:1319-1324.
    [125]J. Cheng, T. Bawa, P. Lee, et al. Role of desumoylation in the development of prostate cancer.Neoplasia,2006,8:667-676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700