用户名: 密码: 验证码:
细胞周期末期促进复合物及其调节亚基Cdh1在缺血性脑损伤中的作用及机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     近年来,伴随着临床急救水平的进一步提高,很多心肺复苏、心肌梗塞、窒息、休克等危重病人抢救成功率逐渐提高,而这些疾病所造成的全脑缺血损伤以及缺血再灌注后损伤已成为研究热点。其中,脑缺血及再灌注后如何减少神经元死亡一直是临床研究的难点。大量学者经过一系列脑缺血动物模型研究,分别从形态学、生化等多角度证实凋亡存在于脑缺血再灌注损伤中。因此,研究如何有效抑制凋亡是减轻脑缺血再灌注损伤的一个重要环节。
     研究认为,Cdh1为细胞周期末期促进复合物(anaphase promoting complex, APC)的调节亚基之一,发现在增殖细胞中,其起到调控细胞周期的作用,是通过泛素化降解特定的底物蛋白来实现的。随着最近一些年来的研究发现,Cdh1在成熟神经元中有大量表达,并且具有调节突触传递、神经元存活以及神经元轴突生长等的作用。然而,目前尚不清楚关于APC-Cdh1在神经损伤等中枢神经系统其他方面的作用。Almeida等研究发现APC-Cdhl具有抑制神经元凋亡的作用。推测APC-Cdhl的活性降低与Cyclin B的异常积聚可能是阿尔茨海默病及其他神经退行性疾病中神经元凋亡的机制之一。当前,在我国国内关于细胞周期末期促进复合物(anaphase promoting complex, APC)之调节亚基Cdhl在脑缺血再灌注损伤中的表达变化,以及对APC-Cdhl的表达进行干预在脑缺血再灌注损伤中的作用以及机制的研究还很少。
     本研究将首先通过建立大鼠全脑缺血再灌注损伤模型,探讨脑缺血再灌注损伤后APC-Cdh1的表达变化与神经元凋亡及神经功能改变的关系。然后通过下调APC-Cdh1活性,实现对脑缺血后神经元凋亡的影响,从在体实验的角度探讨APC-Cdhl在缺血性脑损伤中的作用及机制。继而为选择APC-Cdhl作为脑保护新策略提供实验依据。
     研究方法与结果
     1.大鼠全脑缺血再灌注损伤后神经元凋亡及认知功能的研究
     方法:取健康成年雄性SD大鼠80只,体重260-300 g,随机分成假手术组(SH组)、缺血再灌注组(R组),每组各40只。根据再灌注的不同时间点分为1d、3d、7d三个亚组。假手术组只电凝椎动脉而不结扎两侧颈总动脉,缺血再灌注组采用改良4-VO法建立大鼠全脑缺血再灌注损伤模型,缺血时间为7min。根据分组于不同时间点取大鼠脑部制作冰冻切片,尼氏染色观察海马神经元的形态和海马神经元的存活情况,TUNEL法检测海马CA1区凋亡细胞,分别计算神经元密度和凋亡指数。两组大鼠建立模型后第七天后开始,进行Morris水迷宫测试大鼠的学习记忆功能。
     结果:尼氏染色显示,假手术组海马神经元蓝染,细胞排列整齐,海马形态完整,CA1区神经细胞4-5层,排列整齐、细胞核大而圆,核仁清楚,亚甲胺蓝染色显示尼氏体丰富。缺血再灌注组第1d、3d、7d亚组海马CA1区可见神经细胞脱失明显,排列紊乱,胞体形状不规则。尼氏体减少甚至消失、核变小、深染固缩。与假手术组比较,缺血再灌注组海马CA1区神经元密度显著下降(p<0.05); TUNEL法检测显示,假手术组海马区偶见凋亡神经元。缺血再灌注组第1d、3d、7d亚组海马CA1区神经元大量凋亡。与假手术组相比,缺血再灌注组第1,3,7天亚组凋亡指数明显增加,差异有显著统计学意义(P<0.01)。Morris水迷宫检测:Morris水迷宫检测发现,与假手术组相比,缺血再灌注组大鼠训练阶段第2—4天的寻台时间明显延长,差异有统计学意义(P<0.05),而第五天的记忆测试寻台潜伏期也明显长于假手术组,差异有显著统计学意义(P<0.01)。
     2.大鼠全脑缺血再灌注损伤后APC-Cdhl的表达变化
     方法:健康雄性SD大鼠60只,体重260~300 g,随机分成假手术组(SH组)、模型组(R组)。根据再灌注的不同时间点分为1d、3d、7d三个亚组。模型组采用改良4-VO法建立SD大鼠全脑缺血再灌注损伤模型,假手术组只电凝椎动脉而不结扎两侧颈总动脉,缺血时间为7min。根据分组在损伤后不同时间点,取大鼠脑部制作冰冻切片,免疫组化染色检测Cdh1的表达部位并且采用实时荧光定量PCR检测大鼠海马组织APC-Cdh1mRNA的表达以及采用Western Blot检测大鼠海马组织APC-Cdhl蛋白的表达。
     结果:免疫组化检测显示APC-Cdhl在海马区及皮层区中均有大量表达。荧光定量PCR显示,对照组中,术后不同时点Cdhl mRNA表达比较,差异无统计学意义(P>0.05);与对照组比较,模型组第1d亚组Cdh1 mRNA表达减少,差异有统计学意义(P<0.05),第3d亚组及第7d亚组Cdhl mRNA表达升高,差异有统计学意义(P<0.05);模型组中,与第1d亚组比较,第3d亚组Cdh1 mRNA表达升高,差异有统计学意义(P<0.05),与第3d亚组比较,第7d亚组Cdh1 mRNA表达降低,差异有统计学意义(P<0.05)。Western Blot显示,与对照组相比,缺血再灌注组术后第1d组APC-Cdhl蛋白表达减少,术后第3d显著升高,术后7d又降低,差异有统计学意义(p<0.05)。
     3.慢病毒介导的Cdhl-siRNA在大鼠脑缺血再灌注损伤后的表达及功能
     方法:150只雄性SD大鼠,体重260~300 g,随机分成生理盐水组(A组,n=50)、空慢病毒组(B组,n=50)和重组慢病毒(C组,n=50),三组分别注射生理盐水、空慢病毒和重组慢病毒。药物注射3天后,各组大鼠均采用改良4-VO法建立SD大鼠全脑缺血模型,缺血时间为7min。建立模型七天后取大鼠脑部制作冰冻切片,以及取大鼠海马组织,分别用荧光定量PCR检测海马组织Cdh1 mRNA表达和Western Blot检测Cyclin B的变化。TUNEL法检测海马CA1区凋亡细胞,计算各组大鼠的凋亡指数。建立模型七天后,三组大鼠进行Morris水迷宫测试大鼠的学习记忆功能的变化。
     结果:荧光定量PCR显示,与A组和B组比较,C组的Cdh1 mRNA表达明降低,差异有统计学意义(P<0.05)。Western Blot显示,与A组和B组比较,C组CyclinB的表达升高,差异有统计学意义(P<0.05)。TUNEL法检测显示:与A组和B组比较,C组凋亡指数显著增加(P<0.05)。Morris水迷宫检测显示,与A组和B组比较,C组大鼠学习阶段即第一天至第四天大鼠寻台时间明显延长,而其记忆测试潜伏期也明显长于A组或B组,差异有统计学意义(P<0.05)。
     研究结论
     1.成功地构建了全脑缺血再灌注损伤模型。采用改良4-VO法建立SD大鼠全脑缺血再灌注损伤模型后海马神经元凋亡显著增加,认知功能明显下降。
     2. APC-Cdhl在大鼠正常脑组织以及全脑缺血再灌注损伤后有大量表达。而且,大鼠全脑缺血再灌注损伤后,在各不同的时点,大鼠脑组织中APC-Cdhl的表达明显增高。推测APC-Cdhl可能与中枢神经系统的损伤有着密切的关系,参与全脑缺血再灌注损伤的病理生理过程。
     3.大鼠海马组织注射慢病毒介导的Cdhl RNA干扰后,下调了Cdhl的表达,大鼠全脑缺血再灌注损伤后大鼠海马组织Cyclin B的表达明显增高。APC-Cdhl可能是通过Cyclin B堆积介导缺血性神经元凋亡的。
     研究总结
     本课题首先通过建立改良4-VO全脑缺血再灌注损伤模型,揭示了全脑缺血再灌注后对大鼠海马神经元造成损伤,海马神经元出现迟发性死亡,大鼠的学习记忆能力下降,认知功能明显降低。然后在建立大鼠全脑缺血再灌注后,发现的大鼠海马区APC-Cdh1的表达升高。提示APC-Cdh1可能参与全脑缺血再灌注损伤等病理生理过程。然后通过脑立体定向注射Cdhl RNA干扰慢病毒载体至大鼠的海马后,在相应的时间点建立改良4-VO全脑缺血再灌注损伤模型。观察慢病毒介导的Cdh1 RNA干扰对全脑缺血再灌注损伤的影响,发现Cdhl的表达下调,Cyclin B表达升高,大鼠的学习记忆能力下降,认知功能明显降低。本实验初步研究了APC-Cdh1在全脑缺血再灌注后在脑组织中的表达特点,以及全脑缺血再灌注后的作用。进一步探讨利用对APC-Cdh1的干预,为脑缺血再灌注损伤治疗及脑保护提供新的选择和实验依据。
Background and objective
     Recent years, accompanied with the improvement of the clinical emergency ability, the successful rate of rescuing patients undergoing cardiopulmonary resuscitation, myocardial infarction, asphyxia, shock and other critical conditions is increased gradually. The cerebral ischemia and ischemia-reperfusion injury caused by these diseases has become a hotspot. Among them, the main difficulty in clinical research lies in how to reduce neuronal death after cerebral ischemia and reperfusion. Through a series of researches on cerebral ischemia animal model, a large number of researchers confirmed that the apoptosis exist in cerebral ischemia-reperfusion injury in a morphology or a biochemistry way. How to inhibit apoptosis will be the key to reduce cerebral ischemia-reperfusion injury.
     The major ubiquitin ligase required for mitosis is the anaphase-promoting complex/cyclosome (APC/C). This unusually complex E3 ubiquitin ligase targets cell-cycle-related proteins such as cyclins and securin for degradation by the proteasome in mitosis and meiosis.The APC/C is regulated by phosphorylation, as well as by various activators and inhibitors that alter its substrate specificity at different phases of the cell cycle. Such tight control ensures appropriately timed degradation of key cell-cycle regulators.Cdhl-APC plays important roles in function and neuronal survival.,patterning synaptic development and the regulation of axonal growth.However there was few report about the feature of APC-Cdhl expression in central nervous system after cerebral ischemia reperfusion injury and the role of APC-Cdhl intervention in isc hemic cerebral injury.
     In our study, we first established a model of global cerebral ischemia and reperfusion injury, then and we investigated the relationship between the expression of APC-Cdhl, the neuronal apoptosis and the neurological functions changes. Later we used lentivius mediated RNAi vector to reduce the expression of APC-Cdhl and to investigate the effect of APC-Cdhl in ischemic brain injury and the possible mechanism. This study provided an experimental evidence for selecting the APC-Cdhl as a new strategy for brain protection.
     Methods and Results
     1. The changes of cognitive function and neural cell apoptosis in rats with cerebral ischemia reperfusion injury
     Methods 80 male Sprague-Dawley rats were randomly divided into Sham-operated group (SH) and ischemia reperfusion group (IR). The rats of ischemia reperfusion group were induced by modified four-vessel occlusion (4-VO). In sham group, the vertebral arteries of the rats were permanently electrocauterized and the bilateral common carotid arteries were not electrocauterized. Both common arteries were occluded for seven minutes in IR group. According to the time points of ischemia reperfusion, the two groups were divided into 1d,3d,7d three subgroups respectively. At different time points, fresh frozen sections were prepared from brain tissue of the two group rats. Nissl dyeing was used to observe surviving hippocampus neurons. And neuronal apoptosis was detected by TUNEL staining. Neurons density and apoptotic index were calculated.Water maze was employed and analyzed by computer image analysis system. Seven days after the operation, learning and memory of the rats in two groups were tested by Morris water maze.
     Results 1). Nissl dyeing:In SH group, the hippocampal neurons were stained blue.The cell arranges were in neat rows. The forms were a complete hippocampus. CA1 area of nerve cells arranged in 4 to 5 layers and large round nucleus, clear nucleolus.Abundant Nissl bodies were showed by azomethine blue staining. In ischemia reperfusion group, the hippocampal neurons were apparent disorganized and irregular. The number of Nissl bodies were reduced or even disappeared. Nuclears became smaller and showed stained chromatin condensation.Compared with Sham group, the neuron density in ischemia reperfusion group was significantly lower (p<0.05).
     2). The results of TUNEL method showed that in Sham group, apoptosis of hippocampus neurons were occasionally in the CA1 area. But in ischemia reperfusion group, there were a large number of apoptosis hippocampus neurons in the CA1 area. Compared with Sham group, the apoptotic index of hippocampal neurons in ischemia reperfusion group was significantly higher (p<0.05).
     3). In Morris water maze tests, the incubation period of seeking the platform and the learning and memorizing ability in ischemia reperfusion group were significantly longer than sham-operated group(p<0.05).
     2. The feature of APC-Cdhl expression in central nervous system after cerebral ischemia reperfusion injury.
     Methods 60 male Sprague-Dawley rats were randomly divided into Sham-operated group (SH) and ischemia reperfusion group (IR). The rats in ischemia reperfusion group were induced by modified four-vessel occlusion (4VO). The methods were same to the first study. At different time points, fresh frozen sections were prepared from brain tissue of the two group rats.The expression of Cdhl was examined in the hippocampus by immunohistochemistry.At different times after the operations, the expression of APC-Cdhl of hippocampus was observed by quantitive real time PCR and Western Blot.
     Results The immuno-staining showed that Cdhl was highly expressed in cerebral cortex and hippocampus.Compared with SH group, the expression of Cdhl mRNA was significantly decreased at 1 day after injury and increased obviously at 3 days, but decreased again at 7 days. Compared with control group, the expression of Cdhl protein was significantly decreased at 1 day after injury and increased obviously at 3 days, but decreased again at 7 days(p<0.05).
     3. Expression and function of lentivirus-mediated Cdhl-SiRNA in cerebral ischemia-reperfusion injury in rats
     Methods 150 male Sprague-Dawlcy rats were divided into group A(n=50), group B(n=50)and group C(n=50). The rats of 3 groups received injection with normal saline, lentivirus vector and recombinant lentivirus respectively. At 3 days after injection, all rats were implemented with global brain ischemia model by modified four-vessel occlusion (4-VO). The methods were same to the first study.Seven days after the surgery,the expression of Cdhl and Cyclin B were examined by quantitive real time PCR and Western Blot respectively. Apoptosis was examined using TUNEL staining method. The behavior was evaluated by Morris water maze.
     Results The expression of Cdhl mRNA in group C was significantly lower than those in group A and B (p<0.05), but the expression of Cyclin B in group C was higher (p<0.05). In addition,the results of TUNEL method showed that compared with group A and B, the apoptotic index of hippocampal neurons in group C was significantly increased(p<0.05). In Morris water maze tests, compared with group A and B the incubation period of seeking the platform and the learning and memorizing ability in group C was significantly longer(p<0.05).
     Conclusions
     1. The number of apoptotic neurons in hippocampus was increased and the cognitive ability was decreased after global cerebral ischemia reperfusion injury in rats
     2. This result indicated that APC-Cdhl may participate in the pathophysiology of global cerebral ischemia-reperfusion injury and play an important role in the injury of central nervous system.
     3. APC-Cdhl may be mediated by Cyclin B accumulation in ischemic neuronal apoptosis.
     Summary
     This study shows that global cerebral ischemia-reperfusion injury model was successfully established by modified 4-VO. The hippocampus in rats suffered from delayed neuronal death and the apoptotic cells were increased. The learning and memory of rats were declined. This model could cause the hippocampus injury.Then we found the expression of APC-Cdhl in the rat hippocampus was increased after global cerebral ischemia-reperfusion injury. This observation suggests that APC-Cdhl may be involved in pathophysiology change of cerebral ischemia-reperfusion injury.Last Cdhl RNA interference lentiviral vector was injected to the rat hippocampus by Stereotactic injection.After three days,modified 4-VO cerebral ischemia-reperfusion injury model was established. Seven days later,we observed that the expression of Cdhl decreased and the expression of Cyclin B increased.The learning and memory of rats decreased.The results suggested that the cerebral ischemia-reperfusion injury could be aggratated by lentivirus-mediated Cdhl RNA interference.Our study exhibited the differential expression of Cdhl in global cerebral ischemia-reperfusion injury model and furtherly explored the effect of the APC-Cdhl intervention for the treatment of cerebral ischemia-reperfusion injury.lt could provided a new option and an experimental evidence for cerebral protection.
引文
1. 陈清棠.临床神经病学.北京科学技术出版社,第1版,2000:178.
    2. 鄂丽,刘丽华.低温下缺血再灌注损伤的研究进展.华北煤炭医学院学报,2009,11,(1):50-51.
    3. Swanson RA, Ying W, Kauppinen TM.Astrocyte influences on ischemic neuronal death. Curr Mol Med,2004,4(2):193-205.
    4. Taku Sugawara, Miki Fujimura,Nobuo Noshita, et al.Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx,2004,1(1):17-25.
    5. Di Giovanni S,Movsesyan V,Ahmed F,et al.Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A,2005,102(23):8333-8338.
    6. Stegmuller J, Huynh MA, Yuan Z,et al.TGFbeta-Smad2 signaling regulates the Cdhl-APC/SnoN pathway of axonal morphogenesis.J Neurosci,2008,28(8):1961-9.
    7. Wojcik C, Di Napoli M.Ubiquitin-proteasome system and proteasome inhibition:new strategies in stroke therapy. Stroke,2004,35(6):1506-1518.
    8. Cernak I, Stoica B, Byrnes KR,et al.Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle,2005,4(9):1286-1293.
    9. Puram SV, Kim AH, Bonni A.An old dog learns new tricks:a novel function for Cdc20-APC in dendrite morphogenesis in neurons. Cell Cycle,2010,9(3):482-5.
    10. Zhu Z,Zhang Q, Yu Z,et al.Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia,2007,55(5):546-558.
    11. Binne UK, Classon MK,Dick FA,et al.Retinoblastoma protein and anaphase-promoting complex physically interact and functionally cooperate during cell-cycle exit. Nat Cell Biol,2007,9(2):225-232.
    12. Acquaviva C, Pines J.The anaphase-promoting complex/cyclosome:APC/C. J Cell Sci,2006,119(12):2401-2404.
    13. Huynh MA, Stegmiiller J, Litterman N, et al.Regulation of Cdhl-APC function in axon growth by Cdhl phosphorylation. J Neurosci,2009,29(13):4322-7.
    14. Fang G, Yu H, Kirschner MW.The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes Dev,1998,12(12):1871-83.
    15. Sudo T, Ota Y, Kotani S, et al.Activation of Cdhl-dependent APC is required for G1 cell cycle arrest and DNA damage-induced G2 checkpoint in vertebrate cells. EMBO J, 2001,20(22):6499-508.
    16. Wei W, Ayad NG, Wan Y, et al.Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex.Nature,2004,428(6979):194-198.
    17. Liu W, Wu G, Li W, et al.Cdhl-anaphase-promoting complex targets Skp2 for destruction in transforming growth factor beta-induced growth inhibition. Mol Cell Biol,2007,27(8):2967-2979
    18. Gieffers C, Peters BH, Kramer ER, et al.Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc Natl Acad Sci USA, 1999,96(20):11317-11322.
    19. Kim AH,Bonni A.Thinking within the D box:initial identification of Cdhl-APC substrates in the nervous system. Mol Cell Neurosci,2007,34(3):281-287.
    20. van Leuken R, Clijsters L,Wolthuis R.To cell cycle, swing the APC/C. Biochim Biophys Acta,2008,1786(1):49-59.
    21. Lasorella A,Stegmuller J,Guardavaccaro D,et al.Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature,2006, 442(7101):471-474.
    22. van Roessel P, Elliott DA, Robinson IM, et al.Independent regulation of synaptic size and activity by the anaphase-promoting complex.Cell,2004,119(5):707-718.
    23. Almeida A, Bolanos JP, Moreno S.Cdhl/Hctl-APC is essential for the survival of postmitotic neurons. J Neurosci,2005,25(36):8115-8121.
    24. Almeida A, Bolanos JP, Moncada S.E3 ubiquitin ligase APC/C-Cdhl accounts for the Warburg effect by linking glycolysis to cell proliferation.Proc Natl Acad Sci U S A,2010,107(2):738-41.
    25. S(?)rensen C S,Lukas C,Kramer ER,et al.A conserved cyclin-binding domain determines functional interplay between anaphase-promoting complex-Cdhl and cyclin A-Cdk2 during cell cycle progression.Mol Cell Biol,2001,21(11):3692-3703.
    1. Weisfeldt ML, Sugarman J, Bandeen-Roche K.Toward Definitive Trials and Improved Outcomes of Cardiac Arrest. Circulation,2010,121(14):1586-8.
    2. Bueters T, von Euler M, Bendel O,et al.Degeneration of newly formed CA1 neurons following global ischemia in the rat. Exp Neurol,2008,209(1):114-24.
    3. Pulsinelli WA,Brieley JB.A new model of bilateral hemispheric ischemia in the unanesthetized rat.Stroke,1979,10:267-272.
    4. Yamaguchi M, Calvert JVV, Kusaka G.One-stage anterior approach for four-vessel occlusion in rat. Stroke,2005,36(10):2212-4.
    5. Hartman RE, Lee JM, Zipfel GJ, et al.Characterizing learning deficits and hippocampal neuron loss following transient global cerebral ischemia in rats. Brain Res,2005,1043 (1-2):48-56.
    6. Arrich J, Holzer M, Herkner H, et al.Cochrane corner:hypothermia for neuroprotection in adults after cardiopulmonary resuscitation.Anesth Analg,2010,110(4):1239.
    7. Fukuda S,Warner D S. Cerebral protection. British Journal of Anaesthesia,2007,99 (1): 10-17.
    8. Fujimura M, Tominaga T, Chan PH.Neuroprotective effect of an antioxidant in ischemic brain injury:involvement of neuronal apoptosis.Neurocrit Care,2005,2(1): 59-66.
    9. Langdon KD,Granter-Button S,Corbett D.Persistent behavioral impairments and neuroinflammation following global ischemia in the rat.Eur J Neurosci,2008,28(11): 2310-8.
    10. Sandstrom NJ, Rowan MH. Acute pretreatment with estradiol protects against CA1 cell loss and spatial learning impairments resulting from transient global ischemia. Horm Behav,2007,51(3):335-4.
    11. Bendel O, Bueters T, von Euler M.Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab,2005,25(12):1586-95.
    12. Bueters T,von Euler M, Bendel O.Degeneration of newly formed CA1 neurons following global ischemia in the rat. Exp Neurol.2008,209(1):114-24.
    13. Lebesgue D, Chevaleyre V, Zukin RS,et al.Estradiol rescues neurons from global ischemia-induced cell death:multiple cellular pathways of neuroprotection. Steroids, 2009,74(7):555-61.
    14. Racay P,Chomova M,Tatarkova Z.Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning.Cell Mol Neurobiol, 2009,29(6-7):901-8.
    15. Henrich-Noack P,Gorkin AG,Reymann KG.Predictive value of changes in electroencephalogram and excitatory postsynaptic field potential for CA1 damage after global ischaemia in rats. Exp Brain Res,2007,181(1):79-86.
    16. von Euler M, Bendel O, Bueters T, et al.Profound but transient deficits in learning and memory after global ischemia using a novel water maze test.Behav Brain Res,2006,166(2):204-10.
    1. Vogel QNobel Prizes.Gold medal from cellular trash.Science,2004,306(5695): 400-401.
    2. Wojcik C, Di Napoli M.Ubiquitin-proteasome system and proteasome inhibition:new strategies in stroke therapy. Stroke,2004,35(6):1506-1518.
    3. Yamaguchi M,Calvert JVV, Kusaka G.One-stage anterior approach for four-vessel occlusion in rat.Stroke,2005,36(10):2212-4.
    4. Konishi Y, Stegmiiller J, Matsuda T, et al.Cdhl-APC controls axonal growth and patterning in the mammalian brain. Science,2004,303 (5660):1026-1030.
    5. Livak KJ, Schmittgen TD.Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method.Methods,2001,25(4):402-408.
    6. Wojcik C, Di Napoli M.Ubiquitin-proteasome system and proteasome inhibition:new strategies in stroke therapy. Stroke,2004,35(6):1506-1518.
    7. Cernak I, Stoica B, Byrnes KR, et al.Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle,2005,4(9):1286-1293.
    8. Taku Sugawara, Miki Fujimura, Nobuo Noshita,et al.Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx,2004,1(1):17-25.
    9. Almeida A, Bolanos JP, Moreno S.Cdhl/Hctl-APC is essential for the survival of postmitotic neurons. J Neurosci,2005,25(36):8115-8121.
    10. Chan PH.Mitochondria and neuronal death/survival signaling pathways in cerebral ischemia.Neurochem Res,2004,29(11):1943-9.
    11. Baker DJ, Dawlaty MM, Galardy P.Mitotic regulation of the anaphase-promoting complex. Cell Mol Life Sci,2007,64(5):589-600
    12. Van Leuken R, Clijsters L,Wolthuis R.To cell cycle, swing the APC/C. Biochim Biophys Acta,2008,786(1):49-59.
    13. Gieffers C, Peters BH, Kramer ER, et al. Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc Natl Acad Sci USA,1999,96(20):11317-11322.
    14.李平,钱巍,姚文龙,等.脊髓损伤后大鼠Cdhl mRNA表达的变化.中国康复医学杂志, 2008,24(1):12-14.
    15. Sorensen CS,Lukas C,Kramer ER,et al.A conserved cyclin-binding domain etermines functional interplay between anaphase-promoting complex-Cdhl and cyclin A-Cdk2 during cell cycle progression.Mol Cell Biol,2001,21(11):3692-3703.
    16. Park HJ, Costa RH, Lau LF.Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box Ml transcription factor is critical for regulated entry into S phase.Mol Cell Biol,2008,28(17):5162-71.
    1. Fukuda S.Warner D.S.Cerebral protection.British Journal of Anaesthesia,2007,99 (1): 10-17.
    2. Swanson RA, Ying W, Kauppinen TM.Astrocyte influences on ischemic neuronal death. Curr Mol Med,2004,4(2):193-205.
    3. Almeida A, Bolanos JP, Moncada S.E3 ubiquitin ligase APC/C-Cdhl accounts for the Warburg effect by linking glycolysis to cell proliferation. Proc Natl Acad Sci U S A,2010,107(2):738-41.
    4. Wojcik C, Di Napoli M.Ubiquitin-proteasome system and proteasome inhibition:new strategies in stroke therapy. Stroke,2004,35(6):1506-1518.
    5. Cernak I, Stoica B, Byrnes KR, et al.Role of the cell cycle in the pathobiology of central nervous system trauma. Cell Cycle,2005,4(9):1286-1293.
    6. Yang CX, Liu JX, Sun ZL,et al.Effects of Ginsenoside RB1 on neural cell apoptosis and expressions of Bcl-2 and Bax in rats following subjected to cerebral ischemia-reperfusion. Sichuan Da Xue Xue Bao Yi Xue Ban,2008,39(2):214-7
    7. Schmittgen TD, Livak KJ.Analyzing real-time PCR data by the comparative C(T) method.Methods,2008,3(6):1101-1108.
    8. Yamaguchi M, Calvert JVV, Kusaka G. One-stage anterior approach for four-vessel occlusion in rat.Stroke,2005,36(10):2212-4.
    9. Choi DW.Ischemia-induced neuronal apoptosis. Current opinion in neurobiology, 1996,6(5):667-72.
    10. Block F. Global ischemia and behavioural deficits. Prog Neurobiol,1999,58(3):279-95.
    11. Lwin T, Hazlehurst LA, Dessureault S.Cell adhesion induces p27Kip1-associated cell-cycle arrest through down-regulation of the SCFSkp2 ubiquitin ligase pathway in mantle-cell and other non-Hodgkin B-cell lymphomas.Blood,2007,110(5):1631-8.
    12. Gieffers C, Peters BH, Kramer ER, et al.Expression of the CDH1-associated form of the anaphase-promoting complex in postmitotic neurons. Proc Natl Acad Sci USA, 1999,96(20):11317-11322.
    13. Zielke N, Querings S, Rottig C.The anaphase-promoting complex/cyclosome (APC/C) is required for rereplication control in endoreplication cycles. Genes Dev. 2008,22(12):1690-703.
    14. Konishi Y, Stegmiiller J, Matsuda T, et al.Cdhl-APC controls axonal growth and patterning in the mammalian brain. Science,2004,303(5660):1026-1030.
    15. Huynh MA, Stegmiiller J, Litterman N.Regulation of Cdhl-APC function in axon growth by Cdhl phosphorylation.J Neurosci.2009,29(13):4322-7.
    16. Liu DX, Greene LA. Neuronal apoptosis at the Gl/S cell cycle checkpoint. Cell Tissue Res,2001,305(2):217-28.
    17. Timmons L.Delivery methods for RNA interference in C. elegans. Methods Mol Biol,2006;351:119-25.
    18. Mautino MR, Morgan RA.Gene therapy of HIV-1 infection using lentiviral vectors expressing anti-HIV-1 genes. AIDS Patient Care STDS.2002,16(1):11-26.
    19. Manchado E, Eguren M, Malumbres M.The anaphase-promoting complex/cyclosome (APC/C):cell-cycle-dependent and independent functions. Biochem Soc Trans,2010,38(1):65-71.
    20. Park HJ, Costa RH, Lau LF.Anaphase-promoting complex/cyclosome-CDH1-mediated proteolysis of the forkhead box M1 transcription factor is critical for regulated entry into S phase.Mol Cell Biol,2008,28(17):5162-71.
    21. Almeida A, Bolanos JP, Moreno S.Cdhl/Hctl-APC is essential for the survival of postmitotic neurons. J Neurosci,2005,25(36):8115-8121.
    22. Hodges H, Nelson A, Virley D,et al.Cognitive deficits induced by global cerebral ischaemia:prospects for transplant therapy.Pharmacol Biochem Behav, 1997,56(4):763-80.
    23. Von Euler M, Bendel O, Bueters T, et al.Profound but transient deficits in learning and memory after global ischemia using a novel water maze test.Behav Brain Resm2006,166(2):204-10.
    24. Bueters T, von Euler M, Bendel O, et al.Degeneration of newly formed CA1 neurons following global ischemia in the rat. Exp Neurol,2008,209(1):114-24.
    25. Bendel O, Bueters T, von Euler M.Reappearance of hippocampal CA1 neurons after ischemia is associated with recovery of learning and memory. J Cereb Blood Flow Metab,2005,25(12):1586-95.
    1. Billips BK,Schaeffer AJ,Klumpp DJ.Molecular basis of uropathogenic Escherichia coli evasion of the innate immune response in the bladder. Infect Immun,2008,76(9):3891-900.
    2. Choo YS, Zhang Z.Detection of protein ubiquitination.J Vis Exp,2009,10 (30):3791-3793.
    3. Ravid T, Hochstrasser M.Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol,2008,9(9):679-90.
    4. Ohki Y, Funatsu N, Konishi N.The mechanism of poly-NEDD8 chain formation in vitro. Biochem Biophys Res Commun,2009,381(3):443-7.
    5. Zhao Q, Chang XB.Mutation of the aromatic amino acid interacting with adenine moiety of ATP to a polar residue alters the properties of multidrug resistance protein 1. J Biol Chem,2004,279(47):48505-12.
    6. Li Y, Zhou Z, Chen C.WW domain-containing E3 ubiquitin protein ligase 1 targets p63 transcription factor for ubiquitin-mediated proteasomal degradation and regulates apoptosis. Cell Death Differ,2008,15(12):1941-51.
    7. Jager S, Strayle J, Heinemeyer W.Cicl, an adaptor protein specifically linking the 26S proteasome to its substrate, the SCF component Cdc4. EMBO J,2001,20(16):4423-31.
    8. Marrocco K, Thomann A, Parmentier Y.The APC/C E3 ligase remains active in most post-mitotic Arabidopsis cells and is required for proper vasculature development and organization. Development,2009,136(9):1475-85.
    9. Peters J M.The anaphase-promoting complex:proteolysis in mitosis and beyond. Mol. Cell,2002,9 (5):931-943.
    10. Castro A,Bernis C,Vigneron S, et al.The anaphase-promoting complex:a key factor in the regulation of cell cycle. Oncogene,2005,24(3):314-325.
    11. Carroll C W,Morgan D O.The Docl subunit is a processivity factor for the anaphase-promoting complex. Nat.Cell Biol,2002,4(11):880-887.
    12. Jackson PK.The hunt for cyclin. Cell,2008,134(2):199-202.
    13. Stemmann O,Zou H,Gerber S A, et al. Dual inhibition of sister chromatid separation at metaphase. Cell,2001,107(6):715-726.
    14. Drapkin BJ, Lu Y, Procko AL.Analysis of the mitotic exit control system using locked levels of stable mitotic cyclin. Mol Syst Biol,2009,5(2):328.
    15. Lee J, Kim JA, Barbier V.DNA damage triggers p21WAF1-dependent Emil down-regulation that maintains G2 arrest. Mol Biol Cell,2009,20(7):1891-902.
    16. Petroski MD.The ubiquitin system, disease, and drug discovery. BMC Biochem,2008, 9 Suppl 1:S7.
    17. Perry J, Kleckner N, Borner GV.Bioinformatic analyses implicate the collaborating meiotic crossover/chiasma proteins Zip2, Zip3, and Spo22/Zip4 in ubiquitin labeling. Proc Natl Acad Sci U S A,2005,102(49):17594-9.
    18. Huang JY, Morley G, Li D, Whitaker M.Cdkl phosphorylation sites on Cdc27 are required for correct chromosomal localisation and APC/C function in syncytial Drosophila embryos. J Cell Sci,2007,120(Pt 12):1990-7.
    19. Jorgensen P M,Graslund S,Betz R, et al.Characterisation of the human APC1, the largest subunit of the anaphase-promoting complex. Gene,2001,262(2):51-59.
    20. Seeger M, Hartmann-Petersen R, Wilkinson CR.Interaction of the anaphase-promoting complex/cyclosome and proteasome protein complexes with multiubiquitin chain-binding proteins. J Biol Chem,2003,278(19):16791-6.
    21. Bienz M.The PHD finger, a nuclear protein-interaction domain. Trends Biochem Sci, 2006,31(1):35-40.
    22. Ravid T, Hochstrasser M.Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol,2008,9(9):679-90.
    23. Vodermaier, H. C. and Peters, J.M.APC activators caught by their tails? Cell Cycle,2004,3(3):265-266.
    24. Passmore L A,McCormack E A.Doclmediates the activity of the anaphase-promoting complex by contributing to substrate recognition. EMBOJ,2003,22(4):786-796.
    25. Schwab M,Neutzner M, Mocker D, et al.Yeast Hctl recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. EMBO J,2001,20(18):5165-5175.
    26. Gladfelter AS,Sustreanu N,Hungerbuehler AK.The anaphase-promoting complex/cyclosome is required for anaphase progression in multinucleated Ashbya gossypii cells. Eukaryot Cell,2007,6(2):182-97.
    27. Wendt K S,Vodermaier H C, Jacob U, et al.Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nat Struct Biol,2001,8(9):784-788.
    28. Carroll C W, Enquist-Newman M, Morgan D O.The APC subunit Docl promotes recognition of the substrate destruction box. Curr. Biol,2005,15(1):11-18.
    29. Ohi MD, Feoktistova A, Ren L.Structural organization of the anaphase-promoting complex bound to the mitotic activator Skpl. Mol Cell,2007,28(5):871-85.
    30. Hall M C,Torres M P,Schroeder G K, et al.Mnd2 and Swml are core subunits of the Saccharomyces cerevisiae anaphase-promoting complex. J.Biol,Chem,2003,278(19): 16698-16705.
    31. Peters J M.The anaphase promoting complex/cyclosome:a machine designed to destroy. Nat RevMol Cell Biol,2006,7(9):644-656.
    32. Wirth K G,Ricci R,Gimenez-Abian J F, et al.Loss of the anaphase-promoting complex in quiescent cells causes unscheduled hepatocyte proliferation.Genes Dev,2004,18(1): 88-98.
    33. Kraft C,Herzog F,Gieffers C, et al.Mitotic regulation of the human anaphase-promoting complex by phosphorylation.EMBO J,2003,22(24):6598-6609.
    34. Pomerening JR, Ubersax JA.Rapid cycling and precocious termination of G1 phase in cells expressing CDK1AF. Mol Biol Cell,2008,19(8):3426-41.
    35. Pfleger C M, Kirschner M W.The KEN box:an APC recognition signal distinct from the D box targeted byCdhl. Genes Dev,2000,14(6):655-665.
    36. Chung E,Chen R.H.Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nat Cell Biol,2003,16(3):748-753.
    37. Chung E, Chen R H.Spindle checkpoint requires Madl-bound and Madl-free Mad2. Mol Biol Cell,2002,13(5):1501-1511.
    38. Hall MC, Jeong DE, Henderson JT.Cdc28 and Cdc14 control stability of the anaphase-promoting complex inhibit or Acm1.J Biol Chem,2008,283(16):10396-407.
    39. Tyson JJ, Novak B.Temporal organization of the cell cycle.Curr Biol,2008,18(17): 759-768.
    40. Lehman N L,Verschuren E W,Hsu J Y, et al.Overexpression of the anaphase promoting complex/cyclosome inhibitor Emil leads to tetraploidy and genomic instability of p53-deficient cells. Cell Cycle,2006,(14):1569-1573.
    41. Song M S,Song S J, Ayad N Qet al.The tumour suppressor RASSF1A regulates mitosis by inhibiting the APC-Cdc20 complex. Nat Cell Biol,2004,6(2):129-137.
    42. Hames R S,Wattam S L,Yamano H,et al.APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. EMBO J,2001,20(24):7117-7127.
    43. Jeganathan K B, Malureanu L,van Deursen J M.The Rael-Nup98 complex prevents aneuploidy by inhibiting securin degradation.Nature,2005,438(7070):1036-1039.
    44. Hagting A,Den Elzen N,Vodermaier H C,et al.Human securing proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdhl.J Cell Biol,2002,157(7):1125-1137.
    45. Vagnarelli P, Morrison C, Dodson H.Analysis of Sccl-deficient cells defines a key metaphase role of vertebrate cohesin in linking sister kinetochores.EMBO Rep,2004,5(2):167-71.
    46. Watrin E, Schleiffer A, Tanaka K.Human Scc4 is required for cohesin binding to chromatin, sister-chromatid cohesion, and mitotic progression. Curr Biol,2006,16(9): 863-74.
    47. Stemmann O,Boos D,Gorr I H.Rephrasing anaphase:separase FEARs shugoshin. Chromosoma,2005,113(18):409-417.
    48. Holland A J, Taylor S S.Cyclin-Bl-mediated inhibition of excess separase is required for timely chromosome disjunction. J. Cell Sci,2006,119(16):3325-3336.
    49. Jeganathan K B,Baker D J, van Deursen, et al.Securin associates with APCCdh1 in prometaphase but its destruction is delayed by Rael and Nup98 until the metaphase/ anaphase transition. Cell Cycle,2006,5(4):366-370.
    50. Antonio C, Ferby I, Wilhelm H, et al.Xkid, a chromokinesin required for chromosome alignment on the metaphase plate.Cell,2000,102(4):425-435.
    51. Castro A,Vigneron S,Bernis C,et al.Xkid is degraded in a D-box, KEN-box, and A-boxindependent pathway. Mol Cell Biol,2003,23(12):4126-4138.
    52. Gordon D M,Roof D M.Degradation of the kinesin Kiplp at anaphase onset is mediated by the anaphasepromoting complex and Cdc20p. Sci. USA,2001,98(22): 12515-12520.
    53. Stewart S, Fang G.Anaphase-promoting complex/cyclosome controls the stability of TPX2 during mitotic exit. Mol Cell Biol,2005,25(23):10516-27.
    54. Stewart S,Fang GAnaphase-promoting complex/ cyclosome controls the stability of TPX2 during mitotic exit. Mol. Cell. Biol,2005,25(2)3:10516-10527.
    55. Tada S.Cdtl and geminin:role during cell cycle progression and DNA damage in highereukaryotes. Front Biosci,2007,12(7):1629-41.
    56. Gonzalez M A,Tachibana K E,Adams D J,et al.Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development. Genes Dev,2006,20(14):1880-1884.
    57. Lindon C, Pines J.Ordered proteolysis in anaphase inactivates Plkl to contribute to proper mitotic exit in human cells. J. Cell Biol,2004,164(2):233-241.
    58. Zhao W M, Fang G.Anillin is a substrate of anaphase-promoting complex/cyclosome (APC/C) that controls spatial contractility of myosin during late cytokinesis. J. Biol. Chem,2005,280(39):33516-33524.
    59. Li M, Zhang P.The function of APC/CCdhl in cell cycle and beyond. Cell Div,2009, 19(9);4:2.
    60. Kops G J,Weaver B A,Cleveland D W.On the road to cancer:aneuploidy and the mitotic checkpoint. Cancer,2005,5(10):773-785.
    61. Rieder CL,Maiato H. Stuck in division or passing through:what happens when cells cannot satisfy the spindle assembly checkpoint. Cell,2004,7(5):637-651.
    62. Shah J V, Cleveland D W.Waiting for anaphase:Mad2 and the spindle assembly checkpoint. Cell,2000,103(7):997-1000.
    63. Caillaud MC, Paganelli L, Lecomte P.Spindle assembly checkpoint protein dynamics reveal conserved and unsuspected roles in plant cell division. PLoS One,2009,4(8):67-71.
    64. Mao Y,Abrieu A, Cleveland D W. Activating and silencing the mitotic checkpoint through CENP-Edependent activation/inactivation of BubRl.Cell,2003,114(1):87-98.
    65. Nasmyth K,Haering C H.The structure and function of smc and kleisin complexes. Biochem,2005,74(3):595-648.
    66. Babu J R,Jeganathan K B, Baker D J, et al.Rael is an essential mitotic checkpoint regulator that cooperates with Bub3 to prevent chromosome missegregation. J. Cell Biol,2003,160(3):341-353.
    67. Liu J,Fuchs S Y.Cross-talk between APC/C and CBP/p300.Cancer Biol,2006, 5(7):760-762.
    68. Turnell A S, Stewart G S,Grand R J, et al.The APC/C and CBP/p300 cooperate to regulate transcription and cell-cycle progression. Nature,2005,438(7068):690-695.
    69. Michel L S,Liberal V,Chatterjee A, et al.MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells.Nature,2001,409(6818): 355-359.
    70. Dobles M,Liberal V,Scott M L,et al.Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell,2000,101 (6):635-645.
    71. Salmon E D,Cimini DmCameron LA,et al.Merotelic kinetochores in mammalian tissue cells. B Biol Sci,2005,360(1455):553-568.
    72. Baker D J,Jeganathan K B,Malureanu L,et al.Early agingassociated phenotypes in Bub3/Rael haploinsufficient mice.J. Cell Biol,2006,172(4):529-540.
    73. Yuen KW,Montpetit B,Hieter P.The kinetochore and cancer:what is the connection? Cell Biol,2005,17(6):576-582.
    74. Li D,Zhu J,Firozi P F,et al.Overexpression ofoncogenic STK15/BTAK/Aurora A kinase in human pancreatic cancer. Clin Cancer Res,2003,9(3):991-997.
    75. Fujita T, Ikeda H, Taira N.Overexpression of UbcH10 alternates the cell cycle profile and accelerate the tumor proliferation in colon cancer. BMC Cancer,2009 21(5):79-87.
    1. Klotz K,Cepeda D,Tan Y,et al.SCF targets cyclin E2 for ubiquitin-dependent proteolysis. Exp Cell Res,2009,315(11):1832-9.
    2. Guardavaccaro D,Pagano M.Stabilizers and destabilizers controlling cell cycle oscillators. Mol Cell,2006,22(1):1-4.
    3. van Buuren N, Couturier B, Xiong Y.Ectromelia virus encodes a novel family of F-box proteins that interact with the SCF complex. J Virol,2008,82(20):9917-27.
    4. Castro A,Bernis C, Vigneron S.The anaphase-promoting complex:a key factor in the regulation of cell cycle. Oncogene,2005,24(3):314-25.
    5. Harper J W, Burton J L, Solomon M J.The anaphase-promoting complex:its not just for mitosis any more.Genes Dev,2002,16 (17):2179-2206.
    6. Liao E H, Hung W, Abrams B,et al.An SCF-like ubiquitin ligase complex that controls presynaptic differentiation.Nature,2004,430(6997):345-350.
    7. Peters JM.The anaphase promoting complex/cyclosome:a machine designed to destroy. Nat Rev Mol Cell Biol,2006,7(9):644-56.
    8. Schaefer H, Rongo C.KEL-8 is a substrate receptor for CUL3-dependent ubiquitin ligase that regulates synaptic glutamate receptor turnover. Mol Biol Cell, 2006,17(3):1250-60.
    9. Baker DJ, Dawlaty MM, Galardy P.Mitotic regulation of the anaphase-promoting complex. Cell Mol Life Sci,2007,64(5):589-600.
    10. Floyd S, Pines J, Lindon C.APC/C Cdhl targets aurora kinase to control reorganization of the mitotic spindle at anaphase.Curr Biol,2008,18(21):1649-58.
    11. Konishi Y, Stegmuller J, Matsuda T,et al.Cdhl-APC controls axonal growth and patterning in mammalian brain.Science,2004,303(5660):1026-1030.
    12. Dunah AW, Hueske E, Wyszynski M. LAR receptor protein tyrosine phosphatases in the development and maintenance of excitatory synapses.Nat Neurosci,2005,8(4):458-67.
    13. Stryker E, Johnson KG. LAR.liprin alpha and the regulation of active zone morphogenesis. J Cell Sci,2007,120(21):3723-8.
    14. Teng F Y, Tang B L.APC/C regulation of axonal growth and synaptic functions in postmitotic neurons:the Liprin-a connection.Cell Mol Life Sci,2005,62(14):1571-1578.
    15. Almeida A,Bolanos J,Moreno P.Cdhl/Hctl-APC is essential for the survival of postmitotic neurons.J. Neurosci,2005,25(36):8115-8121.
    16. Huynh MA, Stegmuller J, Litterman N.Regulation of Cdhl-APC function in axon growth by Cdhl phosphorylation. J Neurosci,2009,29(13):4322-7.
    17. Kurita M, Kuwajima T, Nishimura I. Necdin downregulates CDC2 expression to attenuate neuronal apoptosis.J Neurosci,2006,26(46):12003-13.
    18. Lama D, Sankar R. Anti-apoptotic Bcl-XL protein in complex with BH3 peptides of pro-apoptotic Bak, Bad, and Bim proteins:comparative molecular dynamics simulations. Proteins,2008,73(2):492-514.
    19. Becker E B,Bonni A.Cell cycle regulation of apoptosis in development and disease.Prog. Neurobiol,2004,72(1):1-25.
    20. Khurana V, Feany MB.Connecting cell-cycle activation to neuron degeneration in Drosophila. Biochim Biophys Acta,2007,1772(4):446-56.
    21. Rao HV, ThirumL,Grammas P.Cyclin C and cyclin dependent kinases 1,2 and 3 in thrombin-induced neuronal cell cycle progression and apoptosis.Neurosci Lett,2009,450(3):347-50.
    22. Rideout HJ, Wang Q, Park DS.Cyclin-dependent kinase activity is required for apoptotic death but not inclusion formation in cortical neurons after proteasomal inhibition. J Neurosci,2003,23(4):1237-45.
    23. Koeller HB, Ross ME, Glickstein SB.Cyclin D1 in excitatory neurons of the adult brain enhances kainate-induced neurotoxicity.Neurobiol Dis,2008,31(2):230-41.
    24. Tian B, Yang Q, Mao Z. Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nat Cell Biol,2009,11(2):211-8.
    25. Lee HG, Casadesus G, Zhu X.Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer's disease.Neurochem Int, 2009,54(2):84-8.
    26. Koeller HB, Ross ME, Glickstein SB.Cyclin D1 in excitatory neurons of the adult brain enhances kainate-induced neurotoxicity.Neurobiol Dis,2008,31(2):230-41.
    27. Kuroda Y,Sakai A,Tsuyama N.Ectopic cyclin D1 overexpression increases chemosensitivity but not cell proliferation in multiple myeloma.Int J Oncol,2008,33(6): 1201-13.
    28. Trimarchi J M., Lees J A.Sibling rivalry in the E2F family.Nat Re Mol Cell Biol,2002,3(1):11-20.
    29. Harbour J W, Dean D C.The Rb/E2F pathway:expending roles and emerging paradigms Genes Dev,2000,14(5):2393-2409.
    30. Zhang J, Schweers B, Dyer MA. The first knockout mouse model of retinoblastoma. Cell Cycl,2004,3(7):952-9.
    31. Greene LA, Liu DX, Troy CM.Cell cycle molecules define a pathway required for neuron death in development and disease.Biochim Biophys Acta,2007,1772(4):392-401.
    32. Konishi Y, Bonni A.The E2F-Cdc2 cell-cycle pathway specifically mediates activity deprivation-induced apoptosis of postmitotic neurons.J Neurosci,2003,23(5):1649-1658.
    33. Greene LA, Biswas SC, Liu DX.Cell cycle molecules and vertebrate neuron death:E2F at the hub. Cell Death Differ,2004,11(1):49-60.
    34. Biswas S C, Liu D X, Greene L A. Bim is a direct target of a neuronal E2F-dependent apoptotic pathway.J Neurosci,2005,25(37):8349-8358.
    35. Bashir T, Dorrello NV, Amador V, et al.Control of the SCF (Skp2-Cksl) ubiquitin ligase by the APC/C(Cdhl) ubiquitin ligase. Nature,2004,428(6979):190-3.
    36. Bornstein G,Ganoth D,Hershko A.Regulation of neddylation and deneddylation of cullinl in SCFSkp2 ubiquitin ligase by F-box protein and substrate.Proc Natl Acad Sci U S A.2006,103(31):11515-20.
    37. Moore J D, Kirk J A, Hunt T. Unmasking the S-phase-promoting potential of cyclin B1.Science,2003,300 (5621):987-990.
    38. Charrier-Savournin F B, Chateau M T, Gire V, et al.p21-mediated nuclear retention of cyclin B1-Cdkl in response to genotoxic stress.Mol Biol Cell,2004,15(9):3965-3976.
    39. Rashidian J, Iyirhiaro G, Aleyasin H,et al.Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo.Proc. Natl. Acad. Sci,2005,102(39):14080-14085.
    40. Ranganathan S, Bowser R. Alterations in G1 to S phase cell-cycle regulators during amyotrophic lateral sclerosis. Am J Pathol,2003,162(7):823-835.
    41. Ueberham U, Arendt T.The expression of cell cycle proteins in neurons and its relevance for Alzheimer's disease.Curr Drug Targets CNS Neurol Disord,2005,4(3): 293-306.
    42. Currais A,Hortobagyi T,Soriano S.The neuronal cell cycle as a mechanism of pathogenesis in Alzheimer's disease. Aging,2009,1(4):363-71.
    43. Pallas M, Camins A.Molecular and biochemical features in Alzheimer's disease. Curr Pharm Des,2006,12(33):4389-408.
    44. Hoozemans JJ, Stieler J, van Haastert ES.The unfolded protein response affects neuronal cell cycle protein expression:implications for Alzheimer's disease pathogenesis.Exp Gerontol,2006,41(4):380-6.
    45. Brinton RD,Wang JM.Preclinical analyses of the therapeutic potential of allopregnanolone to promote neurogenesis in vitro and in vivo in transgenic mouse model of Alzheimer's disease. Curr Alzheimer Res,2006,3(1):11-7.
    46. Lakshmana MK, Hara H,Tabira T. Amyloid beta protein-related death-inducing protein induces G2/M arrest:plications for neuron degeneration in Alzheimer's disease. J Neurosci Res,2007,85(10):2262-71.
    47. Zilkova M,Koson P,Zilka N.The hunt for dying neurons:insight into the neuronal loss in Alzheimer's disease. Bratisl Lek Listy,2006,107(9-10):366-73.
    48. Yang Y. Mufson E J, Herrup K.Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease.J Neurosci,2003,23(7):2557-2563.
    49. Pei JJ, Braak H, Gong CX,et al.Up-regulation of cell division cycle (cdc) 2kinase in neurons with early stage Alzheimer's disease neuro fibrillary degeneration.Acta Neuropathol,2002,104(4):369-376.
    50. Husseman J W, Nochlin D, Vincent I. Mitotic activation:a convergent mechanism for a cohort of neurodegenerative diseases.Neurobiol.Aging,2000,21(6):815-828.
    51. Zhu X, A McShea, Harris P L,et al.Elevated expression of a regulator of the G2/M phase of the cell cycle, neuronal CIP-1-associated regulator of cyclin B, in Alzheimer's disease.J Neurosci Res,2004,75(5):698-703.
    52. Zhou J, Sun BQ, Gao RL.Cortical neuron apoptosis induced by beta-amyloid peptide and protective effect of panoxadiol in mice.Zhejiang Da Xue Xue Bao Yi Xue Ban,2008,37(5):451-5.
    53. Zhang Y, McLaughlin R,Goodyer C.Selective cytotoxicity of intracellular amyloid beta peptidel-42 through p53 and Bax in cultured primary human neurons.J Cell Biol,2002,156(3):519-529.
    54. Frasca G, Chiechio S,Vancheri C.Beta-amyloid-activated cell cycle in SH-SY5Y neuroblastoma cells:correlation with the MAP kinase pathway.J Mol Neurosci,2004,22(3):231-6.
    55. Copani A, Hoozemans J, Caraci EDNA polymerase-beta is expressed early in neurons of Alzheimer's disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid.J Neurosci,2006,26(43):10949-57.
    56. Lopes JP, Oliveira CR,Agostinho P.Role of cyclin-dependent kinase 5 in the neurodegenerative process triggered by amyloid-Beta and prion peptides:implications for Alzheimer's disease and prion-related encephalopathies.Cell Mol Neurobiol,2007, 27(7):943-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700