用户名: 密码: 验证码:
逆转录病毒介导的小鼠白细胞介素-23抗肿瘤效应及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤是严重影响人类健康的一类疾病,肿瘤的形成和发展与宿主免疫监视功能的异常及肿瘤细胞免疫逃避作用密切相关。目前,手术、化疗和放疗仍是肿瘤的主要治疗方法,但是都存在着局限性。肿瘤的免疫治疗不仅能提高宿主的免疫能力,特异性杀伤肿瘤细胞,而且对正常组织细胞有较少的毒副作用,因此越来越受到人们的重视。细胞因子(cytokine)是由多种细胞所分泌的能调节细胞生长分化、调节免疫功能、参与炎症反应和创伤愈合等作用的一类小分子多肽的统称。利用一些细胞因子能够提高机体免疫功能的作用,将其应用于抗肿瘤治疗,取得了一定的效果。然而,单纯应用细胞因子蛋白的治疗常因其在体内半衰期短,需要大量、持续用药,在收到一定的疗效同时,常产生严重的毒副作用,阻碍了细胞因子的临床应用。因此,寻找新的更为有效的细胞因子及给药途径成为研究热点。由适当的载体如肿瘤细胞、树突状细胞及成纤维细胞等携带细胞因子基因的基因治疗方法是一种备受关注的肿瘤治疗策略之一。携带细胞因子基因的载体在宿主体内可持续产生细胞因子,诱导增强机体免疫功能,杀伤肿瘤细胞,避免了直接使用细胞因子在体内半衰期短、副作用大等缺点。此外,如果载体为肿瘤细胞或负载肿瘤抗原的DC,在产生细胞因子的同时还可提供特异性抗原,可诱导产生特异性抗肿瘤免疫反应。
     白细胞介素23(Interleukin,IL-23)是Oppmann等在2000年报告的一个新的细胞因子,IL-23可促进记忆性T细胞增殖,诱导活化的T细胞和树突状细胞产生干扰素-γ(interferon-γ,,IFN-γ,)和白细胞介素12(Interleukin,IL-12)等细胞因子,具有免疫调节活性,参与了自身免疫性疾病、慢性炎症反应和某些感染性疾病的发病和调控。目前,已有研究结果表明,转染IL-23基因的小鼠肿瘤细胞在体内生长速度明显慢于未转染的肿瘤细胞;IL-23可通过诱导和增强小鼠脾细胞CTL活性、促进脾细胞产生IFN-γ等细胞因子而发挥抗肿瘤作用。因此,IL-23有望成为新的免疫治疗因子。由于该因子是新近发现的活性较强的细胞因子,还有许多
Tumor is one of the serious diseases threatening human health. Development of tumors is related to a defect of a host immunosurveillance system and an escape mechanism of tumors from host immune responses. At present, operation, chemothreapy and radiotherapy are the main meathods to treat tumors with some limitations. Immunotherapy of tumors which can not only enhance the immune function of host, kill tumor cells in specific way, but also has less side-effects on normal tissues and more and more people have pay attention to immunotherapy. Cytokines possess pleiotropic functions and mediate systemic and local biological actions, which relate to cell growth and differentiation, immune function and inflammation. There are some effects by administration of some cytokines directly in treatment of tumors. Because of the short half-life, large and lasting usage and strong side-effects of cytokines, they are limited in clinical application. Therefore, it is necessary to looking for more effective cytokines and new administration approachs. Cytokine gene therapy is one of the therapeutic strategies of tumors, in which cytokine genes are transduced into some vectors such as tumor cells, dendritic cells and fibroblasts. The vectors carried cytokine genes in host can last production of cytokines that can induce immune responses to tumors and overcome the drawbacks of short half-life, large and lasting usage and strong side effects of cytokines by direct administration. Besides, tumor cells and dendritic cells loaded tumor antigens as cytokine gene therapeutic vectors can provide the antigens to induce specific antitumor responses.
    Interleukin-23 (IL-23) is a cytokine reported by Oppmann et al in 2000, which can enhance proliferation of memory T cells and production of interferon-γ (IFN-γ) and IL-12 from activated T cells and dendritic cells. IL-23 has also been considered essential to development and control of autoimmune
引文
Tagawa M. Cytokine therapy for cancer. Curr Pharm Des, 2000, 6: 681-699
    2 Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature, 1996, 283:787-793
    3 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-823
    4 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13:715-725
    5 Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immuno, 2002, 168:5448-5454
    6 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003, 171:600-607
    7 Shan BE, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitulnor effects in nude mice. Anticancer Res, 2004, 24:79-82
    8 郝京生,单保恩,李巧霞,等.小鼠IL-23基因的克隆和在逆转录病毒中的表达.现代免疫学,2004,24:132-155
    9 Li J, Gran B, Zhang JX, et al. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neuro Sci, 2003, 215:95-103
    10 Tasaki K, Yoshida Y, Maeda T, et al. Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type 1 helper T cells. Cancer Gene Ther, 2000, 7:247-254
    11 Ugai SI, Shimozato O, Kawamura K, et al. Expression of the interleukin-21 gene in murine colon carcinoma cells generates systemin immunity in the inoculated hosts. Cancer Gene Ther, 2003, 10:187-192
    12 司徒镇强,吴军主编.细胞培养.世界图书出版公司.北京.1996年,358-362
    13 Macatonia SF, Hosken NA, Litton M, et al. Dendritic cells produce IL-12 and direct the development of Thl cells from naive CD4~+T cells. J Immunol, 1995, 154:5071-5079
    14 Grohmann U, Belladonna ML, Bianchi R, et al. IL-12 acts directly on DC to promote nuclear localization of NFκB and primers DC for IL-12 production. Immunity, 1998, 9:315-323
    15 Grohmann U, Belladonna C, Vacca C, et al. Positive regulatory role of IL-12 in macrophages and modulation by IFN-γ. J Immunol, 2001, 167: 221-227
    16 Trinchieri G. Interleukin 12: a proinflammatory cytokine with immuno-regulatory functions that bridges innate resistance and antigen specific adaptive immunity. Annu Rev Immunol, 1995, 13:251-276
    17 Presky DH, Yang H, Minetti L J, et al. A functional interleukin 12 receptor complex is composed of two β-type cytokine receptor subunits. Proc Natl Acad Sci USA, 1996, 93:14002-14007
    18 Parhan C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1, and a novel cytokine receptor subunit, IL-23R. J Immunol, 2002, 168:5699-5708 Smyth M J, Godfrey DI, Trapani JA. A flesh look at tumor immunosurveillance and immunotherapy. Nat Immunol, 2001, 2:293-299
    2 Tagawa M. Cytokine therapy for cancer. Current Pharmaceutical Design, 2000, 6:681-699
    3 Jager E, Jager D, Knuth A. Clinical cancer vaccine trials. Curr Opin Immunol, 2002, 14:178-182
    4 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13:715-725
    5 Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immuno, 2002, 168:5448-5454
    6 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-823
    7 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003, 171:600-607
    8 Shan BE, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitumor effects in nude mice. Anticancer Res, 2004, 24: 79-82
    
    9 Tsai S-CL, Gansbacher B, Tait L, et al. Induction of antitumor immunity of interlrukin-2 gene-transduced mouse mammary tumor cells versus transduced mammary stromal fibroblasts. J Natl Cancer Inst, 1993, 85: 546-553
    10 Tasaki K, Yoshida Y, Miyauchi M, et al. Transduction of murine colon carcinoma cells with interleukin-15 gene induces antitumor effects in immunocompetent and immunocompromised hosts. Cancer Gene Ther, 2000, 2: 255-261
    11 Saha A, Chatterjee SK, Foon KA, et al. Murine dendritic cells pulsed with an anti-idiotype antibody induce antigen-specific protective antitumor immunity. Cancer Res, 2003, 63: 2844-2854
    12 Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev, 2002, 13: 155-168
    13 Yoshida Y, Tasaki K, Motohiro M, et al. Impaired tumorigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Therapy, 2000, 7: 324-331
    14 Boggio K, Nicoletti G, Di Carlo E, et al. Interleukine 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-1/neu transgenic mice. J Exp Med, 1998, 188: 589-596
    15 Leonard LP, Sherman ML, Dutcher N, et al. Effect of single-dose interleukin-12 exposure on interleukin-12-associted toxicity and interferon-γ production. Blood, 1997, 90: 2541-2548
    16 Ugai SI, Shimozato O, Yu L, et al. Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumor effects. Cancer Gene Ther, 2003, 10: 771-778
    17 Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 2003,198: 1951-1957
    18 Bastos KR, Marinho CR, Barboza R, et al. What kind of message does IL-12/IL-23 bring to macrophages and dendritic cells. Micro Infec, 2004, 6: 630-636
    19 Novelli F, Casanova JL. The role of IL-12, IL-23 and IFN- γ in immunity to viruses. Cytokine Growth Factor Rev. 2004, 15: 367-377
    20 Celluzzi CM, Mayordommo JI, Storkus WJ, et al. Peptide-pulsed dendritic cells induce antigen-specific, CTL-mediated protective tumor immunity. J Exp Med, 1996,183: 283-287
    21 Schnurr M, Scholz C, Rothenfusser S, et al. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T cells and activate NK and γδ T cells. Cancer Res, 2002,62: 2347-2352
    22 Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol, 2001, 166: 7563-7570
    23 Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today, 1996, 17: 138-146
    24 Ikeda H, Chamoto K, Tsuji T, et al. The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci, 2004, 95: 697-703
    25 Cavallo F, Di Carlo E, Butera M, et al. Immune events associated with the cure of established tumors and spontaneous metastases by local and systemic interleukin 12. Cancer Res, 1999, 59: 414-421
    26 Nastala CL, Edington HD, McKinney TG, et al. Recombinant IL-12 administration induces tumor regression in association with IFN-production. J. Immunol, 1994, 153: 1607-1706
    27 Robertson MJ, Cameron C, Atkins MB, et al. Immunologic effects of interleukin 12 administered by bolus intravenous injection to patients with cancer. Clin Cancer Res, 1999, 5:9-16
    28 Voest EE, Kenyon BM, O'Reilly MS, et al. Inhibition of angiogenesis in vivo by interleukin 12. J Nati Cancer Inst, 1995, 87: 581-586
    29 Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol, 1997, 9: 10-16
    30 Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature, 1998, 392:245-252.
    31 Pulendran B, Lingappa J, Kennedy MK, et al. Developmental pathways of dendritic cells in vivo. Distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J Immunol, 1997, 159: 2222-2231
    32 Yang AS, Lattime EC. Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res, 2003, 63: 2150-2157
    33 Mayordomo JI, Loftus DJ, Sakmoto H, et al. Therapy of murine tumors with p53 wild-type and mutant sequence peptide-base vaccines. J Exp Med, 1996, 183: 1357-1365
    34 Kawada M, Ikeda H, Takahashi T, et al. Vaccination of fusion cells of rat dendritic and carcinoma cells prevents rumor growth in vivo. Int J Cancer, 2003, 105:520-526
    35 Enk AH, Jonuleit H, Saloga J, et al. Dendritic cells as mediators of tumor-induced tolerance in metastatic melanoma. Int J Cancer, 1997, 73: 309-316
    36 Su Z, Dannull J, Heiser A, et al. Immunlogical and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res, 2003, 63: 2127-2133 Wahl LM, Kleinman HK. Tumor-associated macrophages as targets for cancer therapy. J Natl Cancer Inst, 1998, 90:1583-1584
    2 Elgert KD, Alleva KG, Mullins DW. Tumor-induced immune dysfunction: the macrophage connection. J Leukocyte Biol, 1998, 64:275-290
    3 Saiki I, Fidler IJ. Synergistic activation by recombinat mouse interferon-γ and muramyl dipeptide of tumoricidal properties in mouse macrophages. J Immunol, 1985, 135:684-688
    4 Ramesh HP, Yamaki K, Tsuhida T. Effect of femugreek (Trigonella foenum-graecum L) galactomannan fractions on phagocytosis in rat macrophages and on proliferation and IgM secretion in HB4C5 cells. Carbohydr Polym, 2002, 50: 79-83
    5 Moretao MP, Zampronio AR, Gorin PAJ, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages activated by an acidic heteropolysaccharide(ARAGAL) from the gum of anadenanthera colubrina (Angico branco). Immunol Lett, 2004, 93: 189-197
    6 Oppmann B, Lesley R, Blom B, et al. Novel pl9 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13: 715-725
    7 Parhan C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1, and a novel cytokine receptor subunit, IL-23R. J Immunol, 2002, 168: 5699-5708
    8 Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol, 2001, 166: 7563-7570
    9 Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003, 421: 744-748
    10 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-823
    11 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003, 171: 600-607
    12 Shan BE, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitumor effects in nude mice. Anticancer Res, 2004, 24: 79-82
    13 Waksbayashi H, Takskura N, Teraguchi S, et al. Lactoferrin feeding augments peritoneal macrophage activities in mice intraperitoneally injected with inactivated candida albicans. Microbiol Immunol, 2003, 47: 37-43
    14 Dong Z, Qi Z, Fidler IJ. Tyrosine phosphotylation of mitogen-activated protein kinase is necessary for activation of mutine macrophages by natural and synthetic bacterial products. J Exp Med, 1993, 177: 1071-1993
    15 Bruns C J, Shinohara H, Harbison MT, et al. Therapy of human pacreatic carainoma implants by irinotecan and the oral immunomodulator JBT 3002 is associated with enhanced expression of inducible nitric oxide synthase in tumor-infiltrating macrophages. Cancer Res, 2000, 60:2-7
    16 Hughes DA, Fraser IP, Gordon S. Murine macrophage scavenger receptor: in vivo expression and function as receptor for macrophage adhesion in lymphoid and non-lymphoid organs. Eur J Immunol, 1995, 25:466-473
    17 Baskin H, Ellermann-Eriksen S, Lovmand J, et al. Herpes simplex virus type 2 synergizes with interferon-γ in the induction of nitric oxide production in mouse macrophages through autocrine secretion of tumor necrosis factor-α. J Gen Virol, 1997, 78:195-203
    18 Grohmann U, Belladonna ML, Vacca C, et al. Positive regulatory role of IL-12 in macrophages and modulation by IFN-γ. J Immunol, 2001, 167: 221-227
    19 冯作化,张桂梅,李东,等.CH50多肽体内激活巨噬细胞及其抗肿瘤作用研究.中国肿瘤生物治疗杂志,2000,7:28-31
    20 Nathan C, Xie QW. Nitric oxide synthase: roles, tolls, and controls. Cell, 1994, 78:915-919
    21 Liu CY, Wang CH, Lin TC. Increased level of exhaled nitric oxide and up-regulation of inducible nitric oxide synthase in patients with primary lung cancer. Br J Cancer, 1998, 78:534-541
    22 Son K, Kim YM. In vivo cisplatin exposed macrophages increase immunostimulant-induced nitric oxide synthesis for tumor cell killing. Cancer Res, 1995, 55: 5524-5527
    
    23 Kwon OD, Yim CY, Jeong KS, et al. Suppression of cytokine-inducible nitric oxide synthesis during intraperitoneal Meth A tumor growth. J Vet Med Sci, 2004, 66: 357-365
    24 Mills CD, Shearer J, Evans R, et al. Macrophage arginine metabolism and the inhibition or stimulation of cancer. J Immunol. 1992, 149: 2709-2714
    25 Yim CY, Bastian NR, Smith JC, et al. Macrophage nitric oxide symthesis delays progression of ultraviolet light induced murine skin cancer. Cancer Res, 1993,53:5507-5511
    26 Xie K, Huang S, Dong Z, et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med, 1995, 181: 1333-1343
    27 Juang SH, Xie K, Xu L, et al. Use of retroviral vectors encoding murine inducible nitric oxide synthase gene to suppress tumorigenicity and cancer metastasis of murine melanoma. Cancer Biother Radiopharm, 1997, 12:167-175
    28 Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med. 1994, 45: 491-503
    29 Brouckaert PG, Leroux-Roels GG, Guisez Y, et al. In vivo anti-tumor activity of recombinant human and murine TNF, alone and in combination with murine IFN-gamma, on a syngeneic murine melanoma. Int J Cancer, 1986, 38: 763-769
    30 Eskander ED, Harvey HA, Givant E, et al. Phase I study combining tumor necrosis factor with interferon-alpha and interleukin-2. Am J Clin Oncol, 1997,20:511-514
    31 Arinaga S, Karimine N, Takamuku K, et al. Enhanced production of interleukin 1 and tumor necrosis factor by peripheral monocytes after lentinan administration in patients with gastric carcinoma. Int J Immunopharnacol, 1992,14: 43-47
    32 Brunda MJ, Luistro L, Wwrrier RR, et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med , 1993, 178: 1223-1230
    33 Tahara H, Zitvogel L, Storkus WJ, et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol, 1995, 154: 6466-6474
    34 Yoshida Y, Tasaki K, Miyauchi M, et al. Impaired tumorigenicity of human pancreatic cancer cells retro virally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther, 2000, 7: 324-331
    35 Shinohara H, Yano S, Bucana CD, et al. Induction of chemokine secretion and enhancement of contact-dependent macrophage cytotoxicity by engineered expression of granulocyte-macrophage colony-stimulating factor in human colon cancer cells. J Immunol, 2000, 164: 2728-2737
    36 Yoon TJ, Yoo YC, Lee S-W, et al. Anti-metastatic activity of acanthopanax senticosus extract and its possible immunological mechanism of action. J Ethnopharmacol, 2004, 93: 247-253
    37 Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Thl/Th2 paradigm. J Immunol, 2000, 164: 6166-6173
    38 Mantovani A, Allacena P, Sica A. Tumor-associated macrophages as a polarised phagocyte population: role in tumor progression. Eur J Cancer, 2004,40: 1660-1667
    39 Mantovani A, Bottazzi B, Colotta F, et al. The origin and function of tumor-associated macrophages. Immunol Today, 1992, 13: 265-270
    40 Bastos KR, Alvarez JM, Marinho CR, et al. Macrophages from IL-12p40-deficient mice have a bias toward the M2 activation profile. J Leukoc Biol, 2002, 71: 271-278
    41 Bastos KR, Marinho CR, Barboza R, et al. What kind of message dose IL-12/IL-23 bring to macrophages and dendritic cells? Microbes Infect, 2004, 6: 630-636
    1 Funk JO. Cancer cell cycle control. Anticancer Res, 1999, 19:4772-4780
    2 Ivanchuk SM, Rutka JT. The cell cycle: accelerators, brakes, and checkpoints. Neurosurgery, 2004, 54:692-699
    3 Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control. Int J Clin Pract, 2004, 58:1134-1141
    4 Whittaker SR, Walton MI, Garrett MD, et al. The cyclin-dependent kinase inhibitor CYC202 (R-Roscovitine) inhibits retinoblastoma protein phosphorylation, causes loss of cyclin D1, and activates the mitogen-activated protein kinase pathway. Cancer Res, 2004, 64:262-272
    5 Pucci B, Kasten M, Giordano A. Cell cycle and apoptosis. Neoplasia, 2000, 2:291-299
    6 Chiou SK, Jones MK, Tarnawski AS. Survivin an anti-apoptosis protein: its biological roles and implications for cancer and beyond. Med Sci Monit, 2003, 9:143-147
    7 Sherr CJ. Cancer cell cycles. Science, 1996, 274:1672-1677
    8 Hartwell LH, Kastan MB. Cell cycle control and cancer. Science, 1994, 266:1821-1828
    9 Flatt PM, Pietenpol JA. Mechanisms of cell-cycle checkpoints: at the crossroads of carcinogenesis and drug discovery. Drug Metab Rev, 2000, 32:283-305
    10 Kim R, Tanabe K, Uchida Y, et al. Current status of the molecular mechanisms of anticancer drug-induced apoptosis. The contribution of molecular-level analysis to cancer chemotherapy. Cancer Chemother Pharmacol, 2002, 50:343-352
    11 Los M, Burek CJ, Stroh C, et al. Anticancer drugs of tomorrow: apoptotic pathways as targets for drug design. Drug Discov Today, 2003, 8:67-77
    12 Rossi D, Gaidano G. Messengers of cell death: apoptotic signaling in health and disease. Haematologica, 2003, 88: 212-218
    13 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-823
    14 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003,171: 600-607
    15 Shan BE, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitumor effects in nude mice. Anticancer Res, 2004, 24: 79-82
    16 Old LJ. Tumor necrosis factor (TNF). Science, 1985, 230: 630-632
    17 Lejeune FJ, Ruegg C, Lienard D. Clinical applications of TNF-alpha in cancer. Curr Opin Immunol, 1998, 10: 573-580
    18 Pusztai L, Lewis CE, McGee JO. Growth arrest of the breast cancer cell line, T47D, by TNF alpha; cell cycle specificity and signal transduction. Br J Cancer, 1993, 67: 290-296
    19 Warren DJ, Slordal L, Moore MA. Tumor-necrosis factor induces cell cycle arrest in multipotential hematopoietic stem cells: a possible radioprotective mechanism. Eur J Haematol, 1990, 45: 158-163
    20 Hu X, Buyington M, Fisher AB, et al. Ubiquitin/proteasome-dependent degradation of D-type cyclins is linked to tumor necrosis factor-induced cell cycle arrest. J Bio Chem, 2002, 277: 16528-16537
    21 Katschinski DM, Robins HI, Schad M, et al. Role of tumor necrosis factor alpha in hyperthermia-induced apoptosis of human leukemia cells. Cancer Res, 1999, 59: 3404-3410
    22 Fukui T, Matsui K, Kato H, et al. Significance of apoptosis induced by tumor necrosis factor-alpha and/or interferon-gamma against human gastric cancer cell lines and the role of the p53 gene. Surg Today, 2003, 33: 847-853
    23 Cullinan AE, Brandt CR. Cytokine induced apoptosis in human retinoblastoma cells. Mol Vis, 2004, 10: 315-322
    24 Shin EC, Ahn JM, Kim CH, et al. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int J Cancer, 2001, 93: 262-268
    25 Abadie A, Wietzerbin J. Involvement of TNF-related apoptosis-indiicing ligand (TRAIL) induction in interferon gamma-mediated apoptosis in Ewing tumor cells. Ann N YAcad Sci, 2003, 1010: 117-120
    26 Qiu H, Orr FW, Jensen D, et al. Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. A m J Pathol, 2003, 162: 403-412
    27 Wang B, Xiong Q, Shi Q, et al. Intact nitric oxide synthase II gene is required for interferon-beta-mediated suppression of growth and metastasis of pancreatic adenocarcinoma. Cancer Res, 2001, 61: 71-75
    28 Kim PK, Zamora R, Petrosko P, et al. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol, 2001, 1: 1421-1441
    29 Ikehara M, Oshita F, Kameda Y, et al. Expression of Survivin correlated with vessel invasion is a marker of poor prognosis in small adenocarcinoma of the lung. Oncol Pep, 2002, 9: 835-838
    30 Meng H, Lu C, Mabuchi H, et al. Prognostic significance and different properties of survivin splicing variants in gastric cancer. Cancer Lett, 2004,216: 147-155
    31 Tas F, Duranyildiz D, Argon A, et al. Serum bcl-2 and survivin levels in melanoma. Melanoma Res. 2004, 14: 543-546
    32 Ryan B, O'Donovan N, Browne B, et al. Expression of survivin and its splice variants survivin-2B and survivin-DeltaEx3 in breast cancer. Br J Cancer, 2005, 92: 120-124
    33 Ferrandina G, Legge F, Martinelli E, et al. Survivin expression in ovarian cancer and its correlation with clinic-pathological, surgical and apoptosis-related parameters. Br J Cancer, 2005, 92: 271-277
    34 Tu SP, Cui JT, Liston P, et al. Gene therapy for colon cancer by adeno-associated viral vector-mediated transfer of survivin Cys84Ala mutant. Gastroenterology. 2005, 128: 361-375
    35 Mesri M, Wall NR, Li J, et al. Cancer gene therapy using a survivin mutant adenovirus. J Clin Invest, 2001, 108: 981-990
    36 Gossman D, McNiff JM, Li F, et al. Expression of the apoptosis inhibitor, Survivin, in nonmelanoma skin canaer and gene targeting in a keratinocyte cell line. Lab Invest, 1999, 79: 1121-1126
    1 Fidler IJ. Cancer metastasis. British Medical Bulletin, 1991, 47:157-177
    2 Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 1991, 64:327-336
    3 Price JE, Aukerman SL, Fidler IJ. Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res, 1986, 46:5172-5178
    4 Fidler I J, Ellis LM. The implication of angioaenesis for the bioligy and therapy of cancer metastasis. Cell, 1994, 79:185-189
    5 Xie K, Huang S, Dong ZH, et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med, 1995, 181: 1333-1343
    6 Ravikumar TS, Gallos G. Resection of liver metastases: state of the art. Oncology(Huntingt), 2002, 16: 1240-1256
    7 Saltz LB, Kelsen DP. Adjuvant treatment of colorectal cancer. Annu Rev Med, 1997,48: 191-202
    8 Bonetti A. Hepatic artery infusion for liver metastases from colorectal cancer. Lancet, 2003, 361: 358-359
    9 Nakagawa R, Motoki K, Ueno H, et al. Treatment of hepatic metastasis of the colon26 adenocarcinoma with an alpha-galactosylceramide, KRN7000. Cancer Res, 1998, 58: 1202-1207
    10 Peron JM, Esche C, Subbotin VW, et al. FLT3-Ligand administration inhibits liver metastases: role of NK cells. J Immunol, 1998, 161: 6164-6170
    11 Huang H, Chen SH, Kosai K, et al. Gene therapy for hepatocellular carcinoma: long-term remission of primary and metastatic tumors in mice by interleukin-2 gene therapy in vivo. Gene Ther, 1996, 3: 980-987
    12 Takeda K, Seki S, Ogasawara K, et al. Liver NK1.1~+ CD4~+ alpha beta T cells activated by IL-12 as a major effector in inhibition of experimental tumor metastasis. J Immunol, 1996, 156: 3366-3373
    13 Chen SH, Pham-Nguyen KB, Martinet O, et al. Rejection of disseminated metastases of colon carcinoma by synergism of IL-12 gene therapy and 4-1BB costimulation. Mol Ther, 2000, 2: 39-46
    14 Kobayashi T, Shiiba K, Satoh M, et al. Interleukin-12 administration is more effective for preventing metastasis than for inhibiting primary established tumors in a murine model of spontaneous hepatic metastasis. Surg Today, 2002, 32: 236-242
    15 Itokawa Y, Mazda O, Ueda Y, et al. Interleukin-12 genetic administration suppressed metastatic liver tumor unsusceptible to CTL. Biochem Biophys Res Commun, 2004, 314: 1072-1079
    16 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-823
    17 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003, 171:600-607
    18 Shah BE, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitumor effects in nude mice. Anticancer Res, 2004, 24:79-82
    19 Siders WM, Wright PW, Hixon JA, et al. T cell- and NK cell-independent inhibition of hepatic metastases by systemic administration of an IL-12-expressing recombinant adenovirus. J Immunol, 1998, 160: 5465-5474
    20 许勤,吴文溪,马利民,等.小鼠结肠腺癌肝转移模型的建立.实用癌症杂志,2000,15:456-457
    21 Wiltrout RH. Regulation and antimetastatic functions of liver-associated natural killer cells. Immunol Rev, 2000, 174:63-76
    22 Nakagawa R, Serizawa I, Motoki K, et al. Antitumor activity of α-galactosylceramide, KRN7000, in mice with the melanoma B16 hepatic metastasis and immunohistological study of tumor infiltrating cells. Oncol Res, 2002, 12:51-58
    23 Osada T, Nagawa H, Shibata Y. Tumor-infiltrating effector cells of α-galactosylceramide-induced antitumor immunity in metastatic liver tumor. J Immune Based Thera and Vaccines, 2004, 2:7-16
    24 Li L, Kilboum RG, Adams J, et al. Role of nitric oxide in lysis of tumor cells by cytokine-activated endothelial. Cancer Res, 1991, 51:2531-2553
    25 Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB (Fed Am Soc Exp Biol) J, 1992, 6:3051-3064
    26 Stuehe D J, Nathan G. Nitric oxide: a macrophage product responsible for cytostasis and respiratory inhibition in tumor target cells. J Exp Med, 1989, 169:1543-1555
    27 Ignarro LI, Buga GM, Wood KS, et al. Endothelium-drived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci USA, 1990, 84: 9265-9269
    28 Radomski MW, Palmer RMJ, Moncada S. An L-arginine/nitric oxide pathway in human platelets regulates aggregation. Pro Natl Acad Sci USA, 1990, 101:325-328
    29 Xie K, Huang S, Dong Z, et al. Cytokine-induced apoptosis in transformed murine fibroblasrs involves synthesis of endogenous nitric oxide. Int J Onco, 1993, 3: 1043-1047
    30 Kim PK, Zamora R, Petrosko P, et al. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol, 2001, 1: 1421-1441
    31 Qiu H, Orr FW, Jensen D, et al. Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol, 2003, 162: 403-412
    32 Wang B, Xiong Q, Shi Q, et al. Intact nitric oxide synthase II gene is required for interferon-beta-mediated suppression of growth and metastasis of pancreatic adenocarcinoma. Cancer Res, 2001, 61: 71-75
    33 Dong Z, Staroselsky AH, Qi X, et al. Inverse correlation between expression of inducible nitric oxide synthase activity and production of metastasis in K-1735 murine melanoma cells. Cancer Res, 1994, 54: 789-793
    34 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13: 715-725
    35 Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol, 2002, 168: 5448-5454
    1 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-823
    2 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003, 171:600-607
    3 Shan BE, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitumor effects in nude mice. Anticancer Res, 2004, 24:79-82
    4 Novakovic S, Ihan A, Jexersek B. Effectiveness of a simply designed tumor vaccine in prevention of malignant melanoma development. Jpn J Cancer Res, 1999, 90:1130-1138
    5 Parney LF, Chang LJ. Cancer immunogene therapy: a review. J Biomed Sci, 2003, 10:37-43
    6 Knutson KL, Schiffman K, Rinn K, et al. Immunotherapeutic approaches for the treatment of breast cancer. J Mammary Gland Biol Neoplasia, 1999, 4:353-365
    7 Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Immunother, 2004, 305:200-205
    8 Tagawa M. Cytokine therapy for cancer. Curr Pharm Des, 2000, 6: 681-699
    9 Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Nature, 1996, 283: 787-793
    10 Kowalczyk DW, Wysocki PJ, Mackiewicz A. Cancer immunotherapy using cells modified with cytokine gene. Acta Biochimic Polonic, 2003, 50:613-624
    11 Hull DW, McCurdy MA, Nasu Y, et al. Prostate cancer gene therapy: comparison of adenovirus-mediated expression of interleukin 12 with interleukin 12 plus B7-1 for in situ gene therapy and gene-modified, cell-based vaccines. Clin Cancer Res, 2000, 6: 4101-4109
    12 Connor J, Bannerji R, Saito S, et al. Regression of bladder tumors in mice treated with interleukin 2 gene-mediated tumor cells. J Exp Med, 1993, 177: 1127-1134
    13 Karp S, Farber A, Salo JC, et al. Cytokine secretion by genetically modified nonimmunogenic murine fibrosarcoma. Tumor inhibition by IL-2 but not tumor necrosis factor. J Immunol, 1993, 150: 896-908
    14 Sobol RT, Shawler DI, Carson C, et al. Interleukin 2 gene therapy of colorectal carcinoma with autologous irradiated tumour cells and genetically engineered fibroblasts: a phase I study. Clin Cancer Res, 1999, 5: 2359-2365
    15 Porgador A, Tzehoval E, Katz A, et al. Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res, 1992, 52: 323-388
    16 Tahara H, Zitvogel L, Storkus WJ, et al. Effective eradication of established murine tumors with IL-12 gene therapy using a polycistronic retroviral vector. J Immunol, 1995, 154: 6466-6474
    17 Yoshida Y, Tasaki K, Miyauchi M, et al. Impaired tumorigenicity of human pancreatic cancer cells retrovirally transduced with interleukin-12 or interleukin-15 gene. Cancer Gene Ther, 2000, 7: 324-331
    18 Gansbacher B, Bannerji R, Daniels B, et al. Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting antitumor immunity. Cancer Res, 1990, 50: 7820-7825
    19 Tanaka H, Yoshizawa H, Yamaguchi Y, et al. Successful adoptive immunotherapy of murine poorly immunogenic tumor with specific effector cells generated from gene-modified tumor-primed lymph node cells. J Immunol, 1999, 162: 3574-3582
    20 Abe J, Wakimoto H, Yoshida y, et al. Antitumor effect induced by granulocyte/macrophage-colony-stimulating factor gene-modified tumor vaccination comparison of adenovirus and retrovirus mediated genetic transduction. J Cancer Res Clin Oncol, 1995, 121: 587-592
    21 Nelson WG, Simons JW, Mikhak B, et al. Cancer cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer as vaccines for the treatment of genitourinary malignancies. Cancer Chemther Pharmacol, 2000, 46(suppl): S67-72
    22 Ellem KA, O'Rourke MG, Johnson GR, et al. A case report: immune response and clinical course of the first human use of granulocyte/ macrophage-colony-stimulating-factor-transduced autologous melanoma cells for immunotherapy. Cancer Immunol Immunother, 1997, 44: 10-20
    23 Simons JW, Jaffee EM, Weber CE, et al. Bioactivity of autologous irradiated renal cell carcinoma vaccines generated by ex vivo granulocyte-macrophage colony-stimulating factor gene trasfer. Cancer Res, 1997,57: 1573-1546
    24 Simons JW, Mikhak b, Chang JF, et al. Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony-stimulating factor using ex vivo gene transfer. Cancer Res, 1999, 59: 160-168
    25 Dranoff G, Soiffer R, Lynch T, et al. A phase I study of vaccination with autologous, irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor. Hum Gene Ther, 1997,8: 111-123
    26 Oppmann B, Lesley R, Blom B, et al. Novel pl9 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13: 715-725
    27 Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have overlapping, but distinct, effects on murine dendritic cells. J Immunol, 2002, 168: 5448-5454
    28 Tracey KJ, Cerami A. Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med, 1994, 45: 491-503.
    29 Eskander ED, Harvey HA, Givant E, et al. Phase I study combining tumor necrosis factor with interferon-alpha and interleukin-2. Am J Clin Oncol, 1997,20:511-514.
    30 Fukui T, Matsui K, Kato H, et al. Significance of apoptosis induced by tumor necrosis factor-alpha and/or interferon-gamma against human gastric cancer cell lines and the role of the p53 gene. Surg Today, 2003, 33: 847-853
    31 Shin EC, Ahn JM, Kim CH, et al. IFN-gamma induces cell death in human hepatoma cells through a TRAIL/death receptor-mediated apoptotic pathway. Int J Cancer, 2001, 93: 262-268
    32 Katschinski DM, Robins HI, Schad M, et al. Role of tumor necrosis factor alpha in hyperthermia-induced apoptosis of human leukemia cells. Cancer Res, 1999, 59: 3404-3410
    33 Qiu H, Orr FW, Jensen D, et al. Arrest of B16 melanoma cells in the mouse pulmonary microcirculation induces endothelial nitric oxide synthase-dependent nitric oxide release that is cytotoxic to the tumor cells. Am J Pathol, 2003,162: 403-412
    34 Kim PK, Zamora R, Petrosko P, et al. The regulatory role of nitric oxide in apoptosis. Int Immunopharmacol, 2001, 1: 1421-1441
    35 Moretao MP, Zampronio AR, Gorin PAJ, et al. Induction of secretory and tumoricidal activities in peritoneal macrophages activated by an acidic heteropolysaccharide(ARAGAL) from the gum of anadenanthera colubrina(Angico branco). Immunol Lett, 2004, 93: 189-197
    1 Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity, 2000, 13: 715-725.
    2 Zou J, Presky DH, Wu CY, et al. Differential associations between the cytoplasmic regions of the interleukin- 12 receptor subuits betal and beta2 and JAK kinases. J Biol Chem, 1997, 272: 7073-6077.
    3 Presky DH, Yang H, Minetti L J, et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci USA, 1996, 93:14002-14007
    4 Parham C, Chiria M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rβ1 and a novel cytokine receptor subunit, IL-23R. J Immunol, 2002, 168:5699-5708
    5 Eijnden SV, Goriely S, De Wit D, et al. IL-23 up-regulates IL-10 and induces IL-17 synthesis by polyclonally activated naive T cells in human. Eur J Immunol, 2005, 35:469-475
    6 Jefford M, Schnurr M, Toy T, et al. Functional comparison of DCs generated in vivo with Flt3 ligand or in vitro from blood monocytes: differential regulation of function by specific classes of physiologic stimuli. Blood, 2003, 102:1753-1763
    7 Smits HH, van Beelen A J, Hessle C, et al. Commensal gram-negative bacteria prime human dendritic cells for enhanced IL-23 and IL-27 expression and enhanced Th1 development. Eur J Immunol, 2004, 34: 1371-1380
    8 Schnurr M, Toy T, Shin A, et al. Extracellular nucleotide signaling by P2 receptors inhibits IL-12 and enhances IL-23 expression in human dendritic cells: a novel role for the cAMP pathway. Blood, 2005, 105: 1582-1589
    9 Happel KI, Zheng M, Young E, et al. Cutting edge: roles of Toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. J Immunol, 2003, 170:4432-4436
    10 Veckman V, Miettinen M, Pirhonen J, et al. Streptococcus pyogenes and Lactobacillus rhamnosus differentially induce maturation and production of Thl-type cytokines and chemokines in human monocyte-derived dendritic cells. J Leukoc Biol, 2004, 75:764-771
    11 van Seventer JM, Nagai T, van Seventer GA. Interferon-beta differentially regulates expression of the IL-12 family members p35, p40, p19 and EBI3 in activated human dendritic cells. J Neuroimmunol, 2002, 133:60-71
    12 Sheibanie AF, Tadmori I, Jing H, et al. Prostaglandin E2 induces IL-23 production in bone marrow-derived dendritic cells. FASEB J, 2004, 18: 1318-1320
    13 Becket C, Wirtz S, Blessing M, et al. Constitutive p40 promoter activation and IL-23 production in the terminal ileum mediated by dendritic cells. J Clin Invest, 2003, 112:693-706
    14 Tada Y, O-Wang J, Yu L, et al. T-cell-dependent antitumor effects produced by CD40 ligand expressed on mouse lung carcinoma cells are linked with the maturation of dendritic cells and secretion of a variety of cytokines. Cancer Gene Ther, 2003, 10:451-456
    15 Mills CD, Kincaid K, Alt JM, et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immrnol, 2000, 164:6166-6173
    16 Bastos KR, Marinho CR, Barboza R, et al. What kind of message does IL-12/IL-23 bring to macrophages and dendritic cells? Microbes Infect, 2004, 6:630-636
    17 Verreek FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria. Proc Natl Acad Sci USA, 2004, 101:4560-4565
    
    18 Pirhonen J, Matikainen S, Julkunen I. Regulation of virus-induced IL-12 and IL-23 expression in human macrophages. J Immunol, 2002, 169: 5673-5678
    
    19 Li J, Gran B, Zhang GX, et al. Differential expression and regulation of IL-23 and IL-12 subunits and receptors in adult mouse microglia. J Neurol Sci, 2003, 215: 95-103
    
    20 Ma XT, Zhang XJ, Zhang B, et al. Expression and regulation of interleukin-23 subunits in human peripheral blood mononuclear cells and hematopoietic cell lines in response to various inducers. Cell Biol Int, 2004, 28: 689-697
    
    21 Begum NA, Ishii K, Kurita-Taniguchi M, et al. Mycobacterium bovis BCG cell wall-specific differentially expressed genes identified by differential display and cDNA subtraction in human macrophages. Infect Immun, 2004, 72: 937-948
    
    22 Zhang Z, Andoh A, Yasui H, et al. Interleukin-1beta and tumor necrosis factor-alpha upregulate interleukin-23 subunit p19 gene expression in human colonic subepithelial myofibroblasts. Int J Mol Med, 2005, 15: 79-83
    
    23 Langrish CL, McKenzie BS, Wilson NJ, et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol Rev, 2004, 202: 96-105
    
    24 Abbas AK, Murphy KM, Sher A. Functional diversity of helper T lymphocytes. Natnre, 1996, 383: 787-793
    
    25 Trinchieri G. Interleukin-12: A proinflammatory cytokine with immunoregulatory function that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol, 1995, 13: 251-276
    
    26 Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/interleukin-12 receptor system: role in nomal and pathologic immue responses. Annu Rev Immunol, 1998, 16: 495-521
    
    27 Hsieh CS, Macatonia SE, Tripp CS, et al. Development of ThlCD4~+T cells through IL-12 produced by Listeria-induced macrophages. Science, 1993,260:547-549
    
    28 Ghilardi N, Kljavin N, Chen Q, et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol, 2004, 172: 2827-2833
    
    29 Lubberts E, Koenders MI, van den Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther, 2005, 7: 29-37
    30 Kolls JK, Linden A. Interleukin-17 family members and inflammation. Immunity, 2004, 21: 467-476
    31 Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J Biol Chem, 2003, 278: 1910-1914
    32 Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med, 2005,201:233-240
    33 Belladonna ML, Renauld JC, Bianchi R, et al. IL-23 and IL-12 have overlapping, but distinct effects on murine dendritic cells. J Immunol, 2002, 168: 5448-5454
    34 Bastos KR, Barboza R, Elias RM, et al. Impaired macrophage responses may contribute to exacerbation of blood-stage Plasmodium chabaudi chabaudi malaria in interleukin-12-deficient mice. J Interferon Cytokine Res, 2002, 22: 1191-1199
    35 Bastos KR, Alvarez JM, Marinho CR, et al. Macrophages from IL-12p40-deficient mice have a bias toward the M2 activation profile. J Leukoc Biol, 2002, 71: 271-278
    36 Stark MA, Huo Y, Burcin TL, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, 22: 285-94
    37 Wiekowski MT, Leach MW, Evans EW, et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J Immunol, 2001, 166: 7563-7570
    
    38 Gran B, Zhang GX, Rostami A. Role of the IL-12/IL-23 system in the regulation of T-cell responses in central nervous system inflammatory demyelination. Crit Rev Immunol, 2004, 24: 111-128
    39 Gran B, Zhang GX, Yu S, et al. IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol, 2002, 169: 7104-7110
    40 Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature, 2003, 421: 744-748
    41 Zhang GX, Gran B, Yu S, et al. Induction of experimental autoimmune encephalomyelitis in IL-12 receptor-beta2-deficient mice: IL-12 responsiveness is not required in the pathogenesis of inflammatory demyelination in the central nervous system. J Immunol, 2003, 170: 2153-2160
    42 Zhang GX, Yu S, Gran B, et al. Role of IL-12 receptor beta 1 in regulation of T cell response by APC in experimental autoimmune encephalomyelitis. J Immunol, 2003, 171: 4485-4492
    43 Uyttenhove C, Arendse B, Stroobant V, et al. Development of an anti-IL-12p40 auto-vaccine: protection in experimental autoimmune encephalomyelitis at the expense of increased sensitivity to infection. Eur J Immunol, 2004, 34: 3572-3581
    44 Lee E, Trepicchio WL, Oestreicher JL, et al. Increased expression of interleukin 23p19 and p40 in lesional skin of patients with psoriasis vulgaris. J Exp Med, 2004, 199: 125-130
    45 Piskin G, Tursen U, Sylva-Steenland RM, et al. Clinical improvement in chronic plaque-type psoriasis lesions after narrow-band UVB therapy is accompanied by a decrease in the expression of IFN-gamma inducers ~ IL-12, IL-18 and IL-23. Exp Dermatol, 2004, 13: 764-772
    46 Murphy CA, Langrish CL, Chen Y, et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J Exp Med, 2003, 198: 1951-1957
    47 Sarkar S, Fox DA. Dendritic cells in rheumatoid arthritis. Front Biosci, 2005, 10: 656-665
    48 Lubberts E, Koenders MI, van den Berg WB. The role of T cell interleukin-17 in conducting destructive arthritis: lessons from animal models. Arthritis Res Ther, 2005, 7: 29-37
    49 Kim KW, Cho ML, Park MK, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor κB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther, 2005, 7: R139-148
    50 Broberg EK, Setala N, Eralinna JP, et al. Herpes simplex virus type 1 infection induces upregulation of interleukin-23 (p19) mRNA expression in trigeminal ganglia of BALB/c mice. J Interferon Cytokine Res, 2002, 22:641-651
    51 Elsawa SF, Bost KL. Murine gamma-herpesvirus-68-induced IL-12 contributes to the control of latent viral burden, but also contributes to viral-mediated leukocytosis. J Immunol, 2004,172: 516-524
    52 Lee S, French MA, Price P. IL-23 and IFN-gamma deficiency in immunodeficient HIV patients who achieved a long-term increase in CD4 T-cell counts on highly active antiretroviral therapy. AIDS, 2004, 18: 1337-1340
    53 Novelli F, Casanova JL. The role of IL-12, IL-23 and IFN-gamma in immunity to viruses. Cytokine Growth Factor Rev, 2004, 15: 367-377
    54 Matsui M, Moriya O, Belladonna ML, et al. Adjuvant activities of novel cytokines, interleukin-23 (IL-23) and IL-27, for induction of hepatitis C virus-specific cytotoxic T lymphocytes in HLA-A*0201 transgenic mice. J Virol, 2004, 78: 9093-9104
    55 Ha SJ, Kim DJ, Baek KH, et al. IL-23 induces stronger sustained CTL and Thl immune responses than IL-12 in hepatitis C virus envelope protein 2 DNA immunization. J Immunol, 2004, 172:525-531
    56 Holscher C, Atkinson RA, Arendse B, et al. A protective and agonistic function of IL-12p40 in mycobacterial infection. J Immunol, 2001, 167: 6957-6966
    57 Cooper AM, Kipnis A, Turner J, et al. Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J Immunol, 2002, 168: 1322-1327
    58 MacLennan C, Fieschi C, Laminas DA, et al. Interleukin (IL)-12 and IL-23 are key cytokines for immunity against Salmonella in humans. J Infect Dis, 2004, 190:1755-1757
    59 Fieschi C, Bosticardo M, de Beaucoudrey L, et al. A novel form of complete IL-12/IL-23 receptor betal deficiency with cell surface-expressed nonfunctional receptors. Blood, 2004, 104:2095-2101
    60 Bosticardo M, Witte I, Fieschi C, et al. Retroviral-mediated gene transfer restores IL-12 and IL-23 signaling pathways in T cells from IL-12 receptor betal-deficient patients. Mol Ther, 2004, 9:895-901
    61 Lieberman LA, Cardillo F, Owyang AM, et al. IL-23 provides a limited mechanism of resistance to acute toxoplasmosis in the absence of IL-12. J Immunol, 2004, 173:1887-1893
    62 Lo CH, Lee SC, Wu PY, et al. Antitumor and antimetastatic activity of IL-23. J Immunol, 2003, 171:600-607
    63 Wang YQ, Ugai S, Shimozato O, et al. Induction of systemic immunity by expression of interleukin-23 in murine colon carcinoma cells. Int J Cancer, 2003, 105:820-824
    64 郝京生,单保恩,李巧霞,等.逆转录病毒介导的小鼠IL-23基因在小鼠结肠癌细胞中的表达及其抗肿瘤活性.细胞与分子免疫学杂志,2005,21:226-228
    65 Ugai S, Shimozato O, Yu L, et al. Transduction of the IL-21 and IL-23 genes in human pancreatic carcinoma cells produces natural killer cell-dependent and -independent antitumor effects. Cancer Gene Ther, 2003, 10:771-778
    66 Shan B, Yu L, Shimozato O, et al. Expression of interleukin-21 and -23 in human esophageal tumors produced antitumor effects in nude mice. Anticancer Res, 2004, 24: 79-82
    67 Chiyo M, Shimozato O, Iizasa T, et al. Antitumor effects produced by transduction of dendritic cells-derived heterodimeric cytokine genes in murine colon carcinoma cells. Anticancer Res, 2004, 24: 3763-3767
    68 Wang LX, Huang WX, Graor H, et al. Adoptive immunotherapy of cancer with polyclonal, 10~8-fold hyperexpanded, CD4~+ and CD8~+ T cells. J Transl Med, 2004, 2: 41
    69 Liebau C, Roesel C, Schmidt S, et al. Immunotherapy by gene transfer with plasmids encoding IL-12/IL-18 is superior to IL-23/IL-18 gene transfer in a rat osteosarcoma model. Anticancer Res, 2004, 24: 2861-2867
    70 Frucht DM, Fulcao T, Bogdan C, et al. IFN-y production by antigen-presenting cells: mechanisms emerge. Trends Immunol, 2001, 22: 556-560
    71 Tagawa M. Cytokine therapy for cancer. Curr Pharm Des, 2000, 6: 681-699
    72 Leonard LP, Sherman ML, Dutcher N, et al. Effect of single-dose interleukin-12 exposure on interleukin-12-associted toxicity and interferon-y production. Blood, 1997, 90: 2541-2548
    73 Tasaki K, Yoshida Y, Maeda T, et al. Protective immunity is induced in murine colon carcinoma cells by the expression of interleukin-12 or interleukin-18, which activate type 1 helper T cells. Cancer Gene Ther, 2000, 7: 247-254
    74 Lishtor T, Glick RP, Cytokine immuno-gene therapy for treatment of brain tumors. J Neurooncol, 2003, 65: 247-259
    75 Kowalczyk DW, Wysocki PJ, Mackiewicz A. Cancer immunotherapy using cells modified with cytokine genes. Acta Biochiln Pol, 2003, 50: 613-624

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700