用户名: 密码: 验证码:
MIMO雷达的目标检测与波达方向估计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着雷达和多输入多输出(Multi-input multi-output,MIMO)通信技术的快速发展,雷达与MIMO通信交融建立起来的MIMO雷达受到人们的广泛关注。目前的MIMO雷达研究主要集中在统计MIMO雷达(Statistical MIMO,SMIMO)和相干MIMO雷达(Colocated MIMO,CMIMO)这两种不同形式的MIMO系统:SMIMO雷达收发单元间距足够大,以此获得空间分集提高雷达性能;CMIMO雷达则是在传统相控阵雷达的基础上引入发射波形分集的思想,通过形成虚拟孔径提高雷达性能。
     与传统雷达相比,MIMO雷达在目标检测、参数估计、机动目标跟踪、以及目标识别与分类等应用领域都具有显著的性能优势。本文根据MIMO雷达的研究进展,在前人工作的基础上,主要对MIMO雷达的目标检测和波达方向(Direction of Arrival,DOA)估计几个问题进行了研究和探讨。在目标检测方面,研究了机载SMIMO雷达在未知统计特性干扰(由空时二维杂波和热噪声构成)背景下,基于自适应匹配滤波(Adaptive Matched Filter,AMF)和基于图像特征的目标检测技术,并探讨了空间分集特性对检测性能的改善。在DOA估计方面,首先研究了两类MIMO雷达在对称α稳定(Symmetricα-Stable,SαS)冲击杂波背景下的DOA估计算法,并探讨了SMIMO雷达的空间分集特性和CMIMO雷达的虚拟孔径特性对各自DOA估计性能的改善;然后研究了CMIMO雷达对相干分布式目标(Coherently distributed targets,CDT)DOA估计的克拉美-罗下限(Cramer-Rao bounds,CRB)。
     本文的主要工作和贡献总结如下:
     1基于AMF的机载SMIMO雷达目标检测技术
     (1)针对机载SMIMO雷达在未知统计特性的空时二维干扰中目标检测问题,本文将单基地雷达的AMF检测器推广到机载SMIMO雷达。首先研究了SMIMO-AMF检测器,推导出其检测概率和虚警概率的闭合表达式。然后,基于机载SMIMO雷达干扰协方差矩阵的块对角特性,推导出一种简化SMIMO-AMF检测器,大大减小算法的复杂度;并在两个接收通道的情形下,推导出简化SMIMO-AMF检测器检测概率和虚警概率的表达式。研究结果表明,SMIMO-AMF检测器和简化SMIMO-AMF检测器相对于干扰协方差矩阵都具有恒虚警特性,并且这两种检测器能够利用SMIMO雷达的空间分集特性,在未知统计特性的空时干扰背景下有效检测目标。
     (2)SMIMO-AMF检测器和简化SMIMO-AMF检测器都需要对干扰协方差矩阵估计值求逆,在独立同分布(Independent and Identically Distributed,ⅡD)参考单元数据不足时会引起估计协方差矩阵的病态,从而使检测性能急剧下降。针对该问题,本文将对角加载技术应用到SMIMO-AMF检测器和简化SMIMO-AMF检测器中,研究了相应的对角加载检测器(SMIMO-LAMF检测器和简化SMIMO-LAMF检测器),并对它们的检测性能进行了理论分析。研究结果表明,SMIMO-LAMF检测器和简化SMIMO-LAMF检测器利用对角加载技术有效改善了估计协方差矩阵的数值特性,从而解决了因参考数据不足所引起的矩阵病态问题;同时这两种检测器相对于干扰协方差矩阵都具有恒虚警特性,并且能利用空间分集改善目标检测性能。
     2基于图像特征的机载SMIMO雷达目标检测技术
     对角加载技术能够改善干扰协方差矩阵估计值的数值特性,从而提高SMIMO-AMF和简化SMIMO-AMF检测器的鲁棒性。然而,对角加载技术并不能从本质上减小干扰协方差矩阵估计所需ⅡD参考单元的数量。本文将基于图像特征的空时处理技术(Image Feature Space-Time Processing,IFSTP)推广到机载SMIMO雷达中,研究了一种新的基于图像特征的SMIMO雷达检测器(SMIMO-IFSTP)。该检测器能有效利用机载SMIMO雷达的空间分集减小目标RCS起伏特性和小径向速度对检测性能的影响,并基于目标信号与干扰信号之间不同的图像特征,无需估计干扰协方差矩阵即可有效检测地面动目标。
     3 SαS冲击杂波下两类MIMO雷达的DOA估计算法
     近年来,大量实验数据表明雷达接收到的杂波信号具有一定的冲击性,适用于SαS分布过程来表示。由于SαS冲击杂波不存在二阶及以上矩,因此传统基于二阶及以上统计量的DOA估计算法不能直接用于SαS冲击杂波下MIMO雷达的DOA估计。针对这一问题,本文利用分数低阶统计量和无穷范数归一化的思想,对MIMO雷达接收数据进行预处理,获取有界统计量,然后应用传统DOA估计方法实现目标的DOA估计。
     (1)在SαS冲击杂波背景下SMIMO雷达的研究方面,首先分别采用分数低阶统计量和无穷范数归一化的思想对接收数据进行预处理,然后将传统Capon算法拓展到SMIMO雷达中进行DOA估计。基于分数低阶预处理的Capon算法在杂波特征指数已知或正确估计的条件下,首先对接收数据进行预处理获得有界的分数低阶协方差矩阵,然后在保证期望方向增益不变的条件下,使SMIMO雷达接收阵列分数低阶功率最小,实现DOA估计。基于无穷范数归一化的Capon算法无需杂波特征指数的先验信息,该方法首先将SαS冲击杂波转化为零均值、有限方差的杂波,继而采用传统Capon算法进行DOA估计。结果表明通过对数据进行预处理能较大改善SMIMO雷达在SαS冲击杂波背景下的DOA估计性能,同时SMIMO雷达的空间分集特性也可显著提高DOA估计的精度。
     (2)在业已开展的CMIMO雷达的DOA估计研究中,通常假设整个虚拟阵元间的间距不大于半波长,并且假设杂波服从高斯分布。当阵元间距大于半波长时,会产生DOA估计的模糊问题。针对这些问题,本文给出了一种SαS冲击杂波下,高精度无模糊的DOA估计算法。该方法基于发射天线间距等于半个波长、接收天线间距稀疏的CMIMO雷达天线配置结构,首先采用无穷范数归一化对接收数据进行预处理;然后对于预处理数据,基于PM(Propagator Method),利用CMIMO雷达虚拟孔径中半波长的空间旋转不变性获得一组低精度无模糊的DOA估计值,利用大于半波长的空间旋转不变性获得一组高精度模糊的DOA估计值:最后用无模糊估计值解模糊估计值得到最终的DOA估计值。该方法无需谱峰搜索和对预处理数据的协方差矩阵进行特征分解,具有较小的运算量。
     4 CMIMO雷达对CDT目标DOA估计的CRB研究
     这一部分研究了CMIMO雷达在高斯白噪声下对CDT目标DOA估计的CRB,揭示出CMIMO雷达的CDT目标DOA估计性能。首先,推导了CDT目标DOA估计CRB的一般关系式;然后,给出一个CDT目标和CDT目标部分信息已知等特殊情况下的CRB;最后,分析了CMIMO雷达对一个CDT目标DOA估计CRB的性质。研究结果表明CMIMO雷达对CDT目标DOA估计的CRB性能优于传统相控阵雷达,并且CMIMO雷达CDT目标DOA估计的CRB的性能低于对点目标的估计性能。
With the recent development in radar and multi-input multi-output(MIMO) communication techniques,MIMO radar has received vibrant attentions for radar engineers.The MIMO radars can be grouped into two classes:statistical MIMO(SMIMO) radar and co-located MIMO(CMIMO) radar.SMIMO radar is one with its transmitting and/or receiving elements separated far away from each other to achieve spatial diversity gain,while CMIMO radar applies waveform diversity to traditional phased array to form virtual aperture.
     In comparison with traditional radars,MIMO radars show performance advantages in target detection,parameter estimation,maneuvering target tracking,target identification and classification.On the basis of previous advances in MIMO radars,this dissertation investigates target detection and direction of arrival estimation(DOA) for MIMO radars.In the target detection,adaptive matched filter(AMF) based and image feature based target detection techniques are studied for airborne SMIMO radar in the presence of interference (including clutter and noise) with unknown statistical properties.Also disscussed here is the performance improvement by exploiting spatial diversity in SMIMO radar.In the DOA estimation studies,traditional DOA estimators are extended to SMIMO and CMIMO radars under symmetricα-stable(SαS) impulsive clutter environments.Performance improvements achieved by exploiting the inherent properties in MIMO radars are discussed.The Cramer-Rao Bounds(CRB) for estimating DOA of coherently distributed target(CDT) using CMIMO radar are finally studied.
     The main works and contributions are summarized as follows:
     1.Investigations on AMF based target detection technique for airbome SMIMO radar
     (1) The AMF detector for SMIMO radar is studied under interference with unknown statistical properties.Firstly,an SMIMO-AMF detector is proposed,and closed-form expressions of detection probability and false alarm probability are derived.Secondly,a simplified SMIMO-AMF detector is developed with the block diagonal property of interference covariance matrix to reduce the computational complexity,and a closed form expression of the detection performance is given for the special case of two receiving channels.The results show that the two detectors have constant false alarm rate(CFAR) with respect to the interference covariance matrix,and can effectively detect targets by exploiting the spatial diversity of SMIMO radar.
     (2) In both SMIMO-AMF detector and simplified SMIMO-AMF detector,it is required to compute the inverse matrix of the interference covariance matrix estimate.The independent and identically distributed(ⅡD) secondary data are often insufficient.The insufficient secondary data will cause the estimated interference covariance matrix being ill conditioned and therefore result in serious degradation in detection performance.This dissertation suggests the application of diagonal loading technique to SMIMO-AMF and simplified SMIMO-AMF detector.Two corresponding loaded detectors(SMIMO-LAMF and simplified SMIMO-LAMF detector) are developed and their performace are theoretically studied.Theoretical analyses indicate that the two loaded detectors have CFAR with respect to the interference covariance matrix.Simulation results show that the loaded detectors can improve the numerical condition of the estimated covariance matrix, and can improve detection performance by exploiting the spatial diversity of SMIMO
     2.Investigations on image feature based target detection technique for airborne SMIMO radar
     The diagonal loading technique can improve the numerical condition of the estimated interference covariance matrix and the robustness of the AMF detectors.However,it can not reduce the requirement on the secondary data for covariance matrix estimation.This dissertation try to extend image feature space-time processing to airborne SMIMO radar and develop a new image feature based detector(SMIMO-IFSTP).The research shows that SMIMO-IFSTP detector can improve the detection performance by exploiting the spatial diversity to combat detection performance degradations induced by fluctuations of target radar cross section and small radial velocity of target,and can effectively detect ground moving targets without any requirement for interference covadance estimation by exploiting the distinct image features of targets and interference signals in the angle-Doppler domain.
     3.Investigations on DOA estimation for SMIMO radar and CMIMO radar in SαS impulsive clutter
     A lot of practical measurements have shown that radar clutter have impulsive characteristics,and can be well modeled as SαS distribution.The SαS distributions do not prossess finite second-order or higher moments.Consequently,many traditional DOA estimation algorithms can not be directly adapted to SαS impulsive clutters under stable law.To migitate the effects of SαS impulsive clutters,two pre-processing techniques, fractional lower order statistic(FLOS) and infinity-norm normalization,are suggested. With the pre-proceessed data,the tranditional DOA estimation algorithms can be used for MIMO radar to perform DOA estimations.
     (1) For SMIMO radar application,traditional Capon algorithm is applied after pre-processing.The FLOS-based Capon algorithm requires the clutter characteristic exponent value prior known or correctly estimated,whereas the infinity-norm normalization based Capon algorithm can work without these information.Computer simulations verify the effectiveness of the two pre-processing methods.The results also show that spatial diversity of SMIMO radar can improve the precision of DOA estimation in SαS impulsive clutter.
     (2) Most of the present DOA estimation algorithms for CMIMO radar assume the virtual sensor-spacing within a half-wavelength and assume Gaussian additive clutter. Extending virtual sensor-spacing beyond a half-wavelength could cause ambiguous DOA estimates.To settle these problems,this dissertation presents a new high-accurate unambiguous DOA estimation algorithm for CMIMO radar under SαS impulsive clutter. With transmit antennas spacing at a half-wavelength and receive antennas spacing beyond a half-wavelength,the proposed algorithm firstly utilizes the infinity-norm normalization to pre-process the received signal.Then,by exploiting the propagator method,the proposed algorithm uses the half-wavelength invafiance to yield high-variance but unambiguious DOA estimates and uses the larger invafiance to produce a set of cyclically ambiguous low-variance DOA estimates.Finally the high-variance estimates are served as a coarse reference to disambiguate the ambiguous low-variance DOA estimates.The new algorithm does not require the eigen-decomposition and spectral searching,hence,showing low computational complexity.
     4.Investigations on CRB for estimating DOA of CDT with CMIMO radar
     This part studies the CRB for estimating DOA of CDT with CMIMO radar,and reveals the fundamental performances of CMIMO radar.Firstly,the general CRB expression is derived.Then,several special cases such as a CDT and a CDT with partial information are discussed in detail.Finally,the CRB properties for estimating a CDT are discussed.The results show that the CMIMO radar is superior to the traditional phased array radar in estimating the CDT parameters,and the CRB on estimating point target is superior to CDT for CMIMO radar.
引文
[1]向敬成,张明友.雷达系统,北京:电子工业出版社,2003.
    [2]Foschini G J.Layered space-time architecture for wireless communication in a fading environment when using multiple antennas.Bell Labs Technical Journal,Jan.1996:41-59.
    [3]Tarokh V,Seshadri N;Calderbank A R.Space-time codes for high data rate wireless communication:performance criterion and code construction.IEEE Trans.on Information Theory,1998(2):744-765.
    [4]Li J,Stoica P.MIMO radar with colocated antennas.IEEE Signal Processing Magazine,2007(5);106-114.
    [5]Haimovich A M,Blum R S,Cimini L.MIMO radar with widely separated antennas.IEEE Signal Process.Mag,2008(1):116-129.
    [6]Xu L Z,Li,J.Iterative generalized-likelihood ratio test for MIMO radar.IEEE Trans.Signal Processing,2007(6):2375-2385.
    [7]何子述,韩春林,刘波.MIMO雷达概念及其技术特点分析.电子学报,2005,(12A):2441-2445.
    [8]Fishier E,Haimovich A,Blum R.MIMO radar:An idea whose time has come.Proceedings of IEEE National Radar Conference,Philadelphia,PA,United States 2004:71-78.
    [9]Fishier E,Haimovich A,Blnm R,et al..Spatial diversity in radars-Models and detection performance.IEEE Trans.on Signal Processing,2006(3):823-838.
    [10]M.Skolnik,Introduction to Radar Systems,3rd ed.New York:Mc-Graw-Hill,2002.
    [11]Rabideau D J,Parker P.Ubiquitous MIMO multifunction digital array radar.Proceedings of 37st Asilomar Conference on Signals,Systems and Computers,Pacific Grove,CA,United States,2003:1057-1064.
    [12]Robey F C,Coutts S,Weikle D,et al.MIMO radar theory and experimental results.Proceedings of the 38th Asilomar Conference on Signals,Systems and Computers,2004(1):300-304.
    [13]Dorey J,Gamier G,Auvray G.RIAS,synthetic impulse and antenna radar.International Conference on Radar,Paris1989:556-562.
    [14]张庆文,保铮,张玉洪.综合脉冲和天线雷达的时空三维匹配滤波及其性能 分析.电子科学学刊,1994(5):481-489.
    [15]张庆文,保铮,张玉洪.综合脉冲和天线雷达的时空三维匹配滤波及其性能分析.电子科学学刊,1994.(5):481-489.
    [16]陈伯孝,张守宏.基于稀布阵综合脉冲孔径雷达的长时间相干积累方法.电子科学学刊,1998(4):573-576.
    [17]Chen B X,Zhang S H,Wang Y J,Wang J.Analysis and experimental results on sparse array synthetic impulse and aperture radar.Proceeding of CIE International Radar Conference,Beijing,China,2001:76-80.
    [18]Bekkerman I,Tabrikian J.Target detection and localization using MIMO radars and sonars.IEEE Trans.on Signal Processing,2006(10):3873-3883.
    [19]Bliss D W,Forsythe K W.Multiple-input multiple-output(MIMO) radar and imaging:Degrees of freedom and resolution,in Proc.37th Asilomar Conf.Signals,Systems,Computers,Pacific Grove,CA,Nov.2003(1):54-59.
    [20]Forsythe K W,Bliss D W,Fawcett G S.Multiple-Input Multiple-Output(MIMO)radar:Performance issues.Proceedings of the 38th Asilomar Conference on Signals,Systems and Computers.2004(1):310-315.
    [21]Chen C Y,Vaidyanathan P P.Beamforming issues in modern MIMO Radars with Doppler.Proceedings of 40th Asilomar Conference on Signals,Systems,and Computers.Pacific Grove,CA,United States,2006:41-45.
    [22]Chen C Y,Vaidyanathan P P.MIMO Radar Space-Time Adaptive Processing Using Prolate Spheroidal Wave Functions.IEEE Trans.on Signal Processing,2008(2),:623-635.
    [23]Mecca V F,Dinesh R,Krolik J L.MIMO Radar Space-Time Adaptive Processing for Multipath Clutter Mitigation.Proceedings of 4th IEEE Sensor Array and Multichannel Signal Processing Workshop,Waltham,MA,United States,2006:249-253.
    [24]Mecca V F,Krolik J L.Slow-Time MIMO STAP with improved power efficiency.Proceedings of 41st Asilomar Conference on Signals,Systems and Computers.Pacific Grove,CA,United States,2007:202-206.
    [25]Fishler E,Haimovich A,Blum R,et al.Performance of MIMO radar systems:Advantages of angular diversity.Proceedings of 38th Asilomar Conf.Signals,Syst.Comput.,Pacific Grove,CA,United States 2004(1):305-309.
    [26]Du C,Thompson J S,Petillot Y.Predicted detection performance of MIMO radar.IEEE Signal Processing Letters,2008(15):83-86.
    [27]曾建奎;何子述.慢起伏目标的多输入多输出雷达检测性能分析.电波科学学报,2008(1):158-161.
    [28]戴喜增,彭应宁,汤俊.MIMO雷达检测性能.清华大学学报(自然科学版),2007(1):88-91.
    [29]Sheikhi A,Zamani A,Norouzi.Y.Model-based adaptive target detection in clutter using MIMO radar.Proceedings of CIE International Conference of Radar,Shanghai,China 2006(1):57-60.
    [30]Sheikhi A,Zamani A.Adaptive target detection in clutter using MIMO radar.Proceedings of 2nd Microwave and Radar Week in Poland-International Radar Symposium,Krakow,Poland May 2006.
    [31]Sheikhi A.,Zamani,A.Coherent detection for MIMO radars.Proceedings of IEEE 2007 Radar Conference,Waltham,MA,United States 2007:302-307.
    [32]Sheikhi A,Zamani A.Temporal coherent adaptive target detection for multi-input multi-output radars in clutter.IET Radar,Sonar and Navigation,2008(2):86-96.
    [33]Lehmann N,Haimovich A M,Blum R S,Cimini L.MIMO-radar application to moving target detection in homogenous clutter.Proceedings of Adaptive Sensor Army Processing Workshop at MIT Lincoln Laboratory,Waltham,MA,July 2006.
    [34]Bruyere D,Goodman N A.SINR improvements in multi-sensor space-time adaptive processing.Proceedings of 2nd lASTED International Conference on Antennas,Radar,and Wave Propagation,2005:167-172.
    [35]Bruyere D,Goodman N A.Performance of multistatic space-time adaptive processing.Proceedings of 2006 IEEE Radar Conference,New York,United States,2006:533-538.
    [36]Goodman N A,Bruyere D.Optimum and decentralized detection for multistatic airborne radar.IEEE Trans.on Aerospace and Electronic Systems,2007(2):806-813.
    [37]Sammartino P F,Baker C J,Griffiths H D.MIMO radar performance in clutter environment,in Proc.IEEE Radar Conf.,Oct.2006:16-19.
    [38]Sammartino P F,Baker C J,Griffiths H D.Adaptive MIMO radar system in clutter,in Proc.IEEE Radar Conf.,Apr.2007:276-281.
    [39]Maio A D,Lops M.Design principles of MIMO radar detectors.IEEE Trans.on Aerospace and Electronic Systems,2007(3):886-898.
    [40] Friedlander B. On Data-Adaptive Waveform Design for MIMO Radar.Proceedings of 41st Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA, United States, 2007: 187-191.
    [41] Friedlander B. Waveform Design for MIMO Radar with Space-Time Constraints.Proceedings of 41st Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA, United States, 2007:2168-2172.
    [42] Friedlander B. Waveform design for MIMO radars. IEEE Trans. on Aerospace and Electronic Systems, 2007(3):1227-1238.
    [43] Kelly E J. A adaptive detection algorithm. IEEE Trans. on Aerospace and Electronic Systems, 1986(1):115-127.
    [44] Robey F C, Fuhrmann D R, Kelly E J, et al. A CFAR adaptive matched fillter detector. IEEE Trans. on Aerospace and Electronic Systems, 1992(l):208-216.
    [45] Lehmann N H, Fishier E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding. IEEE Trans. Signal Processing,2007(5):2215-2225.
    [46] Wilcox D, Sellathurai M, Ratnarajah T. A Comparison of MIMO and phase array radar with the application of MUSIC. Proceedings of 41th Asilomar Conf.Signals, Syst. Comput.,Nov. 2007:1529-1533.
    [47] Xia W, He Z S, Liao Y Y. Subspace-Based Method for Multiple-Target Localization Using MIMO Radars. Proceedings of IEEE International Symposium on Signal Processing and Information Technology, Dec.2007:715-720.
    [48] Godrich H, Haimovich A M, Blum R S. Cramer Rao Bound on Target Localization Estimation in MIMO Radar Systems. Proceedings of 42nd Annual Conference on Information Sciences and Systems, 2008:134-139.
    [49] Lehmann N H, Haimovich A M, Blum R S, Cimini L J. High resolution capabilities of MIMO radar. Proceedings of 40th Asilomar Conf. Signals, Syst.Comput., Nov. 2006:25-30.
    [50] He Q, Blum R S, Godrich H, Haimovich A M. Cramer-Rao Bound for Target Velocity Estimation in MIMO Radar with Widely Separated Antennas.Proceedings of 42nd Annual Conference on Information Sciences and Systems,2008:123-127.
    [51] Tabrikian J. Barankin bounds for target localization by MIMO radars.Proceedings of Workshop Adaptive Sensor Array Processing, Waltham, MA, June 2006.
    [52]San Antonio G,Fuhrmann D R,Robey F C.MIMO Radar Ambiguity Functions.Proceedings of the 40th Asilomar Conference on Signals,Systems and Computers,Pacific Grove,CA,United States,2006:36-40.
    [53]San Antonio G,Fuhrmann D R,Robey F C.MIMO Radar Ambiguity Functions.IEEE Journal on Selected Topics in Signal Processing,2007(1):167-177
    [54]Xu L Z,Li J,Stoica P.Adaptive techniques for MIMO radar.Proceedings of 4th IEEE Sensor Array and Multichannel Signal Processing Workshop,Waltham,MA,United States,2006:258-262.
    [55]Tabrikian J,Bekkerman I.Transmission diversity smoothing for multi-target localization.Proceedings of International Conference on Acoustics,Speech,Signal,Philadelphia,PA,United States,2005(4):1041-1044.
    [56]Yan H D,Li J,Liao G S.Multitarget identification and localization using bistatic MIMO radar systems.EURASIP Journal on Advances in Signal Processing,2008.doi:10.1155/2008/283483.
    [57]Chen D F,Chen B X.Angle estimation using ESPRIT in MIMO radar.Electronic Letters,2008(12):770-771.
    [58]Deng H.Discreted-frequency coding waveform design for netted radar systems.IEEE Signal Processing Letter,2004(2):179-182.
    [59]Deng H.Polyphase code design for orthogonal netted radar systems.IEEE Trans.Signal Processing,2004(11):3126-3135.
    [60]王敦勇,袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计.空军雷达学院学报,2007(2):105-107.
    [61]Khan Hammad A,Edwards David J.Doppler problems in orthogonal MIMO radars.Proceedings of 2006 IEEE Radar Conference,New York,United States,2006:244-247.
    [62]Yang Y,Blum R S.MIMO radar waveform design.Proceedings of 14th Workshop on Statistical Signal Processing,2007:468-472.
    [63]Yang Y,Blum R S.MIMO radar waveform design based on mutual information and minimum mean-square error estimation.IEEE Trans.on Aerospace and Electronic Systems,2007(1):330-343.
    [64]Yang Y,Blum R S.Minimax robust waveform design for MIMO radar in the presence of PSD uncertainties.Proceedings of 41st Annual Conference on Information Sciences and Systems,Baltimore,MD,United States,2007: 154-159.
    [65] Yang Y, Blum R S. Minimax robust MIMO radar waveform design. IEEE Journal on Selected Topics in Signal Processing, 2007(1): 147-155.
    [66] Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, Calif, USA 2004(1): 295-299.
    [67] Stoica P, Li J, Xie Y. On probing signal design for MIMO radar. IEEE Trans.Signal Processing, 2007(8):4151-4161.
    [68] Fuhrmann D R, San A G Transmit Beamforming for MIMO Radar Systems using Signal Cross-Correlation. IEEE Transactions on Aerospace and Electronic Systems, 2008(1): 171-186.
    [69] San A G, Fuhrmann D R. Beampattern synthesis for wideband MIMO radar systems. Proceedings of First International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 2005:105-108.
    [70] Bliss D W, Forsythe K W, Richmond C D. MIMO Radar: Joint Array And Waveform Optimization. Proceedings of 41st Asilomar Conference on Signals,Systems and Computers, Pacific Grove, CA, United States, 2007: 207-211.
    [71] Li J, Xu L Z, Stoica P, Forsythe K W, Bliss D W. Range compression and waveform optimization for MIMO radar: A Cramer-Rao bound based Study.IEEE Transactions on Signal Processing, 2008(l):218-232.
    [72] Li J, Stoica P, Zheng Xiayu. Signal synthesis and receiver design for MIMO radar imaging. IEEE Transactions on Signal Processing, 2008(8): 3959-3968.
    [73] White L B, Ray P S. Signal design for MIMO diversity systems. Proceedings of 38st Asilomar Conference on Signals, Systems and Computers, Pacific Grove,CA, United States, 2004: 973-977.
    [74] Chen Chun-Yang, Vaidyanathan, P P. MIMO radar ambiguity optimization using frequency-hopping waveforms. Proceedings of 41st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, United States,2007:192-196.
    [75] Li J.,Stoica P. MIMO radar-diversity means superiority. Proceedings of 14th Annu. Workshop Adaptive Sensor Array Processing. MIT Lincoln Laboratory,Lexington, MA, June 2006.
    [76] Deng H. Orthogonal netted radar systems. WSEAS Trans. Sys., 2004(4): 1481-1487.
    [77]Teng Y,Griffiths H D,Baker C J,et al.Netted radar sensitivity and ambiguity.IET Radar,Sonar and Navigation,2007(6):479-486.
    [78]Chernyak V S.Fundamentals of multisite radar systems.London,U.K.,:Gordon and Breach,1998.
    [79]杨振起,张永顺,骆永军.双(多)基地雷达系统,北京:国防工业出饭社,1998.
    [80]武昕伟,张绪锦,张长耀.分布式小卫星SAR回波信号仿真.系统仿真学报,2007(13):3056-3100.
    [81]Adve R S,Schneible R,McMillan R.Adaptive space/frequency processing for distributed aperture radars.Proceedings of the 2003 IEEE Radar Conference,Huntsville,AL,United States,2003:160-164.
    [82]Adve R S,Schneible R,Wicks M C,McMillan R.Space-time adaptive processing for distributed aperture radars.Proceedings of 1st IEE Waveform Diversity Conference,Edinburgh,Nov.2004.
    [83]Adve R S,Schneible R,Genello G,Antonik P.Waveform-Space-Time adaptive processing for distributed aperture radars.Proceedings of 2005 IEEE International Radar Conference,Washington DC,May 2005.
    [84]Applebaum L,Adve R S.Adaptive processing with frequency diverse distributed apertures.Proceedings of 2nd Annual IEEE Waveform Diversity Conference,Hawaii,Jan.2006.
    [85]Adve R S,Applebaum L,Wicks M C,Schneible R.Space-time-waveform adaptive processing for frequency diverse distributed radar apertures.Proceedings of 40th Annual Conference on Information Sciences and Systems,Princeton,NJ,United States,2006:1413-1417.
    [86]Lock E,Adve R S.Varying FM rates in adaptive processing for distributed radar apertures Proceedings of 2007 International Waveform Diversity and Design Conference,Pisa,Italy,2007:74-78.
    [87]Landi L,Adve R S.Clutter Doppler range dependency in orthogonal waveform-diversity-processing for distributed aperture radars.Proceedings of IEEE International Radar Conference,October 2007.
    [88]Landi L,Adve R S.Time-orthogonal-waveform-space-time adaptive processing for distributed aperture radars.Proceedings of 3rd Waveform Diversity and Design Conference,Pisa,Italy,June 2007:13-17.
    [89]Daher R,Adve R S,Wicks M C.A notion of diversity order in distributed radar networks.Proceedings of 41st Asilomar Conference on Signals,Systems and Computers,Pacific Grove,CA,United States,2007:1844-1848.
    [90]Ward J.Space-time adaptive processing for airborne radar.Technical Report 1015.MIT Lincoln Laboratory,1994.
    [91]Klemm R.Space-time adaptive processing:principles and applications,IEE Radar,Sonar,Navigation and Avionics 9,London:IEE Press,1998.
    [92]王永良,彭应宁.空时自适应信号处理,北京:清华大学出版社,2000.
    [93]Klemm R.Principles of space-time adaptive processing.IEE Radar,Sonar,Navigation and Avionics 12,London:IEE Press,2002.
    [94]Guerci J R.Space-time adaptive processing for radar.Boston,London:Artech House,2003.
    [95]Brennan L E,Reed I S.Theory of adaptive radar.IEEE Trans.on Aerospace and Electronic Systems,1973(2):237-252.
    [96]Reed I S,Mallett J D,Brennan L E.Rapid convergence rate in adaptive array.IEEE Trans.on Aerospace and Electronic Systems,1974(6):853-863.
    [97]谢文冲.非均匀环境下的机载雷达STAP方法与目标检测技术研究.国防科技大学博士论文.2006.
    [98]Park H,Li J,Wang H.Polarization-space-time domain generalized likelihood ratio detection of radar targets.Signal Processing,1995(2):153-164.
    [99]Pastina D,Lombardo P,Bucciarelli T.Adaptive Polarimetric Target Detection with Coherent Radar.IEEE Trans.on Aerospace and Electronic Systems,2001(4):1194-1219.
    [100]Rabideau D J,Steinhardt A O.Improving the performance of adaptive arrays in nonstationary environments through data-adaptive training.Proceedings of the 30th Asilomar Conference on Signals,Systems and Computers,Pacific Grove,CA,USA,1996:75-79.
    [101]Rabideau D J,Steinhardt A O.Improved adaptive clutter cancellation through data-adaptive training.IEEE Trans.on Aerospace and Electronic Systems,1999(3):879-891.
    [102]Melvin W L,Wicks M C.Improving practical space-time adaptive radar.Proceedings of the IEEE National Radar Conference,Syracuse,NY,USA,1997:48-53.
    [103]Melvin W L,Wicks M C,Brown R D.Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architecture and algorithms. Proceedings of the IEEE National Radar Conference, Ano Arbor, MI,USA. 1996:130-135.
    [104] Himed B, Salama Y, Michel J H. Improved detection of close proximity targets using two-step NHD. Proceedings of the IEEE International Radar Conference,Alexandria, VA, USA, 2000:781 -786.
    [105] Park S, Sarkar T K. A deterministic eigenvalue approach to space time adaptive processing. Proceedings of the IEEE International Phased Array Systems and Technology Symposium, Boston, MA, USA, 1996:372-375.
    [106] Sarkar T K, Koh J, Adve R S, et al. A pragmatic approach to adaptive antennas.IEEE AP Magazine, 2000(2): 39-55.
    [107] Sarkar T K, Wang H, Park S, et al. A deterministic least-squares approach to space-time adaptive processing(STAP). IEEE Trans. on Antennas & Propagation,2001(1):91-103.
    [108] Borsari G K. Mitigating effects on STAP processing caused by an inclined array. Proceedings of the IEEE National Radar Conference, Dallas, TX, USA,1998:135-140.
    [109] Varadarajan V, Krolik J. STAP with a distorted linear array in inhomogeneous clutter. Proceedings of the Adaptive Sensor Array Processing Workshop, Lincoln Laboratory, MA, USA, 2002.1-17.
    [110]Melvin W L, Himed B, Davis M. Doubly adaptive bistatic clutter filtering.Proceedings of the IEEE Radar Conference, the Huntsville Marriott, Huntsville,AL,USA, 2003:171-178.
    [111]Lapierre F D, Droogenbroeck M V, Verly J G. New methods for handling the range dependence of the clutter spectrum in non-sidelooking monostatic STAP radars. Proceedings of the IEEE Int. Acoustics, Speech, and Signal Processing Conference, HongKong, China, 2003(5): 73-76.
    [112] Lapierre F D, Verly J G. Computationally-efficient range-dependence compensation method for bistatic radar STAP. In Proc. 2005 IEEE International Radar Conference, May 2005:452-459.
    [113]Ayoub T F. Modified GLRT signal detection algorithm. IEEE Trans. on Aerospace and Electronic Systems, 2000(3):810-818.
    [114] Carlson B D. Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. on Aerospace and Electronic Systems,1988(4):397-401.
    [115]Kalson S. An adaptive array detector with mismatched signal rejection. IEEE Trans. on Aerospace and Electronic Systems, 1992(1): 195-206.
    [116]Ayoub T F. Space-time reduced rank methods and CFAR signal detection algorithms with applications to HPRF radar. New Jersey Institute of Technology,Newark, 1998.
    [117] Deng H, Himed B, Wicks M C. Image feature-based space-time processing for ground moving target detection. IEEE Signal Processing Letters,2006(4):216-219.
    [118] Hojjatoleslami S A, Kittler J. Region growing: A new approach. IEEE Trans.on Image Process., 1998(7):1079-1084.
    
    [119] Pratt W K. Digital Image Processing. New York:Wiley Interscience, 2001.
    [120] Bartlett M S. Smoothing periodograms from time series with continuous Spectra.Nature, 1948:686-687.
    [121] Capon J. High resolution frequency-wave number spectrum analysis. Proceedings of IEEE, 1969:1408-1418.
    [122] Schmidt R O. Multiple emitter location and signal parameter estimation. IEEE Trans. on Antennas & Propagation, 1986(3):276-280.
    [123] Stoica P, Nehorai A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. on Acoustics, Speech, and Signal Processing, 1989(5):720-741.
    [124] Rao B D, Hari K V S. Performance analysis of Root-Music. IEEE Trans. on Acoustics, Speech and Signal Processing, 1989(12):1939-1349.
    [125] Shan T J, Wax M; Kailath T. On spatial smoothing for direction-of-arrival estimation of coherent signals. IEEE Trans. on Acoustics, Speech and Signal Processing, 1985(4):806-11.
    [126] Roy R, Kailath T. ESPRIT-Estimation of signal parameters via rotational invariance techniques, IEEE Trans.on Acoustics Speech and Signal Procesing,1989(7):984-995.
    [127] Rao B D, Hari K V S. Performance analysis of ESPRIT and TAM in determining the direction of arrival of plane waves in noise. IEEE Trans. on Acoustics Speech and Signal Procesing, 1989(12):1990-1995.
    [128] Hua Y, Sarkar T K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. on Acoustics Speech and Signal Procesing, 1990(5): 814-824.
    [129] Abatzoglou T J, Mendel J M; Harada G A. The constrained total least squares technique and its applications to harmonic superresolution. IEEE Trans. on Signal Processing, 1991(5):1070-1087.
    [130] Marcos S, Marsal A, Benidir M. Propagator method for source bearing estimation.Signal Processing, 1995(2): 121-138.
    [131] Li P, Sun J, and Yu B. Two-dimensional spatial spectrum estimation of coherent signals without spatial smoothing and eigendecomposition. IEE Proc. Radar Sonar Navig., 1996(5): 295-299.
    [132] Xin J M, Sano A. Computationally efficient subspace-based method for Direction-of-Arrival estimation without eigendecomposition. IEEE Trans. on Signal Processing, 2004(4): 876-893.
    [133] Wu Y, Liao G, and So HC. A fast algorithm for 2-D direction-of-arrival estimation. Signal Process., 2003:1827-1831.
    [134] Tayem N, Kwon H M., L-shape 2-dimensional arrival angle estimation with propagator method IEEE Trans. Antennas & Propagation, 2005(5): 1622-1630.
    [135]Nikias C L, Shao M. Signal Processing with α-Stable Distribution and Applications, John Wiley & Sons, 1995.
    [136] Raspanti R, Tsakalides P, Nikias C L, Del Re E. Cramer-Rao bounds for target angle and Doppler estimation for airborne radar in Cauchy interference.Proceedings of 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, Corfu, Greece, June 1996:534-537.
    [137] Tsakalides P, Nikias C L. Space-time adaptive processing in stable impulsive interference. Proceedings of the 30th Asilomar Conference on Signals, Systems,Computers, Pacific Grove, CA, USA, Nov. 1996:389-393.
    [138] Tsakalides P, Nikias C L. A new model for non-Rayleigh clutter space-time adaptive processing in stable impulsive interference. IEEE International Conference on Acoustics, Speech, and Signal Processing, Munich, Germany, Apr.1997(5):3517-3520.
    [139] Tsakalides P, Nikias C L. Robust space-time adaptive processing (STAP) in non-Gaussian clutter environments. IEE Proc. Radar Sonar Navig.,1999(2):84-93.
    [140] Tsakalides P, Raspanti R, and Nikias C L. Angle/Doppler estimation in heavy tailed clutter backgrounds. IEEE Trans. on Aerospace and Electronic Systems,1999(2): 419-436.
    [141] Belkacemi H, Marcos S. Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter.Signal Processing,2007:1547-1558.
    [142]Liu T H,Mendel J M.A Subspace-based direction finding algorithm using fractional lower order statistics.IEEE Trans.on Signal Processing,2001(8):1605-1613.
    [143]Tsakalides P,Nikias C L.Maximum likelihood localization of sources in noise modeled as a stable process.IEEE Trans on Signal Processing,1995(11):2700-2713.
    [144]Tsakalides P,Nikias C L.The robust covariation-based MUSIC(ROC-MUSIC)algorithm for bearing estimation in impulsive noise environments.IEEE Trans.on Signal Processing,1996(7):1623-1633.
    [145]何劲.α稳定分布噪声背景下阵列信号处理方法研究.南京理工大学博士学位论文.2007.
    [146]何劲,刘中.脉冲噪声环境中鲁棒的自适应波束形成方法.电子学报,2006(3):464-468.
    [147]He J,Liu Z.Linearly constrained minimum-'normalised variance' beamforming against heavy-tailed impulsive noise of unknown statistics,IET Radar,Sonar &Navigation,2008(6):449-457.
    [148]He J,Liu Z,Wong K T.Snapshot-instantaneous ‖·‖_∞ normalization against heavy-tail noise.IEEE Trans.on Aerospace and Electronic Systems,2008(3):1221-1227
    [149]Ma X,Nikias C L.Parameter estimation and blind channel identification in impulsive signal environments.IEEE Transactions on Signal Processing,1995(12):2884-2897.
    [150]Wong K T,Zoltowski M D.Extended-aperture underwater acoustic multisource azimuth/elevation direction-finding using uniformly but sparsely spaced vector hydrophones.IEEE Journal of Oceanic Engineering,1997(4):659-672.
    [151]Zoltowski M D,Wong K T.ESPRIT-based 2-D direction finding with a sparse uniform array of electromagnetic vector sensors.IEEE Trans.on Signal Processing,2000(8):2195-2204.
    [152]Wong K T,Zoltowski M D.Direction-finding with sparse rectangular dual-size spatial invariance array.IEEE Trans.on Aerospace and Electronic Systems,1998(4):1320-1335.
    [153]Valaee S,Champagne B,Kabal P.Parametric localization of distributed sources. IEEE Trans.on Signal Processing,1995(9):2144-2153.
    [154]Meng Y,Stoica P,Wong K M.Estimation of the directions of arrival of spatially dispersed signals in array processing,IEE Proceeding-F,1996(1):1-9.
    [155]李燮,张林让,郭东敏等.分布式目标参数估计在引信中的应用研究.探测与控制学报,2003(2):32-35.
    [156]王永良,陈辉,彭应宁,万群.空间谱估计理论与算法,北京:清华大学出版社,2004.
    [157]Bengtsson M,OtterstenB.Rooting techniques for estimation of angular spread with an antenna array.Proceedings of IEEE 47th Vehicular Technology Conference,Phoenix,AZ,USA,May 1997(2):1158-1162.
    [158]Goldberg J,Messer H.A polynomial rooting approach to the localization of coherently scattered sources.Proceedings of the IEEE International Conference on Acoustics,Speech and Signal,Seattle,WA,USA,May 1998(4):2057-2060.
    [159]Besson O,Stoica P.Decoupled estimation of DOA and angular spread for a spatially distributed source.IEEE Trans.on Signal Processing,2000(7):1872-1882.
    [160]Bengtsson M,Ottersten B.Low-complexity estimators for distributed sources.IEEE Trans.on Signal Processing,2000(8):2185-2194.
    [161]Shahbazpanahi S,Valaee S,Bastani M H.Distributed source localization using ESPRIT algorithm.IEEE Trans.on Signal Processing,2001(10):2169-2178.
    [162]Wan Q,Peng Y N.Low-complexity estimator for four-dimensional parameters under a reparameterised distributed source model,IEE Proceedings-Radar,Sonar and Navigation,2001(6):313-317.
    [163]Lee Y U,Lee S R,Kim H M,et al.Estimation of the direction for angle perturbed sources.IEICE Trans.Fundamentals,1997,E80A(1):109-117.
    [164]Lee Y U,Choi J,Song I,et al.Distributed source modeling and direction-of-arrival estimation techniques.IEEE Trans.on Signal Processing,1997(4):960-969.
    [165]Raich R,Goldberg J,Messer H.Bearing estimation for a distributed source via the conventional beamformer.Proceedings of the 9th IEEE SP Workshop on Statistical Signal and Array Processing,Portland,OR,USA,1998.5-8.
    [166]Raich R,Goldberg J,Messer H.Bearing estimation for a distributed source:Modeling,inherent accuracy limitations and algorithms.IEEE Trans.on Signal Processing,2000(2):429-441.
    [167] Goldberg J, Messer H. Inherent limitations in the localization of a coherently scattered source. IEEE Trans, on Signal Processing, 1998(12): 3441-3444.
    
    [168] Kay S M. Fundamentals of Statistical Signal Processing: Estimation Theory,Englewood Cliffs, NJ: Prentice-Hall, 1993.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700