用户名: 密码: 验证码:
黔东新元古代南华纪早期冷泉碳酸盐岩地质地球化学特征及其对锰矿的控矿意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黔东地区位于扬子板块东南边缘与江南造山带的结合部位。新元古代全球性的Rodinia超大陆裂解作用,在华南形成了新元古代被动陆缘裂谷盆地,断裂、拉张作用形成多个拉张盆地,控制了该地区南华纪早期冷泉碳酸盐岩(菱锰矿+白云岩)的形成和分布。
     该地区南华纪早期的两界河组和大塘坡组中均有冷泉碳酸盐岩发育和分布。其中两界河组的冷泉碳酸盐岩是发育在相当于Sturtian冰期的含砾碎屑岩沉积中,以白云岩透镜体或白云岩丘的形式产出,大小不等,内部含砾,之上为铁丝坳组冰碛含砾砂岩;大塘坡组为介于Sturtian冰期和Marinoan两个冰期之间的间冰期沉积,岩性主要为粉砂质页岩,底部为一套黑色炭质页岩沉积。大塘坡组的冷泉碳酸盐岩位于这套黑色岩系之中,由于该岩系中的冷泉碳酸盐岩是以菱锰矿体为主,另有少量白云岩透镜体,因此,这套黑色岩系又称黑色“含锰岩系”。
     两界河期冷泉碳酸盐岩的形态为透镜状或丘状,其顶面多上拱,两端微微上翘,与围岩突然接触,零星分布在含砾碎屑岩中:大塘坡期的冷泉碳酸盐岩主要有透镜体状及似层状等形态。平面上冷泉碳酸盐岩的岩性组合具有同心环状的展布规律:中心为菱锰矿—炭质页岩组合,锰含量最高,古天然气渗漏沉积构造十分发育;往外出现白云岩透镜体,即菱锰矿—白云岩—炭质页岩组合,菱锰矿以条带状构造为主,块状构造次之;再向外菱锰矿尖灭,为白云岩—炭质页岩组合;最外为炭质页岩—黑色页岩组合,有机质明显减少,黑色岩系厚度明显减薄。
     南华纪早期的大塘坡期“含锰岩系”中冷泉碳酸盐岩透镜体(菱锰矿、白云岩)与两界河期的冷泉碳酸盐岩(白云岩透镜体或白云岩丘)具有成生联系,互为标志,不单独出现。某一区域在Sturtian冰期含砾碎屑岩沉积中如出现冷泉碳酸盐岩沉积,则之上的大塘坡组底部的黑色“含锰岩系”中就一定会出现冷泉碳酸盐岩——菱锰矿沉积,反之亦然。甚至在贵州大塘坡和湖南民乐两大锰矿区,Sturtian冰期的含砾碎屑岩沉积中出现白云岩透镜体的层数都是相等的。充分说明了两期冷泉碳酸盐岩是在同一个古天然气渗漏系统中不同时期的冷泉碳酸盐岩沉积,是一个完整的冷泉碳酸盐岩形成体系。菱锰矿的出现,它是南华纪早期黔东乃至更大区域的多个天然气渗漏系统中时间较晚的一次含锰的冷泉碳酸盐岩事件沉积产物。因此,Sturtian冰期的含砾碎屑岩沉积中冷泉碳酸盐岩透镜体的有无,可作为预测大塘坡组有无菱锰矿等冷泉碳酸盐岩沉积的关键标志,意义重大,并在实践中取得了成功。
     与现代冷泉碳酸盐岩十分相似,南华纪早期的冷泉碳酸盐岩具有较为典型的渗漏沉积构造,且分布普遍。特别是在大塘坡地区菱锰矿矿体中普遍发育的被沥青充填的气泡状构造,孔洞构造、底辟构造、渗漏管构造、软沉积变形纹理(不协调状、放射状、平卧褶曲状、穿层状等)、泥火山等构造。在菱锰矿的气泡状构造中,气泡壁均为玉髓,且构成气泡壁的玉髓均呈从中心向外有规律的放射状结构。由于后期成岩压实作用的影响,气泡发生压扁变形,甚至压裂,变形的长轴方向与层理平行;两界河组中的白云岩丘也普遍见帐篷构造、孔洞构造、软沉积变形纹理等典型渗漏沉积构造。矿物组分较为简单,主要由菱锰矿、钙菱锰矿、镁钙菱锰矿、硫锰矿及少量锰白云石、锰方解石等组成,含少量粘土矿物、有机炭及草莓状黄铁矿、石英、磷灰石、重晶石、绿泥石等自生矿物;两界河组白云岩主要是白云石,具体也可分为含镁相对较高和含钙相对较高的两期白云石。由于正处于Sturtian冰期,白云岩透镜体中含有较多的陆源碎屑矿物。
     与现代冷泉碳酸盐岩同位素特征一样,南华纪早期冷泉碳酸盐岩的碳同位素具有明显负偏的特征:菱锰矿的δ~(13)C在-8.14‰~-10.38‰之间,其中,气泡状菱锰矿的碳同位素负偏移程度最大,δ~(13)C低于-10‰,其次为块状菱锰矿石,而条带状菱锰矿石碳同位素负偏移程度略低:大塘坡早期白云岩透镜体的δ~(13)C的负偏移可达-8.19‰~-12.98‰。进一步说明Nh_1d~1中的菱锰矿透镜体与白云岩透镜体成因的相似性;两界河期的白云岩的C同位素值同样存在明显负偏现象,但δ~(13)C的负偏移相对较小,δ~(13)C一般为-2.19~-2.86‰,变幅较小,平均值为-2.65‰;充填在菱锰矿气泡中沥青的有机碳同位素δ~(13)C的负偏值更达-30.98‰。菱锰矿石与白云岩的氧同位素均为负值,δ(~18)0‰一般为-4.72~-15.32‰,总体上看,菱锰矿的δ~(18)0‰较白云岩偏负,多数小于-8‰。
     冷泉碳酸盐岩(主要是菱锰矿)及围岩(炭质页岩)中黄铁矿分布普遍,硫同位素具有异常高的正值为特征。δ~(34)S值一般大于+40‰,甚至大于+60‰,也许是元古宙时期所记录到的全球最正的数值。围岩黑色炭质页岩和下伏的铁丝坳组含砾炭质砂岩中的黄铁矿,δ~(34)S同样具有异常高的正值,尽管比菱锰矿硫同位素值略低,均远高于同时期海洋硫酸盐δ~(34)S的平均值,应是在非正常的海洋高度封闭的环境中形成的。从菱锰矿体的底板炭质页岩到菱锰矿,δ~(34)S值为从+49.30‰升到+52.90‰~+49.5‰,而菱锰矿体之上的炭质页岩的δ~(34)S值迅速则降低至+39.20‰。即δ~(34)S值具有从相对较低到高,菱锰矿体沉积后又迅速降低的规律,松桃大塘坡和大屋锰矿区也有类似规律。冷泉碳酸盐岩的硫同位素具有异常高正值的特征,说明了华南新元古裂谷盆地的构造背景下,古天然气渗漏的特殊环境下的产物。
     黔东地区各锰矿区中,菱锰矿体的围岩—南华纪大塘坡早期黑色炭质页岩的微量元素Mn与Cr的比值(Mn/Cr)约为40,几乎为一常数,可作为预测或判断南华纪早期黑色岩系中是否存在冷泉碳酸盐岩——菱锰矿体的又一关键标志。同时,菱锰矿中的有机质中出现了明显以甲烷为生的生物标识—古菌类异戊二烯烷和藿烷,古菌类异戊二烯烷和藿烷被认为是以甲烷为生的典型微生物。高含量的有机碳从另一个侧面佐证了该地区在南华纪早期存在甲烷渗漏,引起微生物的大量繁殖,从而导致δ~(13)C值明显负偏。
     研究区南华纪早期至少有两期火山喷发,而火山喷发可能是诱发天然气规模释放的原因,两个因素叠加在一起,可能正是结束南华纪大塘坡早期的封闭缺氧沉积环境,产生环境突变,导致全球变化,转入正常的间冰期沉积的主要因素。岩浆活动提供了锰质来源。在冷泉口周围,古天然气渗漏导致微生物大量繁殖,由于甲烷的缺氧氧化形成菱锰矿沉积。在无氧条件下,由于硫酸盐还原细菌作用甲烷发生缺氧氧化,形成菱锰矿或白云岩和单硫化物(CH_4+SO~(2-)4→HCO_3~-+HS~-+H_2O)。由甲烷产生的生物碳酸盐局部超饱和能增强碳酸盐沉淀(2HCO_3~-+MN~(2+)→MnCO_3+CO_2+H_2O;2HCO_3~-+Ca~(2+)→CaCO_3+CO_2+H_2O),形成菱锰矿或白云岩等。过饱和的HS~-也会增强黄铁矿沉淀,并常以草莓状形式出现。这一理论不但解决了过去成矿理论中菱锰矿的沉积环境与生物生存环境的矛盾,还诞生了一门新的边缘学科——天然气渗漏与金属成矿学,以全新的观点和理论基础,去研究天然气渗漏所产生的成岩成矿作用,具有较强的科学探索性和创新性。不仅扩大了天然气及水合物研究领域的时空范围,而且对其所导致的成岩成矿、环境评价和生物演化事件的分析研究提供了新思路,具有重要的理论意义和应用价值。
The eastern Guizhou lies in the area between the southeastern Yangtze block and Jiangnan orogenic belt.As the breakup of Rodinia Supercontinent,several rift basins formed in the Neoproterozoic passive continental margin through resultant fracture and extension,which controlled the formation and distribution of cold seep carbonates(rhodochrosite +dolostone)in Lower Nanhua System in the northeastern Guizhou.
     Cold seep carbonates are present in both of the Liangjiehe and Datangpo formations of the Early Nanhua Period in the eastern Guizhou.The cold seep carbonates of the Liangjiehe Formation occur in the gravel-bearing clastic rocks correlating to the Sturtian glacial period. They forms laminated gravel-bearing dolomite lens or dolomite domes of variable size.Above them are moraines of the Tiesiao Formation.The Datangpo Formation,correlating to period between the Sturtian and Marinoan glaciations,is composed of mainly silt shales with a series of black carbonaceous shales at its bottom.The cold seep carbonates of the Datangpo Formation lies in the black shales.So,the block shales are also called manganese-bearing rock series because the most parts of cold seep carbonates are mainly rhodochrosites,with a few dolostone lens.
     The shapes of the Liangjiehe cold seep carbonates are lenticular or domed with convex upper boundaries and slightly tip-tilted lateral boundaries.They occur sparsely in gravel-bearing clastics with sharp contacts.The Datangpo cold seep carbonates are lenticular or layer-like.They exhibit concentric distribution in lithological association in the region.In the center are rhodochrosites - carbonaceous shales with the highest manganese content,and well developed sedimentary structures relating to ancient gas seep;Outwards lie dolostone lens,consisting of rhodochrosite- dolostone- carbonaceous shale association.The rhodochrosites are mainly banded with some massive ones.Then rhodochrosites decrease outwards,replacing by dolostonecarbonaceous shales.The peripheral belt is carbonaceous shales - black shales association,with lower organic matter content and thin thickness of the whole black rock series.
     The Datangpo cold seep carbonate lens(rhodochrosite - dolostone)of manganese-bearing rock series and the Liangjiehe cold seep carbonates(dolostone lens or dolostone domes)in Lower Nanhua system appear genetically associated.That is,if Sturtian cold seep carbonates occur in gravel-bearing clastic rocks,their overlap's black manganese-bearing rock series of the basal Datangpo Formation would contain cold seep carbonates- rhodochrosite deposition;It is also true reversely.Even number of layers of dolostone lens in Sturtian gravel-bearing clastics from the Datangpo of Guizhou,and from the Mingle manganese ore of Hunan are equal.It demonstrates that the two described periods of cold seep carbonates resulted from the same ancient gas seep system,and the system is a complete cold seep carbonate producing system.The occurrence of rhodochrosite in the early Nanhua period thus was an event deposition of magnesium - bearing seep carbonates from one of gas seep systems in eastern Guizhou or even in broad area.And the lenticular seep carbonates appear in Sturtian gravel-bearing clastics may serve as an indicator of rhodochrosite or cold seep carbonates in the Datangpo Formation.Such a conjecture would be significant in scientific research,and has been proved in recent ore exploration in the study area.
     Similar to the modern cold seep carbonate,typical seep features are common in the cold seep carbonates of early Nanhua age in the study area.They include bubble structures filled by bituminous materials from rhodochrosite ore of the Datangpo area,void structure,diaper structure,seepage tube structure,soft-sediment deformation lamination(inharmonic,radial and recumbent fold,as well as pierced structure),mud volcano structures and so on.Bubble walls of the bubble structure in rhodochrosite are radial arranged chalcedony.As the results of diagenetic compaction,the bubbles were flatten,or even fractured,with long axis parallel to bedding. Typical seep structures are also common in the dolostone domes in the Liangjiehe Formation, including tepee structures,void structures and soft-sediment deformation structures. Mineralogical association of rhodoehrosite deposition is relatively simple,consisting of rhodochrosite,greinerite,greinerite with magnesium alabandite,and minor mangandolomite, manganocaleite,as well as minor clay minerals,organic carbon,pyrite,quartz,apatite,chlorite authigenic mineral;The Liangjiehe dolostone consists of mainly dolomite,which may be grouped into magnesium- and calcium - rich dolomites respectively.Because of tha advance of the Sturtian glaciation,terrigenous clastic content in the dolostone lens is relatively high.
     Also similar to modern cold seep carbonates,the carbon isotope of the early Narthua cold seep carbonates described here shows distinct negative excursion.Theδ~(13)C of rhodochrosite ranges from -8.14‰to - 10.38‰,with the lightest in the bubble rhodochrosite,commonly less than -10‰;Lighter values are from the massive rhodochrosite,and then banded rhodochrosite.Theδ~(13)C of early Datangpo dolostone lens is -8.19‰~-12.98‰.It further demonstrates the similar origin of the rhodochrosite lens with that of the dolostone from the Datangpo Formation.The negative features ofδ~(13)C are also present in the Liangjiehe dolostone.They are -2.19‰~-2.86‰, averaging at -2.65‰,slightly heavier than those in the Datangpo Formation.Theδ~(13)C value of organic carbon from the asphalt filled in rhodochrosite bubble is as low as -30.98‰.Theδ~(18)O‰of rhodochrosite and dolostone are both negative,ranging from -4.72 to -15.32‰.Theδ~(18)O‰of rhodochrosite is generally lighter than those of dolostone,mostly less than -8‰.
     Pyrite,common in cold seep carbonates(rhodochrosite)and their host rocks(carbonaceous shale),is highly positive in itsδ~(34)S value.Theδ~(34)S value of the pyrite is generally larger than +4‰,and may up to +60‰,perhaps the heaviest value recorded in Proterozoic.Pyrite from hosting black carbonaceous shale and from underlying gravel-bearing carbonaceous sandstone of the Tiesiao Formation is also highly positive inδ~(34)S value.Although itsδ~(34)S value is lower than that of rhodochrosites,it is still higher than the average value of the coeval marine sulphate. Based on the features of these determinedδ~(34)S value,it is reasonable to infer a non-normal,and highly isolated sedimentary condition.Upsections from carbonaceous shale at the bottom of rhodochrosite ore body to rhodochrosite,and finally to carbonaceous shale of rhodochrosite roof,δ~(34)S varies from +49.30‰,to +52.90‰~+49.5‰in the rhodochrosite ore body,and drop to +39.20‰in the roof rocks.Similar trend were obtained from Datangpo manganese ore district of Songtao and Dawu manganese ore deposits district.The characteristic highly positive value of sulphur isotope of the cold seep carbonates indicates that the cold seep carbonates formed in a kind of gas seep conditions in Neoproterozoic rift basins of the South China.
     In the eastern Guizhou region,the ratio of Mn to Cr is nearly a constant,around 40,either from the host rocks of the rhodochrosite ore body or from the black carbonaceous shale of early Datangpo stage in Nanhua period.This ratio seems to be another key indicator to tell if there is cold seep carbonates—rhodochrosite in the black series in the horizon.In addition,biomarks from rhodochrosite demonstrated the existence of methane,because such biomarks are believed from typical microorganism living mainly on methane.In another hand,high organic carbon content evinced the seepage of methane,which furnished the flourish of microorganism and in turn led to a negative excursion of ambientδ~(13)C.
     There were at least two phases of volcanic explosion in the study area during the early Nanhua, which is also a possible factor leading to explosive escape of gas.Coincidence of tectonic and volcanic factors might have been the main cause,terminating the anoxic depositional condition of the early Datangpo age,and resultant rapid global variation of environments,and gradually evolved into normal interglacial condition.The activity of magma provided the source of manganese.Around the mouth of cold seep,ancient gas seep leads to the flourish of microorganism,rhodochrosite deposites were formed through anaerobic oxidation of methane.In anaerobic condition,methane was oxidized through sulphate reduction bacteria,resulting in accumulation of rhodochrosite or dolomite and monosulfide(CH_4+SO~(2-)→HCO_3~-+H_2O). Locally supersaturated condition caused by methanogenetic biomineralisation,resulted in the formation of rhodochrosite or dolomites(2HCO_3~-+Mn~(2+)→MnCO_3+CO_2+H_2O;2HCO_3~-+Ca~(2+)→CaCO_3+CO_2+H_2O).The oversaturated HS~- may also facilitates the precipitation of pyrite,in the form of strawberry.The theory not only solves the conflicts between inferences from deposit of rhodochrosite and existence of microorganisms,but also born a new frontier science—gas seep and metallogenesis.This theory,focusing on diagenesis and ore-forming process associated with gas seepage,is of creative significance.It not only broadens our viewpoint for gas hydrate as well as its special and temporal distribution,but also sheds new light on metallic mineralization, biological evolution and environmental assessment relating to gas seep.Thus it is of significance in theoretic research and routine practice.
引文
[1]#12
    [2]Aharon P.Geology and biology of modern and ancient submarine hydro carbon seeps and vents:An introduction.Geo marine Letters,1994,14:69-73
    [3]Dimitrov L I.Mud volcanoes-the most important pathway for degassing deeply buried sediments.Earth-Science Reviews,2002,59:49-76
    [4]Milkov A V,Sassen R,Apanasovich T V,Dadashev F G Global gas flux from mud volcanoes:a significant source of fossil methane in the atmosphere and the ocean.Geophysics Research Letter,2003,30:10.1029/2002GL016358
    [5]Kopf A J.Global methane emission through mud volcanoes and its past and present impact on the Earth,s climate.Int.J.Earth Sciences(Geol Rundsch),2003,92:806-816
    [6]Judd A G,Hovland M,Dimitrov L I,et al.The geological methane budget at continental margins and its influence on climate change.Geofluids,2002,2:109-126
    [7]Mazurenko L L,Soloviev V A.Worldwide distribution of deep water fluid venting and potential occurrences of gas hydrate accumulations.Geo-Marine Letter,2003,23:162-176
    [8]Milkov A V.Worldwide distribution of submarine mud volcanoes and associated gas hydrates.Marine Geology,2000,167:29-42
    [9]陈多福,海底天然气渗漏系统水合物形成分解动力学及微生物作用:[中国科学院研究生院博士学位论文],中国科学院广州地球化学研究所,2004
    [10]Kulm L D,Suess E,Moore J C,et al.Oregon subduction zone:Venting,fanua,and carbonates.Science,1986,231:561-566
    [11]Lallenmand S E,Glacon G,lauriat-Rage A,et al.Seafloor manifestatuins of fluid seepage at the top of a 2000m deep ridge in the eastern Nankai accretionary wedge:Long lived venting and tectonic implications.Earth and planetary Science Letters,1992,109:333-346
    [12]Paull C K,Hecker B,Commeau R,et al.Biological communities at the Florida escarpment resemble hydrothermal vent taxa.Science,1984,226:965-967
    [13]Hovland H W,MotL M J.Hydrocarbon seeps in northern marine waters their occurrence and effects.Palaios,1992,7:376-382
    [14]陈多福,陈先沛,陈光谦.冷泉流体沉积碳酸盐岩的地质地球化学特征.沉积学报,2002,20(1):34-40
    [15]Orange D L,Greene H G,Reed D,et al.Widespread fluid expulsion on a translational continental margin:Mud volcanoes,fault zones,headless canyons,and organic-rich substrate in Monterey Bay,California.Geological Society of America Bulletion,1999,111(7): 992-1009
    [16]张敏强,钟志洪,夏斌,等,莺歌海盆地泥-流体底辟构造成因机制与天然气运聚.大地构造与成矿学,2004,28(2):118-125
    [17]苏正,陈多福.海洋天然气水合物的类型及特征.大地构造与成矿学,2006,30(2):256-264
    [18]MacDonald IR,Sager W W and Peccin M B.Gas hydrate and chemosynthetic biota in mounded bathymetry at mid-slope hydrocarbon seeps:Northern Gulf of Mexico.Marine Geology,2003.198:133
    [19]Sassen R,Roberts HH and Carney R.Free hydrocarbon gas,gas hydrate,and authigenic minerals in chemosynthetic communities of the northern Gulf of Mexico continental slope:relation to microbial processes.Chemical Geology,2004.205:195-217
    [20]Sassen R.,MacDonald I.R.,Guinasso N.L.Jr.,et al.,Bacterial oxidation Geology,in sea-floor gas hydrate:Significance to life in extreme environments 1998,26(9):851-854
    [21]Brooks J.M,Cox H.B.,Bryant W.R.,Kennicutt Ⅱ M.C.,Mann R.G.and MacDonald T.J.,Association of gas hydrates oil seepage in the Gulf of Mexico,Organic Geochemistry,1986,10:221-234
    [22]陆红锋,刘坚,陈芳,等.南海台西南区碳酸盐岩矿物学和稳定同位素组成特征--天然气水合物存在的主要证据之一.地学前缘,2005,12(3):268-276
    [23]陈 忠,颜文,陈木宏,等.南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据.热带海洋学报,2006,25(1):
    [24]Michaelis W,Seifert R,Nauhaus K,et al.Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.Science,2002,297:1013-1015
    [25]Orphan V J,House C H,Hinrichs K U,et al.Direct phylogenetic and isotopic evidence for multiple groups of Archaea involved in the anaerobic oxidation of methane.Geochim Cosmochim Acta,2002,66:571
    [26]Orphan V J,Ussler I W,Naehr T H,et al.Geological,geochemical,and microbiological heterogeneity of the seafloor around methanevents in the Eel River Basin,offshore California.Chem Geol,2004,205:265-289
    [27]蒋干清,史晓颖,张世红.甲烷渗漏构造、水合物分解释放与新元古代冰后期盖帽碳酸盐岩.科学通报,2006,51(10):1121-1138
    [28]Campbell K A,Farmer J D,Des Marais D.Ancient hydrocarbon seeps from the Mesozoic convergent margin of California:carbonate geochemistry,fluids and paleeoenvironments Geofluids,2002,2:63-94
    [29]Cavagna S,Clari P,Martire L.The role of bacteria in the for mation of cold seep carbonates:geological evidence from Monferrato(Tertiary,NW Italy).Sedimentary Geology,1999,126:253-270
    [30]Van Dover C L,Doerries M B.Community structure in mussel beds at Logatchev hydrothermal vents and a comparison of macrofaunal species richness on slow-and fast-spreading mid-oceanridges.Marine Ecol,2005,26:110-120
    [31]Dickens G R.Rethinking the global carbon cycle with a large,dynamic and microbially mediated gas hydrate capacitor. EPSL, 2003,213:169-183
    [32] Torres M E, Brumsack H J, Bohrmann G, et al. Barite fronts incontinental margin sediments; a new look at barium remobilizationin the zone of sulfate reduction and formation of heavy barites indiagenetic fronts. Chem Geol, 1996,127:125-139
    [33] Greinert J, Bollwerk S M, Derkachev A, et al. Massive barite deposits and carbonate mineralization in the Derugin Basin, Sea of Okhotsk; precipitation processes at cold seep sites. EPSL, 2002,203:165-180
    [34] Kvenvolden K A. Gas hydrates, geological perspective and global change. Rev Geophy, 1993,31:173-187
    [35] Francisca F, Yun T-S, Ruppel C, et al. Geophysical and geotechnical properties of near-seafloor sediments in the northern Gulf of Mexico gas hydrate province. EPSL, 2005, 237: 924-939
    [36] Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 2000,407: 623-626
    [37] Bohrmann G, Greinert J, Suess E, et al. Authigenic carbonatesfrom the Cascadia subduction zone and their relation to gas hydrate stability. Geology, 1998,26:647~650
    [38] Suess E, Torres M E, Bohrmann G, et al. Gas hydrate destabilization: enhanced dewatering, benthic material turnover and large methane plumes at the Cascadia convergent margin. EPSL, 1999,170: 1-15
    [39] Greinert J, Bohrmann G, Elvert M. Stromatolitic fabric of authigenic carbonate crusts; results of anaerobic methane oxidation at cold seeps in 4,850 m water depth. Intern Jour Earth Sci, 2002,91: 698-711
    [40] Ritger S, Carson B, Suess E. Methane-derived authigenic carbonates formed by subduction-induced pore-water expulsion along the Oregon/Washington margin. GSA Bull, 1987,98:147-156
    [41] Kulm L D, Suess E. Relationship between carbonate deposits and fluid venting; Oregon accretionary prism. Jour Geophys Resear, B,1990,95: 8899-8915
    [42] Stakes D S, Orange D L, Paduan J B, et al. Cold-seeps and authigenic carbonate formation in Monterey Bay, California. Marine Geol, 1999,159: 93-109
    [43] Dickens G R, O"Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene. Paleoceanography, 1995, 10: 965-971
    [44] Dickens G R, Castillo M M, Walker J C G A blast of gas in the latest Paleocene; simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 1997, 25: 259-262
    
    [45] Canfield D E. Sulfate reduction in deep-sea sediments. Amer Jour Sci, 1991,291:177-188
    [46] Passier H F, Middelburg J J, de Lange G J, et al. Pyrite contents,microtextures, and sulfur isotopes in relation to formation of the youngest eastern Mediterranean sapropel. Geology, 1997,25:519-522
    [47] Habicht K. S, Canfield D E. Sulfur isotope fractionation during bacterial sulfate reduction in organic-rich sediments.Geochim Cosmochim Acta,1997,61:5351-5361
    [48]Kauffman E G,Arthur M A,Howe B,et al.Widespread venting of methane-rich fluids in Late Cretaceous(Campanian)submarine springs(Tepee Buttes),Western Interior Seaway,USA.Geology,1996,24:799-802
    [49]Shapiro R S,Fricke H.Tepee Buttes:Fossilized methane-seep ecosystems,GSA Field Guide 3.Science at the Highest Level,2002,94-101
    [50]Aiello I W,Garrison R E,Moore J C,et al.Anatomy and origin of carbonate structures in a Miocene cold-seep field.Geology,2001,29:1111-1114
    [51]Schwartz H,Sample J,Weborling K D,et al.An ancient linked fluid migration system:cold-seep deposits and sandstone intrusions in the Panoche Hills,California,USA.Geo-Marine Letters,2003,23:340-350
    [52]Hoffman P F,Schrag D P.The snowball Earth hypothesis;testing the limits of global change.Terra Nova,2002,14:129-155
    [53]Aitken J D.The ice brook formation and post-rapitan,Late Proterozoic glaciation,Mackenzie Mountains,Northwest Territories.Geol Surv Can Bull,1991,404:1-43
    [54]Kennedy M J.Stratigraphy,sedimentology,and isotopic geochem istry of Australian Neoproterozoic postglacial cap dolostones;deglaciation,delta(sub 13)C excursions,and carbonate precipitation.Jour Sediment Res,1996,66:1050-1004
    [55]Kennedy M J,Runnegar B,Prave A R,et al.Two or four Neoproterozoic glaciations?Geology,1998,26:1059-1063
    [56]Kennedy M J,Christie-Blick N,Sohl L E.Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals?Geology,2001,29:443-446
    [57]Jiang G,Kennedy M J,Christie-Blick N.Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates.Nature,2003a,426:822-826
    [58]贵州百科全书编辑委员会编,贵州百科全书.北京:中国大百科全书出版社,2005.138-139
    [59]程裕淇(主编),中国区域地质概论.北京:地质出版社.1994.
    [60]王剑,华南新元古代裂谷盆地演化--兼论与Rodinia解体的关系.北京:地质出版社,2000.
    [61]王剑,刘宝珺,潘桂棠,华南新元古代裂谷盆地演化--Rodinia超大陆解体的前奏.矿物岩石.2001,21(3):135-145
    [62]郝杰,李曰俊,胡文虎,晋宁运动和震旦系有关问题,中国区域地质,1992,(2):131-140
    [63]Li Z X,X H Li,Kinny P D,et al.The breakup of Rodinia:did it start with a mantle plume beneath South China.Earth and Planetary Science Lettewrs,1999,173:171-181
    [64]Li X H.U-Pb zircon age of granites from the southern margin of Yangtze Block and the timing of neoproterozoic Jinning Orogeny in SE China:termination of Rodinia assembly?Precamb Res,1999,97:43-57
    [65]刘鸿允等,中国震旦纪,北京:地质出版社,1991
    [66]马国干等.峡东地区震旦系同位素年龄及我国震旦系地质年表讨论,中国地质科学院院 报宜昌地质矿产研究所分刊,1980,(1)
    [67]Hoffman P F.Did the breakout of Laurentia turn gondwanaland inside-out?Science,1991,252:1409-1412
    [68]Moores E M.Southwest U S-East Antarctic(SWEAT)connection:A hypothesis.Geology,1991,19:425-428
    [69]Dalziel I W D.Pacific margins of Laurentia and East Antarctica-Australia as a conjugate rift Pair:Evidence and implications for an Eocambrian Supercontinent.Geology,1991,19:598-601
    [70]Li Z X.Tectonic History of the Major East Asian Lithopheric Blocks Since the Mid-Proterozoic-A Synthesis.In:Mantle Dynamics and Plate Interactions in East Asia,Geodynamics Series 27.by the American Geophysical Union.1998
    [71]Preiss W V.Neoproterozoic[A].In:The Geology of South Australia,Bulletin54[C].Edited by J F Drexel,Preiss W V,Parker A J.State Print,South Australia,1993
    [72]Fanning C M,Ludwig K R,Forbes B Get al.Single and multiple grain U-Pb zircon analyses for the early Adelaidean Rock Tuff,Willouran Ranges,South Australia[A].In:8th Australian Geological Convention,Adelaide,Geological Society of Australia[C].Abstracts,1986,15:71-72
    [73]Rainbird R H,T A de Freitas,Stratigraphic evidence for the siberia-Laurentia connection and Early Cambrian rifting:Comments and Reply.Geology,1997,
    [74]侯宗林,薛友智,中国南方锰矿地质.成都 四川科学技术出版社,1996.
    [75]贵州省地质矿产局,贵州省区域地质志.北京:地质出版社,1987,1-48
    [76]湖南省地质矿产局,湖南省区域地质志.北京:地质出版社,1988
    [77]王砚耕,王来兴,朱顺才,等,贵州东部大塘坡组地层沉积环境和成锰作用.贵阳:贵州人民出版社,1985.
    [78]全国地层委员会.中国区域年代地层(地质年代)表说明书.北京:地质出版社,2001.72
    [79]Plumb K A.New Precambrian scale.Episodes,1991,14(2):139-140
    [80]郑永飞,新元古代岩浆活动与全球变化.科学通报.2003.48(16):1705-1720
    [81]刘巽锋,王庆生,高兴基,等,贵州锰矿地质.贵阳:贵州人民出版社.1989
    [82]周琦,覃英,张遂,等,黔东北地区优质锰矿找矿进展与前景展望.贵州地质,2002.19(4):228-230
    [83]周琦,杜远生,王家生,等,黔东北地区南华系大塘坡组冷泉碳酸盐岩及其意义.地球科学--中国地质大学学报,2007,32(3):339-346
    [84]杨绍祥,劳可通,湘西北锰矿床成矿模式研究--以湖南花垣民乐锰矿床为例.沉积与特提斯地质.2006,26(2):72-80
    [85]周琦,杜远生,覃英,等,贵州省松桃县大塘坡南华纪早期古天然气渗漏构造的发现及其地质意义.地球科学--中国地质大学学报,2007,32(增刊);33-40
    [86]周琦,杜远生,颜佳新,等,贵州松桃大塘坡地区南华纪早期冷泉碳酸盐岩地质地球化学特征.地球科学--中国地质大学学报,2007,32(6);845-852
    [87]杨胜堂,松桃大塘坡锰矿床氧化锰矿地质特征及成因分析.贵州地质,1999,16(3):243-249
    [88]周琦,松桃大塘坡菱锰矿床矿枕形成机理新探.贵州地质,1989.6(1):1-7
    [89]殷鸿福,吴顺宝,杜远生,等,华南是特提斯多岛洋体系的一部分.地球科学--中国地质大学学报,1999,24(1):1-12
    [90]朱志澄,构造地质学.地质出版社,1992
    [91]Tryon M D,Brown K M,Torres M E.Fluid and chemical flux in and out of sediments hosting methane hydrate deposits on Hydrate Ridge,OR;Ⅱ,Hydrological processes.EPSL,2002,201:541-557
    [92]Tones M E,Wallmann K Trehu A,et al.Gas hydrate growth,methane transport,and chloride enrichment at the southern summit of Hydrate Ridge,Cascadia margin off Oregon.EPSL,2004,226:225-241
    [93]刘巽锋,等.贵州震旦纪锰矿沉积相特征及其成因探讨.沉积学报,1983,1(4):106-116
    [94]尹崇玉,王砚耕,唐烽,等,贵州松桃南华系大塘坡组凝灰岩锆石SHRIMPⅢU-Pb年龄.地质学报,2006,80(2):274-278
    [95]Bowring S A,Myrow P,Landing E,Ramezani J,Grotzinger J.Geochronological contains on terminal Neoproterozoic evints and the rise of metazoans.Geophysical Research Abstracts,2003,5:13,219
    [96]刘鸿允,董榕生,李建林,等,论震旦系划分与对比问题.地质科学,1980,(4):307-321
    [97]王日伦,陆宗斌,邢裕盛,等,中国上前寒武系的划分和对比.见:中国地质科学院天津地质矿产研究所编.中国震旦亚界.天津科学技术出版社,1980.1-30
    [98]邢裕盛,高振家,王自强,等,中国地层典--新元古界.北京:地质出版社,1996.35
    [99]Hoffman P F,Kaufman A J,Halverson G P,Schrag D P.A Neoproterozoic snowball Earth.Science,1998.281:1342-134
    [100]Jiang G,Sohl L E,Christie-Blick N.Neoproterozoic stratigraphie comparison of the Lesser Himalaya(India)and Yangtzeblock(south China):Paleogeographic implications.Geology,2003b.31:917-920.
    [101]Zhou C,Tucker R,Xiao S,Peng Z,Yuan X,Chen Z.New constraints on the ages of Neoproterozoie glaciation in south China.Geology,2004,32(5):437-440.
    [102]尹崇玉,刘敦一,高林志,等,南华系底界与古城冰期的年龄:SHRIMP Ⅱ定年证据.科学通报,2003,48(16):1721-1725
    [103]冯连君,储雪雷,张启锐,化学蚀变指数(CIA)及其在新元古代碎屑岩中的应用.地学前缘,2003,10(4):539-54
    [104]Jorgensen N O.Methane-derived carbonate cementation of marine sediments from the Kattegat,Denmark-Geochemical and geological evidence.Marine Geology,1992,103(1-3):1-13
    [105]Roberts HH,Aharon P.Hydrocarbon-derived carbonate buildups of the Northern Gulf-of-Mexico continental-slope-a review of submersible investigations.Geo-marine Letters,1994,14(2-3):135-148
    [106]冯东,陈多福,苏正,等.海底天然气渗漏系统微生物作用及冷泉碳酸盐岩的特征.现代地质,2005,19(1):26-32
    [107]Peckmann J,ReimerA,Luth U,et al.Methane-derived carbonates and authigenic pyrite from the northwestern Black Sea.MarineGeology,2001,177:129-150
    [108]Peckmann J,Walliser O H,Riegel W,et al.Signatures of hydrocarbon venting in a Middle Devonian carbonate monnd(Hallard Mound)at the Hamar Laghdad(Antiatlas Morocco).Fades,1999,40:281-296
    [109]陈忠,颜文,陈木宏,等,南海北部大陆坡冷泉碳酸盐结核的发现:天然气水合物新证据.科学通报,2006,51(9):1065-1072
    [110]Diaz-del-Rio V,Somoza L,Martinez-Frias J,et al.Vast fields of hydrocarbon-derived carbonate chimneys related to the accretionary wedge/olistostrome of the Gulf of Cadiz.Mar Geol,2003,195:177-200
    [111]李昌年,火成岩微量元素岩石学.中国地质大学出版社,1992
    [112]陈多福,陈先沛,贵州省松桃热水沉积锰矿的地质地球化学特征.沉积学报,1992.12(1):169-179
    [113]Murray R W,Buchholtz ten Brink M R,Gerlach D C,et al.Rare earth major and trace elements in chert from the Franciscan complex and Monterey Group,California,Assessing REE sources to finegrained marine sediments.Geochiimica et Cosmochimica Acta,1991.55:1875-1895
    [114]李任伟,张淑坤,雷加锦,等,震旦纪地层黄铁矿硫同位素组成时-空变化特征及扬子地块与晚元古超大陆关系的论证.地质科学,1996,31(3):209-217
    [115]Claypool G E,Holscr,W T,Kaplrm I R,et al.The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation.Chem.Geol.,1980:199-260
    [116]Lambert I B,Donnelly T H.Global oxidation and a supercontinent in the Proterozoic:Evidence from stable isotope trends.ln:M.Schidlowski et al.(eds)Early Organic Evolution:Implication for Mineral and Energy Resource.Springer-Verlag,Berlin,Heidberg.1992.408-414.
    [117]Hayes J M,Lamlert,I B,Strauss H.The sulfur isotop record.In:Schopf,J.W.& Klein,C.(eds)The Praterozoic Biosphere:A Multidisciplinary Study.Cambridge University Press.1992 129-132
    [118]Greinert J,Bollwerk S M,Derkachev A,et al.Massive barite deposits and carbonate mine ralization in the Derugin Basin,Sea of Okhotsk:oreeipitation processes at cold seep sites[J].Earth and Planetary Science Letters,2002,203:165-180.
    [119]王家生,甘华阳,魏清,等,三峡“盖帽”白云岩的碳、硫同位素研究及其成因探讨现代地质,2005.19(1):15-20
    [120]Peckmann J,Thiel V.Carbon cycling at ancient methane-seeps.Chemical Geology,2004,205:443-467
    [121]Detmers J,Brüchert V,Habicht K S,et al.Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes.Applied Environmental Microbiology,2001,67:888-894
    [122]Bolliger C,SchrothM H,BernasconiSM,et al.Sulfur isotope fractionation during microbial sulfate reduction by toluene degrading bacteria.Geochimica et Cosmochimica Acta,2001,65:3289-3298
    [123]Aharon P,Fu B.Microbial sulfate reduction rotes and sulfurand oxygen isotope fractionation at oil and gas seeps in deepwater Gulf of Mexico.Geochimica et Cosmochimica Acta,2000,64:233-24
    [124]Koim M J,RiciputiLR,StakesD,et al.Sulfur isotope variability in biogenic pyrite:reflections of heterogeneous bacterial colonization?.American Mineralogist,1998,83:1454-146
    [125]Rees C E,Jenkins W J,Monster J.The sulphur isotopic composition of oceanic water sulphate Geochimica et Cosmochimica Acta,1978,42:377-382
    [126]傅家漠,盛国英,许家友等,应用生物标志化合物参数判别古沉积环境.地球化学,1991.11-12.
    [127]傅家漠,盛国英,分子有机地球化学与古气候、古环境研究.第四纪研究,1992.4:306-317.
    [128]王铁冠,1990.中国科学(B辑),(10):1077-1085
    [129]Fu Jiamo,Sheng assessment of Guoying,Xu Jiayou,et al.,Application of biological markers in paleoenvironments of Chinese non-marine sediments.Orig.Geochem.,1990.16:769-779
    [130]Farrimond,P.,Eglinton,G.,Brassell,S.C.,et al.,The Cenomanian -Turonian anoxic event in Europe:an organic geothemical study.Mar Petrol Geol.,1990,7:75-89
    [131]Grantham,P.J.,Posthuma,J.,DeGroot,K.,Variation and significance of the C27 and C28triterpance content of a North Sea core and various North Sea crude oils.In:Douglas,A.G.,Maxwell,J.R.(Eds.),Advances in Organic Geochemistry 1979.New York:Pergamon Press,1980.29-38
    [132]Peters,K.E.,Moldowan,1.M.,The Biomarker Guide:Interpreting Molecular Fossolis in Petroleum and Ancient Sediments.Prentice Hall Inc.1995.236
    [133]解启来,陈多福,陈先沛.贵州松桃锰矿沉积有机质特征研究.沉积学报,1999.17(2):280-284
    [134]邓宏文,钱凯,沉积地球化学与环境分析.兰州:甘肃科学技术出版社,1993.154
    [135]Brassell,S.C.,Eglinton,G,Maxwell,J.R.,et al.,Natural background of alkanes in the aquatic environment.Hutzinger O.,et al.,Aquatic Pollutanta:Transformation and Biological Effects.Oxford:Pergamon Press,1978.69-86
    [136]Clark,R.C.,Blnmer,M.,Distribution of n-paraiTns in marine organisms and sediment.Liminology and Oceanogaphy,1967.12(12):79-87
    [137]Chafetz H S,Akdim B,Julia R,et al.,Mn-Fe-rich travertine shrubs:bacterially(and nanobacterially)induced pricipitates.Journal of Sedimentary Research.1998,68(3):404.-413
    [138]Jones B,Rosen M R,Renaut R W.Silica-cemented beachrock from Frost Lake Taupo,North Island,New Zealand.Journal of Sedimentary Research.1997,67(3):805-814
    [139]Rona P A,et al.,Hydrothermal Processes at Seafloor Spreading Centres.New York:Plenum Press,1983
    [140]Pancost R D,Bouloubassi I,Aloisi G,et al.,Three series of non-isoprenoidal dialkyl glycerol diethers in cold-seep carbonatecrusts.Organic Geochemistry,2001,32:695-707
    [141]Zhang C L,Li Y,Wall J D,et al.,Lipid and carbon isotopic evidence of methane-oxidizing and sulfate-reducing bacteria in association with gas hydrates from the Gulf of Mexico.Geology,2002,30:239-242
    [142]李任伟,李哲,王志珍,等,分子化石指标在中国东部盆地古环境分析中的应用.沉积学报,1988,6(4):108-118.
    [143]赵东旭,震旦纪大塘坡期锰矿的内碎屑结构和重力流沉积.地质科学,1990,第2期:149-158
    [144]郑光夏,刘巽锋,贵州震旦纪沉积锰矿床的藻类成矿作用及其成岩序列.贵州地质,1987,第3期:339-350
    [145]杨瑞东,欧阳自远,朱立军,等,2002.早震旦世大塘坡期锰矿成因新认识.矿物学报,22(4):329-334.
    [146]沙志彬,张光学,梁金强,等,泥火山-天然气水合物存在的活证据.南海地质研究,2005.48-56
    [147]Reed-Donald-L,Silver-Eli-A,Tagudin-J-E,Shipley-Thomas-H,Vrolijk-P.Relations between mud volcanoes,thrust deformation,slope sedimentation,and gas hydrate,offshore North Panama.Marine and Petroleum Geology.1990,7;1,44-54
    [148]沙志斌,王宏斌,张光学,等,底辟构造与天然气水合物的成矿关系.地学前缘,2005,12(3):283-288
    [149]Ginsburg G.D.,Milkov A.V.,Soloviev V.,A.,et al.Gas hydrate accumulation at the Hakon Mosby Mud Volcano.Geo-Marine Letters,1999,19:57-67
    [150]Egorov A V,CraneK,Vogt P R,Rozhkov A N.hydrates that outcrop on the sea floor:stability models Geo-Marine Letters.1999.19:68-75
    [151]Milkov A V.Sassen R.Economic geology of off shore gas hydrate accumulations and provinces.Marine and Petroleum Geology,2002,19(1):1 - 11
    [152]James R Hein等,加里福尼亚南部岸外泥火山的甲烷成因方解石、13C亏损的双壳类贝壳以及气水合物.海洋地质动态,2006,22(8):21-25
    [153]高山,Qiu Yumin,凌文黎,等,崆岭高级变质地体单颗粒锆石SHRIMP U-Pb年代学研究.中国科学,D辑,2001,31(1):27-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700