用户名: 密码: 验证码:
沼泽湿地及其不同利用方式下甲烷排放机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了阐明我国沼泽湿地甲烷排放的数量、甲烷排放的时空变化特点及其控制因素、植物在甲烷排放过程中的作用和排干沼泽农业利用对大气甲烷氧化的影响,在野外测定了沼泽湿地甲烷排放通量、沼泽水中甲烷浓度、水溶性有机碳(DOC)和乙酸含量,同时测定了沼泽氧化还原电位、温度、植物地上部分生物量和密度,室内培养试验研究了沼泽水产甲烷潜能。
     三江平原毛果苔草沼泽在植物生长期间甲烷排放通量变化在0.16~54.6 mg CH4 m-2 h-1之间,平均19.6 mg CH4 m-2 h-1。青藏高原若尔盖地区苔草泥炭沼泽甲烷排放通量波动在0.16~10.0 mg CH4 m-2 h-1之间,平均2.96 mg CH4 m-2 h-1。青藏高原高海拔导致的夏季温度较低是引起该地区沼泽甲烷排放量低的主要原因。初步估算我国沼泽湿地甲烷年排放总量为1.76Tg。
     毛果苔草对内源甲烷的氧化作用大于对甲烷的产生作用,乌拉苔草对两者的影响大致相当,而小叶章则对甲烷的产生作用大于对甲烷的氧化作用。在淡水腐泥沼泽(freshwater marsh)中,随着沼泽静水层深度的增加,植物种类由禾本科植物变为莎草科植物,植物传输甲烷的能力显著提高,占沼泽甲烷排放总量的比例从31%上升到72%~86%。
     三江平原沼泽湿地甲烷排放呈如下规律:毛果苔草沼泽>乌拉苔草沼泽>小叶章沼泽。静水层不同不仅引起其上生长的植物种类不同,而且也导致被水淹没的植物立枯量不同,使得沼泽中水溶性或易还原性有机碳含量产生差异,进而引起沼泽产生的甲烷数量不同,最终表现在甲烷排放通量的不同。在同种植物生长的沼泽不同采样点之间甲烷排放通量也存在一定的差异,这是由于植物地上部分生物量和植物密度的不同所致。
     毛果苔草沼泽甲烷排放存在明显的昼夜变化,午夜0:00出现最低值,大约在上午9:00达到最大值。小叶章沼泽排放的甲烷不仅数量少而且昼夜变化幅度小。引起沼泽湿地甲烷排放昼夜变化的主要原因是温度和植物光合作用产生的并传输到植物根茎和根际的氧气数量不同,使得植物根茎和根际中甲烷氧化和产生的数量在一天的不同时段不同,从而改变了沼泽水和根茎中的甲烷浓度,以及甲烷产生对温度昼夜变化的响应。
     毛果苔草沼泽水中甲烷浓度也存在明显的季节性变化规律。植物生长前期沼泽水中低的甲烷浓度不是由于乙酸供应限制了甲烷产生,而是由于低的温度和较高的氧化还原电位限制了甲烷的产生。
     沼泽不仅是大气甲烷的源,当沼泽排干后也是大气甲烷的汇。然后当排干沼泽被开垦为农田时,土壤氧化大气甲烷的能力受到强烈的影响。对土壤的耕翻破坏了甲烷氧化菌群落原有的最佳生境(optimal niche),提高表层土壤的容重,增加大气中氧气和甲烷扩散进入土壤的阻力,降低了土壤氧化大气甲烷的能力。氮肥的施用提高了土壤中NH4+的含量,可能激活土壤硝化菌的繁殖,降低甲烷氧化菌的数量和活性。排干沼泽土壤农业耕种初期氧化大气甲烷能力的降低主要起因于耕种行为本身,而氮肥施用则起着缓慢但长久的影响。
To estimate the magnitude of methane emission from mires in China and to understand①temporal and seasonal pattern of methane emission from the freshwater marsh,②the effect of plants on methane emission from the freshwater marsh and③cultivation, fertilizer application and set-aside effects on atmospheric methane uptake in the drained marsh, the fluxes of methane emissions from and methane, dissolved organic carbon (DOC) and acetate concentrations in porewater in the freshwater marsh or the peatlands as well as redox potential in the vertical profile and plant biomass were measured in the field in Sanjiang plain, Heilongjiang province, northeast China, and in Hongyuan county, Sichuan province, west China.
     The flux rate of methane emission from the peatland in Qinghai-Tibet highland and the freshwater marsh in Sanjiang plain ranged from 0.16 to 10.0 mg CH4 m-2 h-1 with an average of 2.96 mg CH4 m-2 h-1 and 0.16-54.6 mg CH4 m-2 h-1 with an average of 19.6 mg CH4 m-2 h-1. The low flux in Qinghai-Tibet highland was due to low methane production stemmed from low temperature in summer. Based on our in situ measurement and the available data measured in previous studies around China, the estimated budget of methane emission from mires in China was 1.76 Tg a-1.
     The fraction of methane emission through Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia was 72, 86 and 31%, respectively. Carex laisocarpa made a greater contribution to methane oxidation than to methane production and Carex meyeriana contributed equally to both functions, whereas Deyeuxia angustifolia stimulated methane production. As the depth of the standing water in the freshwater marsh increased and cyperaceous plants replaced the gramineous plants, the capacity of plants to transport methane from the marsh into the atmosphere increased, however the comprehensive effect of plants on methane production decreased.
     The flux rate of methane emission from the freshwater marsh vegetated with the different type of plants over the measuring period was in the following order: Carex lasiocarpa > Carex meyeriana > Deyeuxia angustifolia. Standing water depth determined the type of marsh plants, which governed methane transport, and the amount of plant litters inundated in water, which resulted in the difference in dissolved organic carbon for methanogenesis. The latter in turn affected methane concentration in porewater and methane emission. The aboveground plant biomass and plant density controlled spatial variation of methane emission from plots within a certain marsh.
     There was an apparent diel variation of methane emission from the marsh vegetated with Carex lasiocarpa with a peak at 9:00 and the lowest at 0:00. By contrast, an unclear diel pattern was observed in the Deyeuxia angusitfolia marsh. The diel variation was due likely to the variation of methane oxidation in the rhizome and rehizosphere, which was caused by the difference in the magnitude of oxygen produced through plant photosynthesis over the course of the day, and to the variation of methane production responding to diel variation of temperature.
     There was an apparent seasonal variation in methane concentration in porewater in the Carex lasioarpa marsh. Low metehane concentration in June was due likely to low temperature and high redox potential resulted from the more oxygen content in the rhizosphere rather than to unavailability of acetate, which inhibited methane production.
     The marsh is not only a source but also a sink for atmospheric methane when it was drained. Cultivation of the drained marsh enhanced bulk density of the surface soil and greatly destroyed optimal niche of methanotrophic community, which enhanced diffusion resistance of methane and oxygen and reduced methane uptake rate. Nitrogen fertilizer application increased NH4+ content in the surface soil, which possibly decreased methanotroph population and activity, leading to reduction of methane uptake. Cultivation strongly affected methane uptake rate at the initial stage of marsh cultivation and nitrogen fertilizer slowly reduced but persistently affected methane uptake.
引文
1. IPCC. Climate Change 2001: The Scientific Basis, Edited by J. H. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson, Cambridge University Press, New York, USA. 2001.
    2. Mosier AR. Soil processes and global change. Biol. Fertil. Soils, 1998, 27: 221-229
    3. Sass RL, Fisher FM, Harcombe PA, Turner FT. Methane production and emission in a Texas rice field. Global Biogeochem. Cycle, 1990, 4: 47-68
    4. Lelieveld J, Crutzen PJ, Dentener FJ. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 1998, 50B: 128-150
    5. Cai ZC, Tsuruta H, Gao M, Xu H, Wei CF. Options for mitigating methane emission from a permanently flooded rice field. Global Change Biology, 2003, 9:37-45.
    6. Cai ZC, Xing GX, Yan XY, Xu H, Tsuruta H, Yagi K, Minami K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil, 1997, 196: 7-14
    7. Bosse U, Frenzel P. Methane emissions from rice microcosms: The balance of production, accumulation and oxidation. Biogeochemistry, 1998, 41:199-214
    8. Conrad R, Rothfuss F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils, 1991, 12:28-32
    9. Cai ZC, Tsuruta H, Minami K. Methane emission from rice fields in China: Measurements and influencing factors, J Geophys. Res. 2000, 105:17231-17242
    10. Cai ZC, Tsuruta H, Rong XM, Xu H, Yuan ZP. CH4 emissions from rice paddies manged according to farmer’s practice in Hunan, China. Biogeochemisty, 2001, 56:75-91
    11. Huang Y, Sass R, Fisher FM Jr. Methane emission from Texas rice paddy soils 2. Seasonal contribution of rice biomass production to CH4 emission. Global Change Biology, 1997, 3:491-500
    12. Huang Y, Sass R, Fisher FM Jr. Methane emission from Texas rice paddy soils 1. Quantitative multi-year dependence of CH4 emission on soil, cultivar and grain yield. Global Change Biology, 1997, 3:479-489
    13. Banik A, Sen M, Sen SP. Effects of inorganic fertilizers and micronutrients on methane production from Wetland rice (Oryza sativa L.). Biol. Bertil. Soils, 1996, 21: 319-322
    14. Bodelier PLE, Hahn AP, Arth IR, Frenzel P. Effects of ammonium-based fertilization on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry, 2000, 51: 225-257
    15. 上官行健, 王明星, 沈壬兴. 稻田甲烷的排放规律. 地球科学进展, 1993, 8: 23-36
    16. 崔宝山. 三江平原沼泽地 CH4 排放规律及估算. 地理科学, 1997, 17:93-96.
    17. Williams RJ, Crawford RL. Methane production in Minnesota peatlands. Appl. Environ. Microbiol. 1984, 47:1266-1271.
    18. Frenzel P, Karofeld E. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation. Biogeochemistry, 2000, 51:91-112.
    19. Crill P, Bartlett KB, Roulet N. Methane flux from boreal peatlands. Suo, 1992, 43:173-182.
    20. Morrissey LA, Livingston GP. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. J Geophys. Res., 1992, 97(D15):16661-16670
    21. Bachoon D, Jones RD. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades. Soil Biol. Biochem., 1992, 24:21-27
    22. Saarnio A, Alm J, Silvola J, Lohila A, Nykanen H, Martikainen PJ. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 1997, 110:414-422.
    23. Moore TR, Dalva M. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol. Biochem. 1997, 29:1157-1164.
    24. Amaral JA, Knowels R. Growth of methanotrophs in oxygen and methane counter gradients. FEMS Microbiol Lett, 1995, 126:215-220
    25. Aulakh MS, Wassmann R, Rennenberg H, Fink S. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biology, 2000, 2:182-194.
    26. Moore KE, Roulet NT. Methane flux: water relations in northern wetlands. Geophys. Res. Lett. 1993, 20:587-590.
    27. Van der Nat FJWA, Middelburg JJ, Van Meteren D, Wielemakers A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry, 1998, 41:1-22.
    1. Bouwman AF. Soil and greenhouse effect, John Wiley and Sons, 1990.
    2. Leliveld J, Crutzen PJ, Dentener FJ. Changing concentration, lifetime and climate forcing of atmospheric methane. Tellus, 1998, 50:128-150.
    3. IPCC. Climate Change 2001: The Scientific Basis, Edited by Houghton JH, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. Cambridge University Press, New York, USA, 2001.
    4. Khalil MAK. Non-CO2 greenhouse gases in the atmosphere. Annu. Rev. Energy Environ., 1999, 24:645-661
    5. Aselmann I, Crutzen PJ. Global distribution of natural freshwater wetlands and rice paddies, their net primary production, seasonality and possible methane emissions. Journal of atmospheric chemistry, 1989, 8:307-358
    6. Aselmann I, Crutzen PJ. A global inventory of wetland distribution and seasonality, net primary productivity, and estimated methane emissions, in Soils and the greenhouse effect (ed by Bouwman AF), John Wiley & Sons Ltd, 1990.
    7. Post WM, Emanuel WR, Zinke PJ, Stangenberger AG. Soil carbon pools and world life zones. Nature, 1982, 298:156-159.
    8. Clymo RS. The Ecology of peatlands, Science progress (Oxford), 1987, 71:593-614.
    9. Matthews E, Fung I. Methane emission from natural wetlands: global distribution, area and environmental characteristics of sources. Global Biogeochemical Cycles, 1987, 1:61-86
    10. National wetlands working group. Wetlands of Canada. Polyscience Publications, Montreal, Quebec, 1988.
    11. Armentano TV, Menges ES. Patterns of change in the carbon balance of organic soil wetlands of the temperate zone. J Ecol., 1986, 74:755-774.
    12. Gorham E. Northern peatlands: role in the carbon cycle and probable responsed to climatic warming. Ecol. Appl., 1991, 1:182-195.
    13. Ruuhijavi R. The Finnish mire types and their regional distribution. In: Ecosystems of the world (ed. by Gore A.J.P.), Vol 2, Elsevier, Amsterdam, 1983, pp295-330.
    14. Taylor JA. The peatland of Great Britain and Ireland. In: Ecosystems of the world (ed. by Gore AJP), Vol 2, Elsevier, Amsterdam, 1983, pp1-46.
    15. Gore AJP. Introduction. In: Ecosystems of the world (ed. by Gore AJP), Vol 1, Elsevier, Amsterdam, 1983, pp1-34.
    16. Sjors H. Mires of Sweden. In: Ecosystems of the world (ed. by Gore AJP), Vol. 2, Elsevier,Amsterdam, 1983, pp69-94.
    17. Neue HU, Sass RL. The budget of methane from rice fields. IGACtivities NewsLetter, 1998, 12:3-11.
    18. Crill P, Bartlett KB, Roulet N. Methane flux from boreal peatlands. Suo, 1992, 43:173-182.
    1. Franzen LG. Can earth afford to lose the wetlands in the battle against the increasing greenhouse effect? International Peat Society Proceedings of International Peat Congress. Uppsala, 1992, 1-18
    2. Bartlett KB, Harriss RC. Review and assessment of methane emissions from wetlands. Chemosphere, 1993, 26:261-320
    3. Kludze HK, Delaune RD, Patrick WH Jr. Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci Soc Am J, 1993, 57:386-391
    4. Wang ZP, Lindau CW, Delaune RD, Patrick WH Jr. Methane emission and trapment in flooded rice soils as affected by soil properties. Biol. Fertil. Soils, 1993, 16:163-168
    5. Dunfield P, Knowles R, Dumont R, Moor TR. Methane production and consumption in temperate and subarcctic peat soils: response to temperature and pH. Soil Biol. Biochem., 1993, 25:321-326
    6. Moore TR, Roulet NT. Methane emissions from Canadian peatlands In: Soils and global change eds. By Lal R, Kimble J, Levine E, Stewart BA. Boca Raton: Lewis Publishers. 1995, 153-164
    7. 丁维新, 蔡祖聪. 土壤有机质和外源有机物对甲烷产生的影响. 生态学报, 2002, 22:1672-1679
    8. Papen H, Renneberg H. Microbial processes involved in emissions of radioactively important trace gases. In: Trans 14th Intern. Congr. Soil Sci. (Vol. II). 1990, 232-37
    9. Chasar LS, Chanton JP. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon and CH4 in a northern Minnesota peatland. Global Biogeochemical Cycles, 2000, 14:1095-1108
    10. Chasar LS, Chanton JP, Glaser PH, Siegel DI. Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake Agassiz peatland complex. Annals of Botany, 2000, 86:655-66
    11. Saarnio A, Alm J, Silvola J, Lohila A, Nykanen H, Martikainen PJ. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 1997, 110:414-422
    12. Nedwell D, Watson A. CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO42- from acid rain. Soil Biol. Biochem., 1995, 27:893-903
    13. Bridgham SD, Richardson CJ. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol. Biochem., 1992, 24:1089-1099
    14. Lansdown JM, Quay PD, King SL. CH4 production via CO2 reduction in a temperate bog: Asource of 13C-depleted CH4. Geochemica et Cosmochimica Acta, 1992, 56:3493-3503
    15. Aselmann I, Crutzen PJ. Global distribution of natural freshwater wetlands and rice paddies, their net primary production, seasonality and possible methane emissions. Journal of Atmospheric Chemistry, 1989, 8:307-358
    16. 崔宝山. 三江平原沼泽地 CH4 排放规律及估算. 地理科学, 1997, 17:93-86.
    17. Kuivila KM, Murray JW, Devol AH. Methane production, sulfate reduction and competition for substrates in the sediments of Lake Washington. Geochemica et Cosmochimica Acta, 1989, 53:409-416
    18. Strayer, R F, Tiedje J M. Kinetic parameters of the conversion of the methane precursors to methane in a hyperentrophic lake sediment. Appl. Environ. Microbiol., 1978, 36: 330-346.
    19. Rothfuss F, Conrad R. Vertical profiles of CH4 concentrations, dissolved substrates and processes involved in CH4 production in a flooded Italian rice field. Biogeochemistry, 1993, 18:137-152
    20. Sugimoto A, Wada E. Hydrogen isotopic composition of bacteria methane: CO2/H2 reduction and acetate fermentation. Geochemica et Cosmochimica Acta, 1995, 59:1329-1337
    21. Whiticar MJ, Faber E, Schoell M. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs acetate fermentation—isotope evidence. Geochemica et Cosmochimica Acta, 1986, 50:693-709
    22. Hornibrook EDC, Longstaffe FJ, Fyfe WS. Spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence. Geochemica et Cosmochimica Acta, 1997, 61:745-753
    23. Sandbeck KA, Ward DM. Fate of immediate methane precursors in low sulfate, hot spring algal bacterial mats. Appl. Environ. Microbiol., 1981, 41:775-782
    24. Phelps TJ, Zeikus JG. Influence of pH on terminal carbon metabolism in anoxic sediments from a mildly acidic lake. Appl. Environ. Microbiol., 1984, 48:1088-1095
    25. Jones JG, Simon BM, Gardener S. Factors affecting methanogensis and associated anaerobic processes in the sediments of a stratified eutrophic lake. J. General Microbiol., 1982, 128:1-11.
    26. Schulz S, Conrad R. Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol. Ecol., 1996, 20:1-4.
    27. Lovley DR, Klug MJ. Sulfate reducers can outcompete methaneogens at freshwater sulfate concentrations. Appl. Environ. Microbiol., 1983, 45:187-192
    28. Chanton JP, Bauer JE, Glaser PA, Siegel DI, Kelley CA, Tyler SC, Romanowicz EH, LazrusA. Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands. Geochemica et Cosmochimica Acta, 1995, 59:3663-3668.
    29. Waldron S, Fallick A, Hall A. Comment on “spatial distribution of microbial methane production pathways in temperate zone wetland soils: stable carbon and hydrogen isotope evidence” by Hornibrook EDC, Longstaffe FJ and Fyfe WS. Geochemica et Cosmochimica Acta, 1998, 62:369-372.
    30. Lovley DR, Kluz MJ. Intermediary metabolism of organic matter in the sediments of eutrophic lake. Appl. Environ. Microbiol., 1982, 43:552-560.
    31. Jensen PD, Kalpan IR. Comparison of microbial gases from the Middle America Trench and Scripps Submarine Canyon: implications for the origin of natural gas. Appl. Geochem., 1986, 1:631-646.
    32. Westermann P, Ahring BK, Mah RA. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol., 1989, 55:1262-1266.
    33. Svensson BH. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol., 1984, 48:389-394.
    34. Chin KJ, Conrad R. Intermediary metabolism in methanogenic paddy soil and the influence of temperature. FEMS Microbiol. Ecol., 1995, 18:85-102.
    35. Chin KJ, Lukow T, Conrad R. Effect of temperature on structure and function of the methanogenic archaeal community in an anoxic rice field soil. Appl. Environ. Microbiol., 1999, 65:2341-2349
    36. GroβKopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol., 1998, 64:960-969.
    37. GroβKopf R, Stubner S, Liesack W. Novel euryarchaeotal lineages detected on rice root and in the anoxic bulk soil of flooded rice microcosms. Appl. Environ. Microbiol., 1998, 64:4983-4989.
    1. Hanson RS, Hanson TE. Methanotrophic Bacteria. Microbiol. Rev., 1996, 60:439-471
    2. Harriss RC, Sebacher DI, Day FP Jr. 1982. Methane flux in the Great Dismal Swamp. Nature, 1982, 297:673-674
    3. Bedard C, Knowles R. Physiology, biochemistry, and specific inhibitors of CH4, NH4+ and CO oxidation by methanotrophs and nitrifiers. Microbiol. Rev., 1989, 53:68-84
    4. Bowman JP, Sly LI, Nichols PD, Hayward AC. Revised taxonomy of methanotrophs: description of the Methylobacter gen. Nov. emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. International Journal of Systematic Bacteriology, 1993, 43:735-753
    5. Bowman JP, Sly, LI., Stackebrandt E. The phylogenetic position of the family Methylococcaceae. International Journal of Systematic Bacteriology, 1995, 45:182-185
    6. Murrell JC. Genetics and molecular biology of methantrophs. FEMS Microbiol. Rev., 1992, 88:233-248
    7. Amaral JA, Archambault C, Richard SR, Knowles R. Denitrification associated with groups I and II methanotrophs in a gradient enrichment system. FEMS Microbiol. Ecol., 1995, 18:289-298
    8. Amaral JA, Knowels R. Growth of methanotrophs in oxygen and methane counter gradients. FEMS Microbiol. Lett., 1995, 126:215-220
    9. Roslev P, King GM. Survival and recovery of methanotrophic bacteria stared under oxic and anoxic conditions. Appl. Environ. Microbiol., 1994, 60:2602-2608
    10. Gilbert B, Frenzel P. Rice roots and CH4 oxidation: The activity of bacteria, their distribution and the microenvironment. Soil Biol. Biochem., 1998, 30:1903-1916
    11. Bodelier PL, Frenzel P. Contribution of methanotrophic and nitrifying bacteria to CH4 and NH4+ oxidation in the rhizosphere of rice plants as determined by new methods of discrimination. Appl. Environ. Microbiol., 1999, 65:1826-1833
    12. Bender M, Conrad R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity. Soil Biol. Biochem., 1995, 27:1517-1527
    13. Striegel RG. Diffusional limits to the consumption of atmospheric methane by soils. Chemosphere, 1993, 26:715-720
    14. Adamsen APS, King GM. Methane consumption in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl. Environ. Microbiol., 1993, 59:485-490
    15. Whalen SC, Reeburgh WS, Sandback KA. Rapid methane oxidation in a landfill cover soil. Appl. Environ. Microbiol., 1990, 56:3405-341140
    16. Lessard R, Rochette P, Topp E. Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Can. J. Soil Sci., 1994, 74:139-146
    17. 蔡祖聪, Mosier AR. 土壤水分状况对 CH4 氧化, N2O 和 CO2 排放的影响. 土壤, 1999, 31(6):289-294
    18. Bowden RD, Newkirk KM, Rukko G. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature condition. Soil Biol. Biochem., 1998, 30:1591-1597
    19. Striegel RG, McConnaughey TA, Thorstenson DC, Weeks EP, Woodward JC. Consumption of atmospheric methane by desert soils. Nature, 1992, 357:145-147
    20. Gulledge J, Schimel JP. Effect of CH4 Starvation on atmospheric CH4 oxidizers in taiga and temperate forest soils. Soil Biol. Biochem., 1998, 30:1127-1132
    21. Whalen SC, Reeburgh WS. Moisture and temperature sensitivity of CH4 oxidation in boreal soils. Soil Biol. Biochem., 1996, 28:1271-1281
    22. Singh JS, Singh S, Raghubanshi AS, Singh S, Kashyap AK, Reddy VS. Effect of soil nitrogen, carbon and moisturee on methane uptake by dry tropical forest soils. Plant and Soil, 1997, 196:115-121
    23. Boeckx P, Cleemput OV. Mehtane oxidation in a neutral landfill cover soil: influence of moisture content, temperature and nitrogen-turnover. J. Environ. Qual., 1996, 25:178-183
    24. Schnell S, King GM. Responses of methanotrophic activity in soils and cultures to water stress. Appl. Environ. Microbiol., 1996, 62:3203-3209
    25. Castro MS, Melillo JM, Steudler PA, Chapman JW. Soil moisture as a predicator of methane uptake by temperate forest soils. Can. J. Forest Res., 1994, 24:1805-1810
    26. Nedwell D. and Watson A. 1995. CH4 production, oxidation and emission in a U.K. ombrotrophic peat bog: Influence of SO42- from acid rain. Soil Biol. Biochem., 27:893-903
    27. Priemer A. and Christensen S. Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol. Biochem., 1997, 29:1165-1172
    28. Flessa H. and Dorsch P. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. J. Geophys. Res., 1995, 97(D11):23115-23124
    29. Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Application, 1994, 4:617-625
    30. 董云社, 章申, 齐玉春, 陈佐忠, 耿远波. 内蒙古典型草地 CO2, N2O, CH4 通量的同时观测及其日变化. 科学通报, 2000, 45:318-322
    31. Klemedtsson AK, Klemedtsson L. Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biol. Fertil. Soils, 1997, 25:296-301
    32. Duenas C, Fernandez MC, Carretero J, Liger E. Methane uptake in soils of Southern Spain estimated by two diffeent techniques: static chamber and radon flux and soil air concentration profiles. Atmospheric Environment, 1996, 30:545-552
    33. Steudler PA, Bowden RD, Melillo JM, Aber JD. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 1989, 341:314-316
    34. Dunfield P, Knowles R, Dumont R, Moor TR. Methane production and consumption in temperate and subarctic peat soils: response to temperature and pH. Soil Biol. Biochem., 1993, 25:321-326
    35. Crill PM, Martikainen PJ, Nykanen H, Silvola J. Temperature and N fertilization effects on methane oxidation in a drained peatland soils. Soil Biol. Biochem., 1994, 26:1331-1339
    36. Chapman SJ, Kanda KI, Tsuruta H, Mianmi I. Influence of temperature and oxygen availability on the flux of methane and carbon dioxide from wetlands: a comparison of peat and paddy soils. Soil Sci. Plant Nutr., 1996, 42:269-277
    37. Castro MS, Steudler PA, Melillo JM, Aber JD, Bowden RD. Factors controlling atmospheric methane consumption by temperate forest soils. Global Biogeochem Cycles, 1995, 9:1-10
    38. Dasselaar AP, Beusichen ML, Oenema O. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant and Soil, 1998, 204:213-222
    39. Nebsit SP, Breitenbeck GA. A Laboratory study of factors influencing methane uptake by soils. Agriculture Ecosystems and Environment, 1992, 41:39-54
    40. Yan XY, Cai ZC. Effects of nitrogen fertilizer, soil moisture and temperature on methane oxidation in paddy soil. Pedosphere, 1996, 6:175-181
    41. King GM, Adamsen APS. Effects of temperature on methane consumption in: a forest soil and in pure cultures of the methanotroph Methylomonas rubra. Appl. Environ. Microbiol., 1992, 58:2758-2763
    42. Morrissey LA, Livingston G P. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. J. Geophys. Res., 1992, 97(D15):16661-16670
    43. Bosse U, Frenzel P, Conrad R. Inhibition of methane oxidation by ammonium in the surface layer of a littoral sediment. FEMS Microbiol. Ecol., 1993, 13:123-134
    44. Calhoun A, King GM. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. Appl. Environ. Microbiol., 1997, 63:3051-3058
    45. Sitaula B, Bakken LR, Abrahamsen G. CH4 uptake by temperate forest soils: effect of N input and soil acidification. Soil Biol. Biochem., 1995, 27:871-880
    46. Hansen S, Maehlum JE, Bakken LR. N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biol. Biochem., 1993, 25:621-630
    47. Goulding KWT, et al. The effect of agriculture on methane oxidation in soil. Phil. Trans. R. Soc. Lon. A, 1995, 351:313-325
    48. Mosier AR, Delgado JA. Methane and nitrous oxide fluxes in grasslands in western Puerto Rico. Chemosphere, 1997, 35:2059-2082
    49. Bodelier PLE, Roslev P, Henckel T, Frenzel P. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature, 2000, 403:421-424
    50. Henckel T., Roslev P., Conrad R. Effects of O2 and CH4 on presence and activity of the indigenous methanotrophic community in rice field soil. Environ. Microbiol., 2000, 2:666-679
    51. Steinkamp R, Butterbach-Bahl K, Papen H. Methane oxidation by soils of an N limited and N fertilized spruce forest in the Black Forest, Germany. Soil Biol. Biochem., 2001, 33:145-153
    52. Hutsch BW. Methane oxidation, nitrification and counts of methanotrophic bacteria in soils from long-term fertilization experiment. J. Plant Nutr. Soil Sci., 2001, 164:21-28
    53. Dunfield PF, Liesaack W, Henckel T, Knowles R, Conrad R. High-affinity methane oxidation by a soil enrichment culture containing a Type II methanotroph. Appl. Environ. Microbiol., 1999, 65:1009-1014
    54. Roslev P, Iversen N. Radioactive fingerprinting of microorganisms that oxidize atmospheric methane in different soils. Appl. Environ. Microbiol., 1999, 65:4064-4070
    55. Jensen S, Olsen RA. Atmospheric methane consumption in adjacent arable and forest soils systems. Soil Biol. Biochem., 1998, 30:1187-1193
    56. Cai ZC, Mosier AR. Effect of NH4Cl addition on methane oxidation by paddy soils. Soil Biol. Biochem., 2000, 32:1537-1545
    57. Schnell S, King GM. Stability of methane oxidation capacity to variations in methane and nutrient concentration. FEMS Microbiol. Lett., 1995, 4:285-294
    58. King GM, Schnell S. Effect of increasing atmospheric methane concentration on ammonium inhibition of soil methane consumption. Nature, 1994, 370:282-284
    59. Willison TW, Webster CP, Goulding KWT, Powlson DS. Methane oxidation in temperate soils: effects of land use and the chemical form of nitrogen fertilizer. Chemosphere, 1995, 30:539-546
    60. Goulding KWT, Willison TW, Webster CP, Powlson DS. Methane fluxes in aerobic soils. Environmental monitoring and Assessment, 1996, 42:175-187
    61. Moiser AR, Parton WJ, Valentine DW, et al. CH4 and N2O fluxes in the Colorado shortgrass steppe: 2. Long-term impact of land use change. Global Biogeochemical Cycles, 1977, 11:29-42
    62. 李玉娥,林而达. 天然草地利用方式改变对土壤排放 CO2 和吸收 CH4 的影响. 农村生态环境, 2000, 16:14-16
    63. Ojima DS, Valentine DW, Mosier AR, Parton WJ, Schimel DS. Effect of land use change on methane oxidation in temperate forest and grassland soils. Chemosphere, 1993, 26:675-685
    64. Ambus P, Christensen S. Spatial and seasonal nitrous oxide and methane fluxes in Danish forest, grassland and agroecosystems. Journal of Environmental Qualtiy, 1995, 24:993-1001
    65. Ding WX, Cai ZC, Tsuruta H. Cultivation, nitrogen fertilization and set-aside effects on methane uptake in a drained marsh soil in Northeast China. Global Biogeochemical Cycles (accepted).
    1. IPCC. Climate Change 2001: The Scientific Basis, Edited by Houghton JH, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. Cambridge University Press, New York, USA, 2001.
    2. Crill P, Bartlett K, Roulet N. Methane flux from boreal peatlands. Suo, 1992, 43:173-183.
    3. Moore KE, Roulet NT. Methane flux: water relations in northern wetlands. Geophys. Res. Lett. 1993, 20:587-590.
    4. Chanton JP, Whiting GJ, Showers WJ, Crill PM. Methane flux from Peltandra virginica: Stable isotope tracing and chamber effects. Global Biogeochemical. Cycles, 1992, 6:15-31
    5. Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 1989, 7:33-53
    6. Banker BC, kludze HK, Alford DP, Delaune RD, Lindau CW. Methane sources and sinks in paddy rice soils: relationship to emissions. Agriculture Ecosystems and Environment, 1995, 553:243-251
    7. Denier van der Gon HAC, Neue HU. Oxidation of methane in the rhizosphere of rice plants. Biol. Fertil. Soils, 1996, 22:359-366
    8. Aulakh MS, Wassmann R, Rennenberg H, Fink S. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biology, 2000, 2:182-194
    9. Nouchi I, Mariko S, Aoki K. Mechanism of methane transport from the rhizosphere through rice plants. Plant Physiol., 1990, 94:59-66
    10. Nouchi I. Mechanisms of methane transport through rice plants. In: Minami K, Mosier A, Sass R eds. CH4 and N2O: Global emissions and controls from rice fields and other agricultural and industrial sources. Japan, Tsukuba: National Institute of Agro-Environmental Sciences. 1994, 87-104
    11. Flessa H, Fischer WR. Plant induced changes in the redox potentials of rice rhizospheres. Plant and Soil, 1992, 143:55-60
    12. Matsuo T, Futsuhara Y, Kikuchi F, et al. Science of the rice plant. Vol. 1. Morphology. Tokyo: Food and Agriculture policy Research Center, 1997.
    13. Bosse U, Frenzel P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (oryza sativa). Appl Environ Microbiol, 1997, 63:1199-1207
    14. Butterbech-bahl K, Papen H, Rennenberg H. Impact of gas transport through rice cultivars on methane emission from paddy fields. Plant Cell Environment, 1997, 20:1175-1183
    15. Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK. Methane emission from rice: stable isotopes, diurnal variations, and CO2 exchange. Global Biogeochemical Cycles, 1997, 11:15-27
    16. Wang B, Neue HU, Samonte HP. Role of rice in mediating methane emission. Plant and Soil, 1997, 189:107-115
    17. Magnussont T. Carbon dioxide and methane formation in forest mineral and peat soil during aerobic and anaerobic incubations. Soil Biol. Biochem., 1993, 25:877-883
    18. Frenzel P, Rudolph J. Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorium. Plant and Soil, 1998, 202:27-32.
    19. Chasar LS, Chanton JP. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon dissolved inorganic carbon and CH4 in a northern Minnesota peatland. Global Biogeochem. Cycl. 2000, 14:1095-1108.
    20. 崔宝山.影响沼泽地 CH4 排放若干因子初探. 地理科学, 1997, 17:419-426.
    21. Ding WX, Cai ZC, Tsuruta H, Li XP. Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmospheric Environment, 2002, 36:5149-5157.
    22. Sundh I, Mikkela C, Nilsson M, Svensson BH. Potential aerobic methane oxidation in a sphagnum-dominated peatland-controlling factors and relation to methane emission. Soil Biol. Biochem. 1995, 27:829-837.
    23. Van der Nat, FJWA, Middelburg JJ, Van Meteren D, Wielemakers A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry, 1998, 41:1-22.
    24. Kaki T, Ojala A, Kankaala P. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex steud. and Typha latifolia L. in a boreal lake. Aquatic Botany, 2001, 71:259-271
    25. Nedwell D, Watson A. CH4 production, oxidation and emission in a UK ombrotrophic peat bog: Influence of SO42- from acid rain. Soil Biol. Biochem, 1995, 27:893-903.
    26. 王德宣, 吕宪国, 丁维新, 蔡祖聪, 王毅勇. 三江平原沼泽湿地与稻田 CH4 排放对比研究. 地理科学, 2002, 22(4):500-503.
    27. 黄国宏, 肖笃宁, 李玉祥, 陈冠雄, 杨玉成, 赵长伟. 芦苇湿地温室气体甲烷排放研究. 生态学报, 2001, 21:1494-1497.
    28. 黄国宏, 李玉祥, 陈冠雄, 杨玉成, 赵长伟. 环境因素对芦苇湿地 CH4 排放的影响. 环境科学, 2001, 22:1-5.
    29. 金会军, 吴杰, 程国栋, 中野智子, 孙广友. 青藏高原湿地 CH4 排放评估. 科学通报, 1999, 44:1758-1762.
    30. 王德宣, 吕宪国, 丁维新, 蔡祖聪, 高景福, 杨福明. 若尔盖高原沼泽湿地 CH4 排放研究. 地球科学进展, 2002, 17(6):877-880.
    31. 叶勇, 卢昌义, 林鹏. 海莲红树林土壤 CH4 动态研究. 土壤与环境, 2000, 9:91-95.
    32. Saarnio S, Saarinen T, Vasander H, Silvola J. A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in boreal oligotrophic mire. Global Change Biol., 2000, 6:137-144.
    33. Saarnio A, Alm J, Silvola J, Lohila A, Nykanen H, Martikainen PJ. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 1997, 110:414-422.
    34. Boeckx P, Cleemput OV. Methane emission from a freshwater wetland in Belgium. Soil Sci. Soc. Am. J. 1997, 61:1250-1256.
    1. Sundh I, Mikkela C, Nilsson M, Svensson BH. Potential aerobic methane oxidation in a sphagnum-dominated peatland-controlling factors and relation to methane emission. Soil Biol Biochem, 1995, 27:829-837
    2. Morrissey LA, Livingston GP. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. J Geophys. Res., 1992, 97(D15):16661-16670
    3. Amaral JA, Knowles R. Methane metabolism in temperate swamp. Appl. Environ., Microbiol, 1994, 60:3945-3951
    4. Saarnio A, Alm J, Silvola J, Lohila A, Nykanen H, Martikainen PJ. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 1997, 110:414-422
    5. Aselmann I, Crutzen PJ. Global distribution of natural freshwater wetlands and rice paddies, their net primary production, seasonality and possible methane emissions. J. Atmosph. Chem., 1989, 8:307-358
    6. Huang Y, Sass R, Fisher FM Jr. Methane emission from Texas rice paddy soils 1.quantitative multi-year dependence of CH4 emission on soil, cultivars and grain yield. Global Change Biology, 1997, 3:491-500
    7. Sass RL, Fisher FM, Harcombe PA, Turner FT. Methane production and emission in a Texas rice field. Global Biogeochem. Cycles, 1990, 4:47-68
    8. Bartlett KB, Crill PM, Sass RL, Harriss RC, Dise NB. Methane emissions from tundra environments in Yyukon-kuskokwim delta, Alaska. J. Geophys. Res., 1992, 97(D15):16645-16660
    9. Saarnio S, Alm J, Martikainen PJ, Silvola J. Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from a boreal mire. J. Ecology, 1998, 86:261-268
    10. Frenzel P, Karofeld. CH4 emission from a hollow-ridge complex in a raised bog: The role of CH4 production and oxidation. Biogeochemistry, 2000, 51:91-112
    11. Dunfield P, Knowles R, Dumont R, Moore TR. Methane production and consumption in temperate and subarcctic peat soils: response to temperature and pH. Soil Biol. Biochem., 1993, 25:321-326
    12. Prieme A, Christensen S. Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol. Biochem., 1997, 29:1165-1172
    13. Conrad R, Schutz H, Babbel M. Temperature limitation of hydrogen turnover and methanogensis in anoxic paddy soil. FEMS Microbiol. Ecol., 1987, 45:281-289
    14. Crill MP, Bartlett KB, Harriss RC, Gorham, Verry ES, Sebacher DI, Madzar L, Sanner W. Methane flux from Minnesota peatlands. Global Biogeochemical Cycles, 1988, 2:371-384
    15. Nedwell D, Watson A. CH4 production, oxidation and emission in a UK ombrotrophic peat bog: Influence of SO42- from acid rain. Soil Biol. Biochem., 1995, 27:893-903
    16. Svensson BH. Different temperature optima for methane formation when enrichments from acid peat are supplemented with acetate or hydrogen. Appl. Environ. Microbiol., 1984, 48:389-394
    17. Bachoon D, Jones RD. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades. Soil Biol. Biochem., 1992, 24:21-27
    18. Minoda T, Kimura M, Wada E. Photosynthates as dominant source of CH4 and CO2 in soil water and CH4 emitted to the atmosphere from paddy fields. J. Geophys. Res., 1996, 101:21091-21097
    19. Yagi K, Minami K. Effect of organic matter applications on methane emission from some Japanese paddy fields. Soil Sci. Plant Nutr., 1990, 36:599-610
    20. Wang ZP, Lindau CW, Delaune RD, Patrick WH Jr. Methane emission and trapment in flooded rice soils as affected by soil properties. Biol. Fertil. Soils, 1993, 16:163-168
    21. Bridgham SD, Richardson CJ. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol. Biochem., 1992, 24:1089-1099
    22. Chasar LS, Chanton JP. Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon dissolved inorganic carbon and CH4 in a northern Minnesota peatland. Global Biogeochemical Cycles, 2000, 14:1095-1108
    23. Chasar LS, Chanton JP, Glaser PH, Siegel DI. Methane concentration and stable isotope distribution as evidence of rhizospheric processes: comparison of a fen and bog in the glacial lake Agassiz peatland complex. Annals of Botany, 2000, 86:655-66
    24. Nilsson M. Methane production from peat, regulated by organic chemical composition, elemental and anion concentrations, pH and depth. International Peat Congress. IPS. Jyska, 1992, 125-133
    25. Smith LK, Lewis WW Jr. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. Global Biogeochem Cycles, 1992, 6:323-338
    26. Moore TR, Knowles R. Methane emission from fen, bog and swamp peatlands in Quebec. Biogeochemistry, 1990, 11:45-61
    27. Williams RJ, Crawford RL. Methane production in Minnesota peatlands. Appl. Environ. Microbiol., 1984, 47:1266-1271
    28. Lindau CW, Bollich PK, DeLaune RD, Mosier AR, Bronson KF. Methane mitigation inflooded Louisiana rice fields. Biol. Fertil. Soils, 1993, 15:174-178
    29. King GM, Roslev P, Skovgard H. Distribution and rate of methane oxidation in sediments of the Florida Everglades. Appl. Environ. Microbiol., 1990, 6:2902-2911
    30. Aerts R, Toft S. Nutritional controls on carbon dioxide and methane emission from carex-dominated peat soils. Soil Biol. Biochem., 1997, 29:168-169
    31. Hutsch BW, Webster CP, Powlson DS. Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol. Biochem., 1994, 26:1613-1622
    32. Wang ZP, Delaune RD, Lindau CW, Patrick WH Jr. Methane production from anaerobic soil amended with rice straw and nitrogen fertilizers. Fert. Res., 1992, 33:115-121
    1. Mosier AR. Soil processes and global change. Biol. Fertil. Soils, 1998, 27:221-229.
    2. IPCC. Climate Change 2001: The Scientific Basis, Edited by Houghton JH, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X., Maskell K, Johnson CA, Cambridge University Press, New York, USA, 2001.
    3. Aselmann I, Crutzen PJ. Global distribution of natural freshwater wetlands and rice paddies, their net primary production, seasonality and possible methane emissions. Journal of atmospheric chemistry, 1989, 8:307-358
    4. Matthews E, Fung I. Methane emission from natural wetlands: global distribution, area and environmental characteristics of sources. Global Biogeochemical Cycles, 1987, 1:61-86
    5. Bachelet D, Neue HU. Sources and sinks of methane. NATO ASI Ser. I, 1993, 13:457-465.
    6. Bachelet D, Neue HU. Methane emission from wetland rice areas of Asia. Chemosphere, 1993, 26:219-237.
    7. Khalil MAK, Rasmussen RA, Wang MX, Ren L. Methane emissions from rice fields in China. Environ. Sci. Technol. 1991, 25:979-981.
    8. Khalil MAK, Shearer NJ, Rasmussen RA. Methane sources in China: historical and current emissions. Chemosphere, 1993, 26:127-142.
    9. 王明星, 戴爱国, 黄俊等. 中国甲烷排放量的估算. 大气科学, 1993, 17:52-64.
    10. Wu HB, Ye ZJ. Preliminary estimated amount of methane emission from China rice paddy fields. China Environ. Sci. 1993, 13:76-80.
    11. Wang MX, Dai AG, Shangguan XJ, Ren LX, Shen RX, Schutz H, Seiler W, Rasmussen RA, Khalil MAK. Sources of methane in China. In: CH4 and N2O global emissions and controls from rice fields and other agricultural and industrial sources (Ed. by Minami K, Mosier AR, Sass RL). Yokendo Publishers, Tokyo, Japan, 1994, pp 9-26.
    12. Yao H, Zhuang YH. Estimation of methane emission from rice paddies in mainland China. Global Biogeochem. Cycles, 1996, 10:641-649.
    13. Sass RL. Short summary chapter for methane. In: CH4 and N2O global emissions and controls from rice fields and other agricultural and industrial sources (Ed by Minami K, Mosier AR, Sass RL). Yokendo Publishers, Tokyo, Japan, 1994, pp 9-26.
    14. 沈壬兴, 上官行健, 王明星等. 广州地区稻田甲烷排放及中国稻田甲烷排放空间变化. 地球科学进展, 1995, 10:387-392
    15. Cai ZC. A category for estimate of CH4 emission from rice paddy fields in China. Nutrient Cycling in Agroecosystems 1997, 49:171-179.
    16. 崔宝山. 三江平原沼泽地 CH4 排放规律及估算. 地理科学, 1997, 17:93-96.
    17. 金会军, 吴杰, 程国栋, 中野智子, 孙广友. 青藏高原湿地 CH4 排放评估. 科学通报, 1999, 44:1758-1762.
    18. 叶勇, 卢昌义, 林鹏. 海南岛和厦门红树林湿地 CH4 排放的时空变化. 大气科学, 2000, 24:152-156.
    19. 黄国宏, 肖笃宁, 李玉祥, 陈冠雄, 杨玉成, 赵长伟. 芦苇湿地温室气体甲烷排放研究. 生态学报, 2001, 21:1494-1497.
    20. Crill P, Bartlett KB, Roulet N. Methane flux from boreal peatlands. Suo 1992, 43:173-182.
    21. Yavitt JB, Lang GE, Downey DM. Potential methane production and methane oxidation rates in peatland ecosystems of the Appalachian Mountain United States. Global Biogeochem. Cycles, 1988, 2:253-268.
    22. Ding WX, Cai ZC, Tsuruta H, Li XP. Key factors affecting spatial variation of methane emissions from freshwater marshes. Chemosphere, 2003, 51:167-173.
    23. 孙广友, 张文芬, 张家驹. 横断山区沼泽与泥炭. 北京:科学出版社, 1998.
    24. Ding WX, Cai ZC, Tsuruta H, Li XP. Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmospheric Environment 2002, 36:5149-5157.
    25. Saarnio A, Alm J, Silvola J, Lohila A, Nykanen H, Martikainen PJ. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 1997, 110:414-422.
    26. Bosse U, Frenzel P. Methane emissions from rice microcosms: The balance of production, accumulation and oxidation. Biogeochemistry 1998, 41:199-214
    27. Westermann P. Temperature regulation of methanogenesis in wetlands. Chemosphere, 1993, 26:321-328
    28. Moore TR, Knowles R. Methane emissions from bog, fen and swamp peatlands in Quebec. Biogochemistry, 1990, 11:45-61.
    29. Bartlett KB, Crill PM, Sass RL, Harriss RC, Dise NB. Methane emissions from tundra environments in Yyukon-kuskokwim delta, Alaska. J. Geophys. Res. 1992, 97(D15): 16645-16660
    30. Whiting GJ, Chanton JP. Primary production control of methane emission from wetlands. Nature, 1993, 364:794-795
    31. Bergman, BH. Svensson and M. Nilsson, Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol. Biochem. 1998, 30:729-741.
    32. Segers R. 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 1998, 41:23-51.
    33. 赵魁义主编. 中国沼泽志. 北京:科学出版社, 1999.
    34. Saarnio S, Alm J, Martikainen PJ, Silvola J. Effects of raised CO2 on potential CH4 production and oxidation in, and CH4 emission from a boreal mire. J. Ecol. 1998, 86:261-268
    35. Saarnio S, Saarinen T, Vasander H, Silvola J. A moderate increase in the annual CH4 efflux by raised CO2 or NH4NO3 supply in boreal oligotrophic mire. Global Change Biology, 2000, 6:137-144.
    1. IPCC. In: Houghton JH, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. (Eds), Climate Change 2001: The Scientific Basis. Cambridge University Press, New York, USA, 2001.
    2. Conrad R. Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol. Rev. 1996, 60:609-640.
    3. Segers R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 1998, 41:23-51.
    4. Holzapfel-Pschorn A, Conrad R, Seiler W. Effects of vegetation on the emission of methane from submerged paddy soil. Plant Soil, 1986, 92:223-233.
    5. Bosse U, Frenzel P. Methane emissions from rice microcosms: The balance of production, accumulation and oxidation. Biogeochemistry, 1998, 41:199-214.
    6. King GM. Dymanics and controls of methane oxidation in a Danish wetland sediment. FEMS Microbiol. Ecol. 1990, 74:309-324.
    7. Conrad R, Rothfuss F. Methane oxidation in the soil surface layer of a flooded rice field and the effect of ammonium. Biol. Fertil. Soils, 1991, 12:28-32.
    8. Kludze HK, Delaune RD, Patrick WH Jr. Aerenchyma formation and methane and oxygen exchange in rice. Soil Sci. Soc. Am. J. 1993, 57:386-391.
    9. Aulakh MS, Wassmann R, Rennenberg H, Fink S. Pattern and amount of aerenchyma relate to variable methane transport capacity of different rice cultivars. Plant Biol. 2000, 2:182-194.
    10. Cicerone RJ, Shetter JD. Sources of atmospheric methane: measurements in rice paddies and a discussion. J. Geophys. Res. 1981, 86:7203-7209.
    11. Chanton JP, Martens CS, Kelley CA. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol. Oceanogr. 1989, 34:807-819.
    12. Waddington JM, Roulet NT. Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochem. Cycles 1996, 10:233-245.
    13. King JY, Reeburgh WS, Regli SK. Methane emission and transport by arctic sedges in Alaska- results of a vegetation removal experiment. J. Geophys. Res. 1998, 103:29083-29092.
    14. Kelker D, Chanton JP. The effect of clipping on methane emission from Carex. Biogeochemistry, 1997, 39:37-44.
    15. Van der Nat FJWA, Middelburg JJ. Methane emission from tidal freshwater marshes. Biogeochemistry, 2000, 49:103-121.
    16. Nouchi I, Mariko S. Mechanism of methane transport by rice plants. In: Oremland, R.S. (ed),Biogeochemistry of global changes. Chapman & Hall, New York, 1993, pp 336-352.
    17. Caffrey JM, Kemp GM. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. Aquat. Bot., 1991, 40:109-128.
    1. IPCC. In: Houghton, JH, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (Eds.), Climate Change 2001: The Scientific Basis. Cambridge University Press, New York, USA, 2001.
    2. Sebacher DI, Harris RC, Bartlett KB, Sebacher SM, Grice SS. Atmospheric methane sources: Alskan tundra bogs, an alpine fen and a subarctic boreal marsh. Tellus, 1986, 38(B):1-10.
    3. Waddington JM, Roulet NT. Atmosphere-wetland carbon exchange: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochemical Cycles, 1996, 10:225-231.
    4. Van der Pol-van Dasselaar A, van Beusichem ML, Oenema O. Determinants of spatial variability of methane emissions from wet grasslands on peat soil. Biogeochemistry, 1999, 44:221-237.
    5. Yavitt JB, Lang GE. Methane production in contrasting wetland sites: response to organic-chemical comp1nts of peat and to sulfate reduction. Geomicrobiology Journal, 1990, 8:27-46.
    6. Windsor J, Moore JR, Roulet NT. Episodic fluxes of methane from subarctic fens. Canadian Journal of Soil Science, 1992, 72:441-452.
    7. Saarnio A, Alm J, Silvola J, Lohila A, Nykanen H, Martikainen PJ. Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen. Oecologia, 1997, 110:414-422.
    8. Bubier JL, Moore TR, Roulet NT. Methane emissions from wetlands in the midboreal region of northern Ontario, Canada. Ecology, 1993, 74:2240-2254.
    9. Moore TR, Knowles R. Methane emissions from bog, fen and swamp peatlands in Quebec. Biogochemistry, 1990, 11:45-61.
    10. Svensson BH, Rosswall T. In situ methane production from acid peat in plant communities with different moisture regimes in a subarctic mire. Oikos, 1984, 43:341-350.
    11. Schutz H, Seiler W, Conrad R. Processes involved in formation and emission of methane in rice paddies. Biogeochemistry, 1989, 7:33-53
    12. Chanton JP, Whiting GJ, Showers WJ, Crill PM. Methane flux from Peltandra virginica: Stable isotope tracing and chamber effects. Global Biogeochemical Cycles, 1992, 6:15-31
    13. Van der Nat, FJWA, Middelburg JJ, Van Meteren D, Wielemakers A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry, 1998, 41:1-22.
    14. Dunfield P, Knowles R, Dumont R, Moor TR. Methane production and consumption in temperate and subarcctic peat soils: response to temperature and pH. Soil Biol. Biochem., 1993, 25:321-326
    15. Bachoon D, Jones RD. Potential rates of methanogenesis in sawgrass marshes with peat and marl soils in the Everglades. Soil Biol. Biochem., 1992, 24:21-27
    16. Morrissey LA, Livingston GP. Methane emissions from Alaska arctic tundra: an assessment of local spatial variability. J Geophys. Res., 1992, 97(D15):16661-16670
    17. Whalen SC, Reeburgh WS. Consumption of atmospheric methane by tundra soils. Nature, 1990, 246, 160-162.
    18. 鲁如坤主编. 土壤农业化学分析方法. 北京:中国农业科技出版社, 2000.
    19. 马学慧, 杨青, 刘银良. 三江平原开垦前后土壤水分物理特性的变化. 《三江平原沼泽研究》, 陈刚起主编. 北京:科学出版社, 1996, 52-59
    20. Bubier JL. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. Journal of Ecology, 1995, 83:403-420.
    21. Kelker D, Chanton JP. The effect of clipping on methane emission from Carex. Biogeochemistry, 1997, 39:37-44.
    22. Van der Nat FJWA, Middelburg JJ. Methane emission from tidal freshwater marshes. Biogeochemistry, 2000, 49:103-121.
    23. Nouchi I, Mariko S. Mechansim of methane transport by rice plants. In: Oremland RS (ed.), Biogeochemistry of global change. Chapman and Hall, New York, 1993, pp.336-352.
    24. Segers R. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 1998, 41:23-51.
    25. Svensson BH, Sundh I. Factors affecting methane production in peat soils. Suo, 1992, 43: 183-190.
    26. Hogg ED. Decay potential of hummock and hollow Sphagnum peats at different depths in Swedish raised bog. Oikos, 1993, 66:269-278.
    27. Yano Y, McDowell WH, Kinner NE. Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors. Soil Science Society of America Journal, 1998, 62:1556-1564.
    28. Van der Nat FJWA, Middelburg JJ. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry, 1998, 43:79-104.
    29. Nilsson M, Bohlin E. Methane and carbon dioxide concentrations in bogs and fens with special reference to the effects of the botanical composition of the peat. Journal of Ecology, 1993, 81:615-625.
    30. Yu KW, Wang ZP, Vermoesen A, Patrick WH Jr, Cleemput O Van. Nitrous oxide and methane emissions from different soil suspensions: effect of soil redox status. Biology and Fertility of Soils, 2001, 34:25-30
    31. Khalil MAK, Rasmussen RA, Shearer MJ, Dalluge RW, Ren LX, Duan CL. Factors affecting methane emissions from rice fields. Journal of Geophysical Research, 1998, 103:25219-25231.
    32. Chanton JP, Whiting GJ, Happell JD, Gerard G. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Biology, 1993, 46:111-128.
    1. Kaki T, Ojala A, Kankaala P. Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex steud. and Typha latifolia L. in a boreal lake. Aquatic Botany, 2001, 71:259-271
    2. Van der Nat, FJWA, Middelburg JJ, Van Meteren D, Wielemakers A. Diel methane emission patterns from Scirpus lacustris and Phragmites australis. Biogeochemistry, 1998, 41:1-22.
    3. Schutz H, Holzapfel-Pschorn A, Conrad R, Rennenberg H, Seiler W. A 3-year continuous record on the influence of daytime, season, and fertilizer treatment on methane emission reats from an Itanlian rice paddy. Journal of Geophysical Research, 1989, 94:16405-16416.
    4. Mikkela C, Sundh I, Svensson BH, Nilsson M. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire. Biogeochemistry, 1995, 28:93-114.
    5. Whiting GJ, Chanton JP. Primary production control of methane emission from wetlands. Nature, 1993, 364:794-795.
    6. Chanton JP, Whiting GJ, Blair NE, Lindau CW, Bollich PK. Methane emission from rice: stable isotopes, diel variations, and CO2 exchange. Global Biogeochemical Cycles, 1997, 11:15-27.
    7. Chanton JP, Whiting GJ. Methane stable isotopic distributions as indicators of gas transport mechanisms in emergent aquatic plants. Aquatic Botany, 1996, 54:227-236.
    8. Knapp AK, Yavitt JB. Evaluation of a closed-chamber method for estimating methane emissions from aquatic plants. Tellus, 1992, 44(B):63-71.
    9. Morrissey LA, Zobel DB, Livingston GP. Significance of stomatal control on methane release from Carex-dominated wetlands. Chemosphere, 1993, 26:339-355.
    10. Minoda T, Kimura M. Contribution of photosynthesized carbon to the methane emitted from paddy fields. Geophysical Research Letters, 1994, 21:2007-2010.
    11. Smith RD, Dennison WC, Alberte RS. Role of seagrass photosynthesis in root aerobic processes. Plant Physiology, 1984, 74:1055-1058.
    12. Chanton JP, Martens CS, Kelley CA, Crill PM, Showers WJ. Methane transport mechanism and isotopic fractionation in emergent macrophytes of an Alaskan tundra lake. Journal of Geophysical Research, 1992, 97:16681-16688.
    13. Calhoun A, King GM. Regulation of root-associated methanotrophy by oxygen availability in the rhizosphere of two aquatic macrophytes. Applied and Environmental Microbiology, 1997, 63:3051-3058.
    14. Oremland RS, Taylor BF. Diurnal fluctuation of O2, N2 and CH4 in the rhizosphere ofThalassia testudinum. Limnology and Oceanography, 1977, 22:566-570.
    15. Chanton JP, Whiting GJ, Happell JD, Gerard G. Contrasting rates and diel patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany, 1993, 46:111-128.
    16. Nouchi I, Mariko S, Aoki K. Mechanism of methane transport from the rhizosphere through rice plants. Plant Physiology, 1990, 94:59-66.
    17. Harden HS, Chanton JP. Locus of methane release and mass-dependent fractioation from two wetland macrophytes. Limnology and Oceanography, 1994, 39:148-154.
    18. Van der Nat FJWA, Middelburg JJ. Methane emission from tidal freshwater marshes. Biogeochemistry, 2000, 49:103-121.
    19. King GM. Regulation by light of methane emissions from a wetland. Nature, 1990, 345:513-515.
    20. Vretare V. Internal oxygen transport to below-ground parts: importance for emergent macrophytes. Ph D dissertation of Lund University, Sweden, pp106, 2001
    21. Thomas KL, Benstead J, Davies KL, Lloyd D. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat. Soil Biology and Biochemistry, 1996, 28:17-23.
    22. Holzapfel-Pschorn A, Conrad R, Seil W. Production, oxidation and emission of methane in rice paddies. FEMS Microbiology Ecology, 1985, 31:343-351.
    23. Nouchi I, Mariko S. Mechanism of methane transport by rice plants. In: Oremland, R.S. (ed.), Biogeochemistry of global change. Chapman and Hall, New York, 1993, pp. 336-352.
    1. Conrad R. Control of methane production in terrestrial ecosystems. In: Andrea MO, Schimel DS (eds) Exchange of trace gases between terrestrial ecosystems and the atmosphere. Wiley, New York. 1989, pp39-58
    2. Laanbroek H, Veldkamp H. Microbial interactions in sediment communities. Philosophical Transactions of the Royal Society, London, 1982, 297:533-550
    3. Yavitt JB, Lang GE. Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiol. J., 1990, 8:27-46
    4. Sawyer TE, King GM. Glucose uptake and end product formation in an intertidal marine sediment. Appl. Environ. Microbiol., 1993, 59:120-128
    5. Amaral JA, Knowles R. Growth of methanotrophs in oxygen and methane counter gradients. FEMS Microbiol. Lett., 1995, 126:215-220
    6. Yavitt JB, Lang GE, Wider RK. Control of carbon mineralization to CH4 and CO2 in anaerobic Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry, 1987, 4:141-157
    7. Westermann P, Ahring BK, Mah RA. Temperature compensation in Methanosarcina barkeri by modulation of hydrogen and acetate affinity. Appl. Environ. Microbiol., 1989, 55:1262-1266
    8. Bridgham SD, Richardson CJ. Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol. Biochem., 1992, 24:1089-1099
    9. Bergman I, Svensson BH, Nilsson M. Regulation of methane production in a Swedish acid mire by pH, temperature and substrate. Soil Biol. Biochem., 1998, 30:729-741
    10. Bergman I, Klarqvist M, Nilsson M. Seasonal variation in rates of methane production from peat of various botanical origins: effects of temperature and substrate quality. FEMS Microbiol. Ecol., 2000, 33:181-189
    11. Moore TR, Knowles R. The influence of water table levels on methane and carbon dioxide emissions from peatland soils. Can. J. Soil Sci., 1989, 69:33-38.
    12. Whiting GJ, Chanton JP. Primary production control of methane emission from wetlands. Nature, 1993, 364:794-795
    13. Bubier JL. The relationship of vegetation to methane emission and hydrochemical gradients in northern peatlands. J. Ecol., 1995, 83:403-420
    14. Denier van der Gon HAC, Neue HU. Methane emission from a wetland rice field as affected salinity. Plant Soil, 1995, 170:307-313
    15. Conrad R. Control of microbial methane production in wetland rice fields. Nutr. Cycl. Agroecos., 2002, 64:59-69
    16. Ding WX, Cai ZC, Tsuruta H, Li XP. Effect of standing water depth on methane emissions from freshwater marshes in northeast China. Atmos. Environ., 2002, 36:5149-5157
    17. Westermann P. The effect of incubation temperature on steady-state concentrations of hydrogen and volatile fatty acids during anaerobic degradation in slurries from wetland sediments. FEMS Microbiol. Ecol., 1994, 13:295-302
    18. Westermann P. Temperature regulation of methanogenesis in wetlands. Chemosphere, 1993, 26:321-328
    19. Bosse U, Frenzel P. Activity and distribution of methane-oxidizing bacteria in flooded rice soil microcosms and in rice plants (oryza sativa). Appl. Environ. Microbiol., 1997, 63:1199-1207
    20. Gro βKopf R, Janssen PH, Liesack W. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol., 1998, 64:960-969
    21. Van den Pol-van Dasselaar A, van Beusichem ML, Oenema O. Methane emissions from wet grasslands on peat soil in a nature preserve. Biogeochemistry, 1999, 44:205-210
    22. Chin KJ, Lukow T, Stubner S, Conrad R. Structure and function of the methanogenic archaeal community in stable cellulose degrading enrichment cultures at two different temperatures (15°C and 30°C). FEMS Microbiol. Ecol., 1999, 30:313-326
    23. Van der Nat FJWA, Middelburg JJ. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany, 1998, 61:95-110
    1. IPCC. Climate Change 2001: The Scientific Basis. Edited by Houghton JH, Ding Y, Griggs D J, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA. Cambridge University Press, New York, USA, 2001.
    2. Bosse U, Frenzel P. Methane emissions from rice microcosms: the balance of production, accumulation and oxidation. Biogeochemistry, 1998, 41, 199-214.
    3. Cai ZC, Xing GX, Sheng GY, Xu H, Tsuruta H, Yagi K, Minami K. Measurements of CH4 and N2O emissions from rice fields in Fengqiu, China. Soil Sci. Plant Nutr., 1999, 45, 1-3.
    4. Harriss RC, Sebacher DI, Day FP Jr. Methane flux in the Great Dismal Swamp. Nature, 1982, 297, 673-674.
    5. Ueda S, Go CU, Yoshioka T, Yoshida N, Wada E, Miyajima T, Sugimoto A, Boontasnon N, Vijarnsorn P, Boonprakub S. Dynamics of dissolved O2, CO2, CH4, and N2O in a tropical coastal swamp in southern Thailand. Biogeochemistry, 2000, 49, 191-215.
    6. Bartlett KB. Methane flux from coastal salt marshes. J. Geophys. Res., 1985, 90, 5710-5720.
    7. Van der Nat FJWA, Middelburg JJ. Methane emission from tidal freshwater marshes. Biogeochemistry, 2000, 49, 103-121.
    8. Adamsen APS, King GM. Methane oxidation in temperate and subarctic forest soils: rates, vertical zonation, and responses to water and nitrogen. Appl. Environ. Microbiol., 1993, 59, 485-490.
    9. Benstead J, King GM. The effect of soil acidification on atmospheric methane uptake by a Maine forest soil. FEMS Microbiol. Ecol., 2001, 34, 207-212.
    10. Castro MS, Melillo JM, Steudler PA, Chapman JW. Soil moisture as a predicator of methane uptake by temperate forest soils. Can. J. Forest Res., 1994, 24, 1805-1810.
    11. Singh JS, Singh S, Raghubanshi AS, Singh S, Kashyap AK, Reddy VS. Effect of soil nitrogen, carbon and moisture on methane uptake by dry tropical forest soils. Plant Soil, 1997, 196, 115-121.
    12. Dasselaar AVP, Beusichen ML, Oenema O. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils. Plant Soil, 1998, 204, 213-222.
    13. Mosier A, Schimel D, Valentine DW, Bronson K, Parton W. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands. Nature, 1991, 350, 330-332.
    14. Mosier AR, Delgado JA, Cochran VL, Valentine DW, Parton WJ. Impact of agriculture on soil oxidation of atmospheric CH4 and a comparison of CH4 and N2O flux in subarcitc, temperate and tropical grasslands. Nutrient Cycling in Agroecosystems, 1997, 49, 71-83.
    15. Striegel RG, McConnaughey TA, Thorstenson DC, Weeks EP, Woodward JC. Oxidation of atmospheric methane by desert soils. Nature, 1992, 357, 145-147.
    16. Sommerfeld RA, Mosier AR, Musselman RC. CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature, 1993, 361, 140-142.
    17. Steudler PA, Bowden RD, Melillo JM, Aber JD. Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 1989, 341, 314-316.
    18. Crill, PM, Martikainen PJ, Nykanen H, Silvola J. Temperature and N fertilization effects on methane oxidation in a drained peatland soils. Soil Biol. Biochem., 1994, 26, 1331-1339.
    19. Hutsch BW, Webster CP, Powlson DS. Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk Wheat Experiment. Soil Biol. Biochem., 1993, 25,1307-1315.
    20. Keller M, Mitre ME, Stallard RF. Oxidation of atmospheric methane in soils of central Panama: Effects of agricultural development. Global Biogeochem. Cycles, 1990, 4, 21-27.
    21. 刘兴土, 马学慧. 三江平原大面积开荒对自然环境影响及区域生态环境保护. 地理科学, 2000, 20:14-19.
    22. Ruuhijavi R. The Finnish mire types and their regional distribution. In: Ecosystems of the world, Vol. 2, ed. by Gore AJP. Elsevier, Amsterdam, 1983, pp 295-330.
    23. Hansen S, Maehlum JE, Bakken LR. N2O and CH4 fluxes in soil influenced by fertilization and tractor traffic. Soil Biol. Biochem. 1993, 25, 621-630.
    24. 赵魁义主编. 中国沼泽志. 北京:科学出版社, 1999.
    25. Lerman A. Geochemical processes in water and sediment environments. John Wiley and Sons Inc., New York, 1979.
    26. Ishizuka S, Sakata T, Ishizuka K. Methane oxidation in Japanese forest soils. Soil Biol. Biochem., 2000, 32, 769-777.
    27. Kammann C, Grunhage L, Jager HJ, Wachinger G. Methane fluxes from differentially managed grassland study plots: the important role of CH4 oxidation in grassland with high potential for CH4 production. Environ. Pollut., 2001, 115, 261-273.
    28. Hutsch BW. Methane oxidation in arable soil as inhibited by ammonium, nitrite and organic manure with respect to soil pH. Biol. Fertil. Soils, 1998, 28, 27-35.
    29. Whalen SC, Reeburgh WS. Consumption of atmospheric methane by tundra soils. Nature, 1990, 246, 160-162.
    30. Prieme A, Christensen S. Seasonal and spatial variation of methane oxidation in a Danish spruce forest. Soil Biol. Biochem., 1997, 29, 1165-1172.
    31. Whalen SC, Reeburgh WS, Barber VA. Oxidation of methane in boreal forest soils: a comparison of seven measures. Biogeochemistry, 1992, 16, 181-211.
    32. Schnell S, King GM. Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl. Environ. Microbiol., 1994, 60, 3514-3521.
    33. Dobbie KE, Smith KA. Comparison of CH4 oxidation rates in woodland, arable and set aside soils. Soil Biol. Biochem., 1996, 28, 357-1365.
    34. Flessa H, Dorsch P. Seasonal variation of N2O and CH4 fluxes in differently managed arable soils in southern Germany. J. Geophys. Res., 1995, 97, 23115-23124.
    35. Bedard C, Conrad R. Microbial oxidation of methane, ammonium and carbon dioxide, and turnover of nitrous oxide and nitric oxide in soils. Biogeochemistry, 1994, 27, 97-112.
    36. Jensen S, Olsen RA. Atmospheric methane consumption in adjacent arable and forest soils systems. Soil Biol. Biochem., 1998, 30, 1187-1193.
    37. Lessard R, Rochette P, Topp E. Methane and carbon dioxide fluxes from poorly drained adjacent cultivated and forest sites. Can. J. Soil Sci., 1994, 74, 139-146.
    38. Hendrix PF, Crossley DA, Coleman DC, Parmelee RW, Beare MH. Carbon dynamics in soil microbes and fauna in conventional and no-tillage ecosystems. INTECOL Bull., 1987, 59-63.
    39. Granastein DM, Bezdicek DF, Cochran VL, Elliott LF, Hammel J. Long-term tillage and rotation effects on soil microbial biomass, carbon and nitrogen. Biol. Fertil. Soils, 1987, 5, 265-270.
    40. Hutsch BW. Methane oxidation, nitrification and counts of methanotrophic bacteria in soils from a long-term fertilization experiment. J. Plant Nutr. Soil Sci., 2001, 164, 21-28.
    41. Hutsch BW, Webster CP, Powlson DS. Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biol. Biochem., 1994, 26, 1613-1622.
    42. Goldman MB, Groffman PM, Pouyat RV, McDonnell MJ, Pickett STA. CH4 uptake and N availability in forest soils along an urban to rural gradient. Soil Biol. Biochem., 1995, 27, 281-286,.
    43. Mosier AR, Valentine DW, Schimel D, Parton W, Ojima D. Methane oxidation in the Colorado short grass steppe. Mitteilungen der Deutschen Bodenkundlichen Gesellschaft, 1993, 69, 219-226.
    1. Cai ZC. A category for estimate of CH4 emission from rice paddy fields in China. Nutrient Cycling in Agrocosystem, 1997, 49:171-179.
    2. Yan XY, Ohara T, Akimoto H. Development of region-special emission factors and estimation of methane emission from rice fields in the east, southeast and south asia countries. Global Change Biology, 2003, 9:237-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700