用户名: 密码: 验证码:
桐柏碰撞造山带及其邻区变形特征与构造演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近二十年来,基于岩石学,同位素地球化学,构造地质学以及地质年代学等的相关资料,地质学家们提出了许多模式来解释秦岭—大别—苏鲁碰撞造山带的高压—超高压岩石的折返机制。这些研究主要集中在大别—苏鲁造山带,而对其西侧的桐柏碰撞造山带研究较少。桐柏碰撞造山带位于秦岭造山带与大别—苏鲁造山带的衔接部位,是华北板块与华南板块及其之间所夹持的南秦岭微地块,于中生代碰撞拼合的产物,主体由两部分组成:核部的桐柏核部杂岩单元及其两侧的高压岩片单元。本文以构造解析为基础,通过筛分桐柏碰撞造山带及其邻区各期次的构造变形样式,建立横跨造山带的地质剖面,并依据现有的地质年代学资料,推断桐柏陆—陆碰撞造山带的演化过程,探讨其高压变质岩石的折返机制。
     桐柏碰撞造山带及其邻区可以划分为九个大地构造单元,自北向南分别是:华北克拉通南缘岩石构造单元—宽坪岩群,具弧后盆地性质的二郎坪岩石构造单元,具岛弧性质的秦岭杂岩单元,龟山岩组和南湾岩组构成的俯冲前缘楔构造带,构造混杂岩带,桐柏北部高压岩片单元,桐柏核部杂岩单元,桐柏南部高压岩片单元以及随州构造变形带。
     根据详细的构造解析以及现有的地质年代学资料,本文将区域中生代由陆—陆俯冲引起的高压变质作用之后的构造变形分为五幕,前两幕变形主要发育在构造混杂岩带以南的各个岩石构造单元中,之后的三幕变形则波及整个研究区。第一幕变形的时间约为255~238Ma,以发育区域上透入性的片理及北西西向的拉伸线理为主。第二幕变形的时间约为230~215Ma,以顶部指向南的逆冲推覆构造为主。第三幕变形应早于早侏罗世,以枢纽近北西西向的宽缓褶皱为主要特征。第四幕变形大致发生在135~120Ma之间,主要表现为桐柏核部杂岩两侧及其内部走滑型韧性剪切带的活动。第五幕变形时间约为120~80Ma,主要为北西向及北东向脆性断裂的发育,并切割以上所有构造形迹。
     上述构造变形是在该区榴辉岩相变质作用峰期之后发生的,因此记录了高压岩石的折返过程。其中前三幕变形为印支期同碰撞变形,高压岩片在这三幕变形的先后作用下呈阶段性抬升,其具体过程是:1)早期由第一幕变形所形成的L,拉伸线理约束的自西相东的挤出阶段;2)随后由第二幕自北向南的逆冲推覆构造所约束的垂向抬升阶段;3)后期由第三幕宽缓褶皱构造所约束的抬升阶段。其中前两个阶段可以与现今普遍接受的大别山早期快速折返阶段相对应,而第三个阶段则可以与后期的慢速折返阶段相对应。区域后两幕变形为燕山期叠加改造变形,至此形成了桐柏碰撞造山带及其邻区现今主体的构造组合样式。
In the past twenty years, based on petrology, geochemistry, structural geology and geochronology, different models have been proposed to explain the exhumation process of Qinling-Dabie-Sulu high/ultrahigh-pressure (HP-UHP) terranes. Most of the above studies focused on the Dabie-Sulu orogens. Recently, in the Tongbai orogen which is located at the junction between the Qinling orogen without Triassic UHP rocks and the Dabie orogen with Triassic UHP rocks, detailed petrological, geochemical and geochronological investigations identified two Mesozoic low-temperature and high-pressure eclogite zones separated by the Tongbai high-grade complex. In this contribution, structural data are reported for the Tongbai collisional orogen and the surrounding units in order to provide structural constraints for the exhumation process of the Tongbai HP rocks. We further evaluate the tectonic evolution of the Tongbai collisional orogen and its neighbours based on our detailed field data and available geochronological results.
     The Tongbai collisional orogen and its Neighbors can be divided into nine tectonic units. They are, from north to south, the southern margin of the North China Craton tectonic unit-the Kuanping group, the Erlangping tectonic unit with the nature of back-arc basin, the Qinling complex unit with the nature of island arc, the Guishan group and the Nanwan group composed of leading-edge wedge of the subduction zone, the tectonic melange zone, the northern High-pressure (HP) unit, the Tongbaishan high-grade complex, the southern HP unit, the Suizhou tectonic deformation zone.
     According to structural analysis and new geochronological evidences, five distinct episodes of deformation (D1-D5) are distinguished in this area since the Mesozoic. The former two-episode of deformation developed in the various tectonic units south of tectonic melange zone, and the latter three-episode of deformation developed in all units of this area. The time of the D1 episode is about 255-238Ma. D1 formed regional penetrative foliations and the WNW-oriented stretching lineations. D2 maybe occurred at some time about 230-215Ma, characterized with the southward-directed thrust. D3 should be earlier than lower Jurassic, and nearly WNW trending open folds as the main characteristics of this episode. D4 occurred in roughly between 135-120Ma, characterized with the activities of the ductile shear zones. D5 occurred in 120-80Ma, characterized with the activities of NW and NE trending brittle faults which cut all of the above structural features.
     The D1-D5 deformation events that occurred after the peak HP metamorphism, record the exhumation process of the Tongbai HP rocks. The first three stages of deformation (D1-D3) can be summarized as syn-collisional deformation in Indosinian, during which the HP slices were extruded and uplifted:1) the early stage of extrusion of the high-pressure rocks from west to east is constrained by the L1 stretching lineations.2) The southward-directed thrust (D2) makes the high-pressure rocks further vertical uplift.3) The Tongbaishan high-grade complex and the high-pressure rock units are synchronously uplifted during D3. The first two stages of deformation (D1-D2) are accommodated by the first fast stage of exhumation, and the D3 deformation is associated with the late slow stage of exhumation. Subsequently, the regional structural framework was overprinted by Yanshanian granites, strike-slip ductile shear zone (D4), and brittle faults (D5), resulting from the post-collisional extensional deformation.
引文
[1]Chopin C. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences. Contributions to Mineralogy and Petrology, 1984,86:107~118
    [2]Sobolev NV and Shatsky VS. Diamond inclusions in garnets from metamorphic rocks. Nature,1990,343:742~756
    [3]Ernst WG, Tsujimori T, Zhang RY and Liou JG. Permo-Triassic collision, subduction-zone metamorphism, and tectonic exhumation along the East Asian continental margin. Annual Review of Earth and Planetary Sciences,2007,35: 73~110
    [4]Zheng YF. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Science Bulletin,2008,53: 3081~3104
    [5]Zhang RY, Liou JG and Ernst WG. The Dabie-Sulu continental collision zone:A comprehensive review. Gondwana Research,2009, doi:10.1016/j. gr.2009.03.008
    [6]李三忠,刘鑫,索艳慧,等.华北克拉通东部地块和大别山-苏鲁造山带印支期褶皱—逆冲构造与动力学背景.岩石学报,2009,25(9):2031~2049
    [7]Okay AI, Sengor AMC and Satir M. Tectonics of an ultrahigh-pressure metamorphic terrane:the Dabie Shan/Tongbai Shan Orogen, China. Tectonics,1993,12: 1320~1334
    [8]Liou JG, Zhang RY, Wang X, Eide EA, Ernst WG and Maruyama S. Metamorphism and tectonics of high-pressure and ultra-high-pressure belts in the Dabie-Sulu region, China. In:Yin A, Harrison MT, eds. The Tectonic Evolution of Asia. Cambridge:Cambridge University Press,1996,300~344
    [9]Webb LE, Hacker BR, Ratschbacher L, McWilliams M and Dong SW. Thermochronologic constraints on deformation and cooling history of high-and ultrahigh-pressure rocks in the Qinling-Dabie orogen, eastern China. Tectonics,1999,18:621~638
    [10]Hacker BR, Ratschbacher L, Webb L, McWilliams MO, Ireland T, Calvert A, Dong SW and Wenk HR. Exhumation of ultrahigh-pressure continental crust in east central China:late Triassic-early Jurassic tectonic unroofing. Journal of Geophysical Research,2000,105:13339~13364
    [11]Ratschbacher L, Hacker BR, Webb LE, McWilliam MC, Ireland T, Dong SW, Calvert A, Chateigner D and Wenk HR. Exhumation of the ultrahigh-pressure continental crust in east central China:Cretaceous and Cenozoic unroofing and the Tan-Lu fault. Journal of Geophysical Research,2000,105:13303~13338
    [12]Faure M, Lin W, Monie P, Le Breton N, Poussineau S, Panis D and Deloule E. Exhumation tectonics of the ultrahigh-pressure metamorphic rocks in the Qinling orogen in east China:New petrological-structural-radiometric insights from the Shandong Peninsula. Tectonics,2003,22:1018, doi:10.1029/2002TC001450
    [13]Zheng YF, Fu B, Gong B and Li L. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China:implications for geodynamics and fluid regime. Earth-Science Reviews,2003,62:105~161
    [14]Zheng YF, Gao TS, Wu YB and Gong B. Fluid flow during exhumation of deeply subducted continental crust:zircon U-Pb age and 0 isotope studies of quartz vein in eclogite. Journal of Metamorphic Geology,2007,25:267~283
    [15]徐树桐,索书田,钟增球,等.大别山碰撞造山带的地质构造.大别山超高压变质作用与碰撞造山动力学.北京:科学出版社,2005,8~39
    [16]Xu ZQ, Zeng LS, Liu FL, Yang JS, Zhang ZM, McWilliams M and Liou JG. Polyphase subduction and exhumation of the Sulu high-pressure-ultrahigh-pressure metamorphic terrane. In:Hacker BR, McClelland WC and Liou JG (eds.). Ultrahighpressure metamorphism:Deep continental subduction. Geological Society of America Special Paper,2006,403:93~113
    [17]Zhai MG, Guo JH, Li Z, Chen DZ, Peng P, Li TS, Hou QL and Fan QC. Linking the Sulu UHP belt to the Korean Peninsula:evidence from eclogite, Precambrian basement, and Paleozoic sedimentary basins. Gondwana Research,2007,12: 388~403
    [18]Zhou JB, Wilde SA, Zhao GC, Zheng CQ, Jin W, Zhang XZ and Cheng H. Detrital zircon U-Pb dating of low-grade metamorphic rocks in the Sulu UHP belt:evidence for overthrusting of the North China block above the South China block during continental subduction. Journal of the Geological Society, London,2008,165: 423~433
    [19]Liu XC, Jahn BM, Dong SW, Lou YX and Cui JJ. High-pressure metamorphic rocks from Tongbaishan, central China:U-Pb and Ar/Ar age constraints on the provenance of protoliths and timing of metamorphism. Lithos,2008,105:301~318
    [20]Wu YB, Gao S, Zhang HF, Yang SH, Jiao WF, Liu YS and Yuan HL. Timing of UHP metamorphism in the Hong'an area, western Dabie Mountains, China:evidence from zircon U-Pb age, trace element and Hf isotope composition. Contribution to Mineralogy and Petrology,2008,155:123~133
    [21]张国伟,孟庆任,于在平,等.秦岭造山带的造山过程及其动力学特征.中国科学(D辑),1996,26(3):193~200
    [22]Li SZ, Kusky TM, Wang L, Zhang GW, Lai SC, Liu XC, Dong SW and Zhao GC. Collision leading to multiple-stage large-scale extrusion in the Qinling orogen:insights from the Mianlue suture. Gondwana Research,2007,12:121~143
    [23]刘晓春,娄玉行,董树文.桐柏山地区低温榴辉岩变质作用的P-T轨迹.岩石学报,2005,21(4):1081~1093
    [24]金维浚,宋鸿林,马文璞.桐柏-大别山西段的伸展构造.地质科学,1997,32(2):156~164
    [25]索书田,钟增球,张宏飞,等.桐柏山高压变质带及其区域构造型式.地球科学,2001,26(6):551~559
    [26]钟增球,索书田,张宏飞,等.桐柏-大别碰撞造山带的基本组成与结构.地球科学,2001,26(6):560~567
    [27]黄少英,徐备,王长秋,等.桐柏造山带几何学、运动学和演化.中国科学(D辑),2006,36(3):242~251
    [28]徐备,黄少英,湛胜,等.试论桐柏造山带与西大别造山带的对比.地质学报,2007,18(1):32~37
    [29]张国伟,张本仁,袁学诚.秦岭造山带与大陆动力学.北京:科学出版社,2001,1~855
    [30]索书田,钟增球,周汉文,等.中国中央造山带内两个超高压变质带关系.地质学 报,2004,78(2):156~165
    [31]张宏飞,张利,高山,等.桐柏地区基底和侵入岩类铅同位素组成及其地质意义.地球科学,1999,24:269~273
    [32]董云鹏,张国伟,姚安平,等.襄樊-广济断裂西段三里岗-三阳构造混杂岩带构造变形与演化.地质科学.2003,38(4):425~436
    [33]张本仁,张宏飞,高山,等.大别山碰撞造山带的地球化学结构.大别山超高压变质作用与碰撞造山动力学.北京:科学出版社,2005,118~158
    [34]Li SZ, Kusky TM, Liu XC, Zhang GW, Zhao GC, Wang L and Wang YJ. Two-stage collision-related extrusion of the western Dabie HP-UHP metamorphic terranes, central China:Evidence from quartz c-axis fabrics and structures, Gondwana Research,2009, doi:10.1016/j. gr.2009.03.003
    [35]赖绍聪,李三忠,张国伟.陕西西乡群火山-沉积岩系形成构造环境:火山岩地球化学约束.岩石学报,2003,19(1):141~152
    [36]Kroner A, Zhang GW and Sun Y. Granulites in the Tongbai area, Qinling belt, China:geochemistry, petrology, single zircon geochronology, and implications for the tectonic evolution of eastern Asia. Tectonics,1993,12:245~255
    [37]Ratschbacher L, Hacker BR, Calvert A, Webb LE, Grimmer JC, McWilliams M, Ireland T, Dong SW and Hu JM. Tectonics of the Qinling (central China): Tectonostratigraphy, geochronology, and deformation history. Tectonophysics, 2003,366:1~53
    [38]胡娟,刘晓春,曲玮.桐柏北部宽坪群变泥质岩的变质作用研究.地学前缘,2010,17(1):104~113
    [39]张宗清,张旗.北秦岭晚元古代宽坪蛇绿岩中变质基性火山岩的地球化学特征.岩石学报,1995,11(增刊):165~177
    [40]Zhai XM, Day HW, Hacker BR and You ZD. Paleozoic metamorphism in the Qinling orogen, Tongbai Mountains, central China. Geology,1998,26:371~374
    [41]张国伟,张宗清,董云鹏.秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义.岩石学报,1995,11(2):101~114
    [42]张利,王林森,周炼.北秦岭弧后盆地俯冲消减与陆壳物质再循环-桃园岩体和黄岗杂岩的地球化学证据.地球科学-中国地质大学学报,2001,26(1):18~24
    [43]江思宏,聂凤军,方东会,等.河南桐柏围山城地区侵入岩年代学与地球化学特征.地质学报,2009,83(7):1011~1029
    [44]翟淳,张清华,王奖臻,等.豫南高压镁铁质麻粒岩的初步研究.矿物岩石,1997,17(2):1~7
    [45]张翠光,魏春景,张阿利,等.河南桐柏地区麻粒岩和片麻岩的岩石学特征及其成因意义.矿物学报,19(1):63~69
    [46]张宗清,刘敦一,付国名.北秦岭变质地层同位素年代研究.北京:地质出版社,1994,1~191
    [47]张本仁,张宏飞,赵志丹,等.东秦岭及邻区壳、幔地球化学分区和演化及其大地构造意义.中国科学(D辑),1996,26:201~208
    [48]向利,张利,钟增球,等.北桐柏地区镁铁质麻粒岩锆石U-Pb年代学及变质作用.岩石学报,2009,25(2):348~358
    [49]Ratschbacher L, Franz L, Enkelmann E, Jonckheere R, Porschke A, Hacker BR, Dong SW and Zhang YQ. The Sino-Korean-Yangtze suture, the Huwan detachment, and the Paleozoic-Tertiary exhumation of (ultra)high-pressure rocks along the Tongbai-Xinxian-Dabie Mountains. In:Hacker BR, McClelland WC and Liou JG (eds.). Ultrahigh-Pressure Metamorphism:Deep Continental Subduction. Geological Society of America Special Paper,2006,403:45~75
    [50]高联达,刘志刚.河南信阳群南湾组微体化石的新发现及其地质意义.地质论评,1988,34(5):421~422
    [51]刘翼飞,江思宏,方东会,等.河南桐柏老湾花岗岩体锆石SHRIMP U-Pb年龄及其地质意义.岩石矿物学杂志,2008,27(6):519~523
    [52]徐启东,欧阳建平,张本仁.大别造山带北缘古生代构造-地层岩片沉积物源区及构造演化的地球化学研究.地质学报,2005,79(3):402~413
    [53]李曙光,李秋立,侯振辉.大别山超高压变质岩的年代学及冷却史.大别山超高压变质作用与碰撞造山动力学.北京:科学出版社,2005,64~117
    [54]Zheng YF, Zhou JB, Wu YB and Xie Z. Low-grade metamorphic rocks in the Dabie-Sulu orogenic belt:a passive-margin accretionary wedge deformed during continent subduction. Internatinal Geology Review,2005,47:851~871
    [55]闫臻,王宗起,王涛,等.秦岭造山带泥盆系形成构造环境:来自碎屑岩组成和地球化学方面的约束.岩石学报,2007,23(5):1023~1024
    [56]Liu XC, Jahn BM, Liu DY, Dong SW and Li SZ. SHRIMP U-Pb zircon dating of a metagabbro and eclogites from western Dabieshan (Hong'an Block), China, and its tectonic implications. Tectonophysics,2004,394:171~192
    [57]张本仁,骆庭川,高山,等.秦巴地区岩石圈地球化学特征和演化及其地质意义.秦巴区域地球化学文集.武汉:中国地质大学出版社,1990,1~32
    [58]Hacker BR, Ratschbacher L, Webb L, Ireland T, Walker D and Dong SW. U/Pb zircon ages constrain the architecture of the ultrahigh-pressure Qinling-Dabie Orogen, China. Earth and Planetary Science Letters,1998,161:215~230
    [59]崔建军,胡健民,刘晓春.桐柏地区高压变质地体在地壳中的抬升机制.岩石学报.2009,25(9):2165~2176
    [60]董树文,胡健民,李三忠,等.大别山侏罗纪变形及其构造意义.岩石学报,2005,21(4):1189~1194
    [61]曹淑云,刘俊来.岩石显微构造分析现代技术-EBSD技术及应用.地球科学进展,2006,21(10):1091~1096
    [62]刘俊来,曹淑云,邹运鑫,等.岩石电子背散射衍射(EBSD)组构分析及应用.地质通报,2008,27(10):1638~1645
    [62]韩国卿,刘永江,温泉波,等.嫩江-八里罕断裂带岭下韧性剪切带变形特征.吉林大学学报(地球科学版),2009,39(3):397~405
    [63]Zhu G, Wang Y, Liu G, Niu M, Xie C, Li C.40Ar/39Ar dating of strike-slip motion on the Tan-Lu fault zone, East China. Journal of Structural Geology,2005,27: 1379~1398
    [64]刘建民,董树文,张家声,等.大别造山带东部假玄武玻璃及其围岩的K-Ar和40Ar-39Ar年龄及地质意义.地质学报,2004,78(3):374~380
    [65]Liu XC, Jahn BM, Cui JJ, Li SZ, Wu YB and Li XH. Triassic retrograde eclogites and associated gneisses enclosed in Early Cretaceous gneissic granites from the Tongbai Complex, central China:constraints on the architecture of the HP/UHP Tongbai-Dabie-Sulu collision zone. Lithos,2010, in revised
    [66]张宏远,侯泉林,曹代勇.胶东东部中生代逆冲推覆构造研究.中国科学(D辑),2006,36(6):497~506
    [67]Yang Y, Liu M. Crustal thickening and lateral extrusion during the Indo-Asian collision:A 3D viscous flow model. Tectonophysics,2009,465:128~135
    [68]许志琴,杨经绥,嵇少丞,等.中国大陆构造及动力学若干问题的认识.地质学报,2010,84(1):1-29
    [69]王二七,苏哲,许光.我国的一些造山带的侧向挤出构造.地质科学,2009,44(4):1266~1288
    [70]Molnar P, Tapponnier P. Cenozoic tectonics of Asia:effects of a continental collision. Science,1975,189:419~428
    [71]Tapponnier P, Molnar P, Slip-line field theory and and large scale continental tectonic. Nature,1976,264:319~324
    [72]Tapponnier P, Peltzer G, Le Dain AY, et al. Propagating extrusion tectonics in Asia:new insights from simple experiments with plasticine. Geology,1982, 10:611~616
    [73]钟大赉,TapponnierP,吴海威.大型走滑断裂—碰撞后陆内变形的重要方式.科学通报,1989,34(7):525~529
    [74]Leloup PH, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 1995,251:3~84
    [75]张进江,钟大赉,桑海清,等.哀牢山—红河构造带古新世以来多期活动的构造和年代学证据.地质科学,2006,41(2):291~310
    [76]刘俊来,宋志杰,曹淑云,等.印度—欧亚侧向碰撞带构造—岩浆演化的动力学背景与过程—以藏东三江地区构造演化为例.岩石学报,2006,22(04):775-786
    [77]Tapponnier P, Xu ZQ, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau. Science,2001,294:1671~1677
    [78]Wright TJ, Parsons B, England PC, et al. InSAR observations of low slip rates on the major faults of western Tibet. Science,2004,305:236~239
    [79]李三忠,周立宏,刘建忠,等.华北板块东部新生代断裂构造特征与盆地成因.海洋地质与第四纪地质,2004,24(3):57~66
    [80]周新华.中国东部中、新生代岩石圈转型与减薄研究若干问题.地学前缘,2006,13(2):50~64
    [81]路凤香,郑建平,邵济安,张瑞生,陈美华,余淳梅.华北东部中生代晚期—新生代软流圈上涌与岩石圈减薄.地学前缘,2006,13(2):86~92
    [82]周建勋,周建生.渤海湾盆地新生代构造变形机制:物理模拟和讨论.中国科学(D),2006,36(6):507~519
    [83]刘建忠,李三忠,周立宏,等.华北板块东部中生代构造演化与盆地格局.海洋地质与第四纪地质,2004,24(4):45~54
    [84]Maruyama S, Liou JG, Zhang RY. Tectonic evolution of the ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic belts from central China. The Island Arc,1994,3:112~121
    [85]Wang EQ, Meng QR, Burchfiel BC, et al. Mesozoic large-scale lateral extrusion, rotation, and uplift of the Tongbai-Dabie Shan belt in east China. Geology, 2003,31:307~310
    [86]Liu X, Li SZ, Suo YH, et al. Structural anatomy of the exhumation of high-pressure rocks:constraints from the Tongbai collisional orogen and surrounding units. Geological Journal,2010, in press.
    [87]Hynes A. Encouraging the extrusion of deep-crustal rocks in collisional zones. Mineralogical Magazine,2002,66:5~24
    [88]Ernst WG. Systematics of large-scale tectonics and age progressions in Alpine and Circum-Pacific blueschist belts. Tectonophysics,1975,26:229~246
    [89]Ratschbacher L, Merle O, Davy P, et al. Lateral extrusion in the eastern Alps, part 1:Boundary conditions and experiments scaled for gravity. Tectonics, 1991a,10:245~256
    [90]Ratschbacher L, Frisch W, Linzer HG, et al. Lateral extrusion in the eastern Alps, part 2:Structural analysis. Tectonics,1991b,10:257~271
    [91]Wheeler J. Structural evolution of a subducted continental sliver:the northern Dora Maira massif, Italian Alps. Journal of the Geological Society,1991, 148:1101~1113
    [92]许志琴,杨经绥,姜枚,等.大陆俯冲作用及青藏高原周缘造山带的崛起.地学前缘,1999,6(3): 139~151
    [93]Grujic D, Casey M, Davidson C, et al. Ductile extrusion of the Higher Himalayan Crystalline in Bhutan:evidence from quartz microfabrics. Tectonophysics, 1996,260:21~43
    [94]Grasemann B, Fritz H, Vannay JC. Quantitative kinematic flow analysis from the Main Central Thrust Zone (NW-Himalaya, India):implications for a decelerating strain path and the extrusion of orogenic wedges. Journal of Structural Geology,1999,21:837~853
    [95]Jessup MJ, Law R D, Searle MP, et al. Structural evolution and vorticity of flow during extrusion and exhumation of the Greater Himalayan Slab, Mount Everest Massif, Tibet/Nepal:implications for orogen-scale flow partitioning//Law RD, Searle MP, Godin L. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications,2006,268:379~413
    [96]Williams PF, Jiang D, Lin, S. Interpretation of deformation fabrics of infrastructure zone rocks in the context of channel flow and other tectonic models//Law RD, Searle MP, Godin L. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications,2006,268:221~235
    [97]Godin L, Grujic D, Law RD, et al. Channel flow, ductile extrusion and exhumation in continental collision zones:An introduction//Law RD, Searle MP, Godin L. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications,2006,268:1~23
    [98]Dong SW, Gao R, Cong BL, et al. Crustal structure of the southern Dabie ultrahigh-pressure orogen and Yangtze foreland from deep seismic reflection profiling. Terra Nova,2004,16:319~324
    [99]Li SZ, Zhao GC, Zhang GW, et al. Not All Folds and Thrusts in the Yangtze Foreland Belt are related to the Dabie-Sulu Orogen:Insights from Mesozoic Deformation South of the Yangtze River. Geological Journal,2010,45, in press
    [100]刘少峰,杨士恭.鄂尔多斯盆地西缘具限制性边界的侧向挤出构造.中国区域地质,1996, (4):353~360
    [101]Frassi C, Carosi R, Montomoli C, et al. Kinematics and vorticity of flow associated with post-collisional oblique transpression in the Variscan Inner Zone of northern Sardinia (Italy). Journal of Structural Geology,2009,31: 1458~1471
    [102]Warren C J, Beaumont C, Jamieson RA. Modelling tectonic styles and ultra-high pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth and Planetary Science Letters,2008,267: 129~145
    [103]Hacker BR, Peacock SM. Creation, preservation, and exhumation of UHPM rocks// Hacker B R, Liou J G. Ultrahigh pressure metamorphism. Cambridge:Cambridge University Press,1995:159~181
    [104]Jolivet L, Goffe B, Monie P, et al. Miocene detachment in Crete and exhumation P-T-t paths of high-pressure metamorphic rocks. Tectonics,1996,15: 1129~1153
    [105]Gerya TV, Stockhert B. Two dimensional numerical modeling of tectonic and metamorphic histories at active continental margins. International Journal of Earth Science,2006, 95:250~274
    [106]Castro A, Gerya TV. Magmatic implications of mantle wedge plumes:Experimental study. Lithos,2007,79:229~250
    [107]Keppie JD, Nance RD, Murphy JB, et al. The high-pressure Iberian-Czech belt in the Variscan orogen:Extrusion into the upper (Gondwanan) plate? Gondwana Research,2009, doi:10.1016/j. gr.2009.08.007
    [108]Ernst WG, Liou JG.Contrasting plate-tectonic styles of the Qinling-Dabie-Sulu and Franciscan metamorphic belts. Geology,1995,23:353~356
    [109]Chemenda AI, Mattauer M, Malavieille J, et al. A mechanism for syn-collisional rock exhumation and associated normal faulting:Results from physical modelling. Earth and Planetary Science Letters,1995,132:225~232
    [110]Burov E, Jolivet L, Le Pourhiet L, et al. A thermomechanical model of exhumation of high pressure (HP) and ultra-high pressure (UHP) metamorphic rocks in Alpine-type collision belts. Tectonophysics,2001,342:113~136
    [111]Davies JH, von Blanckenburg F. Slab breakoff:A model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth and Planetary Science Letters,1995,129:85~102
    [112]Zheng YF, Ye K, Zhang LF. Developing the plate tectonics from oceanic subduction to continental collision. Chinese Science Bulletin,2009,54: 2549~2555
    [113]Beaumont C, Jamieson RA, Nguyen MH, et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature,2001,414:738~742
    [114]Beaumont C, Jamieson RA, Nguyen MH, et al. Crustal channel flows:1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research,2004,109, B06406, doi:10.1029/2003JB002809
    [115]Beaumont C, Nguyen MH, Jamieson RA, et al. Crustal flow modes in large hot orogens//Law RD, Searle MP, Godin L. Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones.. Geological Society, London, Special Publications,2006,268:91~145
    [116]李德威.大陆下地壳流动:渠流还是层流?.地学前缘,2008,15(3):130~139
    [117]曾佐勋,杨巍然,Franz Neubauer,等.造山带挤出构造.地质科技情报,2001,20(1):1~7
    [118]Dewey JF, Holdsworth RE, Strachan RA. Transpression and transtension zones //Holdsworth RE, Strachan RA, Dewey JF. Continental Transpressional and Transtensional Tectonics. Geological Society, London, Special Publications, 1998,135:1~14
    [119]Jones RR, Holdsworth RE, Clegg Phillip, et al. Inclined transpression. Journal of Structural Geology,2004,26:1531~1548
    [120]林寿发,姜大志,Paul F. Williams.剪切带运动学:重点评述三斜模式和区分韧性滑动擦痕与拉伸线理的重要性.地质通报,2007,26(9):1139~1153
    [121]Fernandez C. Diaz-Azpiroz M. Triclinic transpression zones with inclined extrusion. Journal of Structural Geology,2009,31:1255~1269
    [122]Czeck DM, Hudleston PJ. Testing models for obliquely plunging lineations in transpression:A natural example and theoretical discussion. Journal of Structural Geology,2003,25:959~982
    [123]Czeck DM, Hudleston PJ. Physical experiments of vertical transpression with localized nonvertical extrusion. Journal of Structural Geology,2004,26: 573~581

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700