用户名: 密码: 验证码:
富集金属锂微生物菌株的筛选及其富集特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对采集自新疆阿尔泰山脉可可托海锂矿区周边的土壤样品,进行分离、筛选抗金属锂及富集锂的微生物菌株(包括细菌、放线菌、真菌、酵母)。并对筛选所得细菌菌株进行形态学鉴定、金属锂耐受性、金属锂富集能力和富集培养条件进行了研究。
     经分离筛选得到一株可在3000mg·L-1锂浓度下存活的芽孢杆菌,编号为NA1。初步研究表明,该菌对金属锂具有很强的抗性和富集能力。对NA1菌株金属锂耐受性进行研究,结果表明,NA1在液体培养时,培养基初始锂浓度在3.05mg·L-1以下时对其生长无抑制作用,当锂浓度达到106.8mg·L-1时有较大影响,菌体生长基本停止;对冷冻干燥和烘干干燥两种预处理方式对菌体富集锂的影响进行了研究,研究结果显示,此两种预处理方式对菌体富集金属锂的影响非常有限;对NA1摇瓶发酵条件进行了优化,结果表明,在30℃,pH6.0,摇床转速120r/min条件下培养72h,每克干菌体金属锂富集量可达329.6μmol。
     本研究为细菌富集金属锂提供了新的材料来源和相关信息,为利用微生物进行盐湖卤水提取(回收)锂奠定了一定基础。
Microoganism (including bacterium, actinomycete, fungi, and yeast) were isolated and screened from soil samples which collected from surrounding area of Keketuohai Lithium-diggings in Altai, Xinjiang. At the same time, the morphology, lithium metal tolerance, lithium-microbial accumulation and enrichment cultivate conditions of the isolated bacterium were investigated.
     One strain of bacillus which could survival with 3000mg·L-1 concentration of lithium was designated NA1. Investigation shows that it has high ability of lithium resistance and accumulation. The results of Lithium resistance experiment of NA1 show that it can growth without inhibition in the initial lithium concentration of 3.05mg·L-1 or below, but cell growth stopped when the lithium concentration achieved 106.8 mg·L-1. We also studied the influence of pre-treatment methods of freeze-drying and drying on lithium accumulation of the cell. Results show that the effect was very limited. At the same time, the fermentation conditions of NA1 were also optimized, the results show that under the optimal culture conditions of 30℃, pH6, shaking speed 120r/min, cultivated 72h, the content of lithium-rich reach amount 329.6μmol every gram dry mass.
     This study provides new material and related information for lithium concentration of bacteria and lays the foundation for extract (recovery) of lithium by the use of microorganisms from Salt Lake brine.
引文
[1]潘立玲,朱建华,李渝渝.锂资源及其开发技术进展,矿产综合利用,2002 2(2):28~33
    [2]林大泽,锂的用途及其资源开发,中国安全科学学报,2004,14(9):24~26
    [3]程素玲,杨根仓,樊建锋,等.铸造镁合金的发展及其展望,材料导报,2005 12(2):49~53
    [4]游清治,锂在电池工业中的应用,世界有色金属,2000,6(2):36~39
    [5]杨毅勇,张向东,微量元素锂的生物学、药效学和毒性作用,国外医学地理分册,1999,5(3):32~35
    [6]赵志龙,刘林,陈铮,等.稀土高强铝锂合金力学性能及微观变形行为,航空材料学报,2001,2(2):19~24
    [7]罗晖,锂辉石在高温日用细瓷釉中的应用,山东陶瓷,2003,26(5):13~20
    [8]董明,Al-Li合金及其应用前景,材料开发与应用,1998,13(3):33~36
    [9]游清治,我国锂工业近年来的新进展,世界有色金属,2002,1(7):21~24
    [10]Nazri G A,Pistoia O. Lithium Batteries: Science and Technology,Norwell: KluwerAcademic Publishers,2003
    [11]Chen C H,Liu J,Stoll M E,et al. Aluminum-doped lithiumnickel cobalt oxide electrodes for high-power lithium-ion batteries,J. Power Sources,2004,128:278~285
    [12]王宝才,我国卤水锂资源及开发技术进展,化工矿物与加工,2000,7(10):13~15
    [13]封国富,张晓,世界锂工业发展格局的变化和对中国锂工业的影响和对策,稀有金属,2003,27(1):57~61
    [14]张宝全,柴达木盆地盐湖卤水提锂研究概况,海湖盐与化工,2000,29 (4): 9~13
    [15]Boryta,DanielA. Removal of boron from lithium chloride brine,US: 4261960,1979-04-14
    [16]Mehta,VijayC. Process for recovery lithium from saltbrines, US:4723962,1988-02-90
    [17]钟辉,周燕芳,殷辉安,卤水锂资源开发技术进展,矿产综合利用,2003,2(1):23~28
    [18]ILIK D,KILB M,HOLL K,et al.Recent progress in rechargeable nickel metal hydride and lithiumionminiature rechargeable batteries,Journal of Power Sources,1990,80:112~135
    [19]肖小玲,戴志锋,祝增虎,等.吸附法盐湖卤水提锂的研究进展,盐湖研究,2005,13(2):66~69
    [20]雷家珩,尚建华,郭丽萍,等.锂锰氧化物离子筛及其研究进展,无机盐工业,2002,34(6):15~16
    [21]雷家珩,弓巧侠,尚建华,等.锂离子筛前驱体正尖晶石结构LiMn2O4的合成及其特性研究,武汉大学学报:理学版,2001,47(6):707~711
    [22]肖小玲,戴志锋,祝增虎,等.吸附法盐湖卤水提锂的研究进展,盐湖研究,2005,13(2):66~69
    [23]Billam W C,Composition for the lithium values from brine and process of making/using saidcomposition,U.S.Patent,6280693,2001
    [24]张金才,王敏,戴静,等.卤水提锂的萃取体系概述,盐湖研究,2005,13(1):42~48
    [25]钟辉,杨建元,用碳化法从高镁铝比盐湖卤水中分离制取碳酸锂的方法,CN 1 335 263A,2002,213
    [26]王宝才,我国卤水锂资源及开发技术进展,化工矿物与加工,2000,4(10):13~15
    [27]马培华,邓小川,从盐湖卤水中分离镁和浓缩锂的方法,CN 1 626 443A,2005,714
    [28]巫辉,张柯达,吴杰,等.我国盐湖锂资源的开发及技术研究,化学与生物工程,2006,23(8):4~6
    [29]毛麒瑞,漫谈盐湖锂资源,地球,1999,5(6):14~15
    [30]黄西平,国内外盐湖(地下)卤水资源综合利用综述,海洋技术,2002,21(4): 66~72
    [31]冀康平,李华,锂的开发和利用,西宁:青海人民出版社,2004
    [32]宋彭生,盐湖及相关资源开发利用进展,盐湖研究,2000,8(1):1~16
    [33]江镜亮,卤水锂资源提锂现状,化工矿物与加工,1999,(12):1~5
    [34]戴树生,李树枝,不可抗拒的趋势--从盐湖中提取锂资源,中国地质,2002, (260):45~47
    [35]曹菲,于莘明,我国第一个盐湖提锂工程投产,科技日报,2004 - 11 - 5
    [36]赵元艺,中国盐湖锂资源及其开发进程,矿床地质,2003,22(1):99 ~106
    [37]现代材料动态,世界锂产业,2004,7(4):1~2
    [38]青海锂镁资源开发进展顺利,化工矿物与加工,2003,9(3):38~39
    [39]邹今平,由西藏扎仓茶卡Ⅰ卤水制备碳酸锂的研究,海湖盐与化工,1996, 22(1):14~16
    [40]Pethkar A V , Paknikar K M.Recovery of Gold from Solutions Using Cladosporium Cladosporioides Biomass Beadsl,Journal of Biotechnology,1998,63:121~136.
    [41]胡洪波,梁洁,刘月英,等.微生物吸附贵金属的研究与应用,微生物学通报,2002,29(3):94~97
    [42]刘月英,傅锦坤,陈平,等.巨大芽孢杆菌D01吸附金(Au3+)的研究,微生物学报,2000,40(4):425~429
    [43]傅锦坤,刘月英,古萍英,等.乳酸杆菌A09吸附还原Ag(I)的谱学表征,物理化学学报,2000,16(9):779~781
    [44]Lovley D R,Phillips E J P,Gorby Y A,et a1.Microbial Reduction of Uranium,Nature,1991,350:413~428
    [45]孙嘉龙,肖唐付,周连碧,等.微生物与重金属的相互作用机理研究进展,地球与环境,2007,35(4):367~373
    [46]张秀丽,刘月英,贵、重金属的生物吸附,应用与环境生物学,2002,8(6): 668~671
    [47]Kuyucak N ,Volesky B.Biosorbents for recovery of metals from industrial so lutions,Biotechnol.Lett.,1988,10(2):137~142
    [48]Sharma P K Balkwill D L,Frenkel A,et al.A new Klebsiella plantcola strain(Cd-1) grows anaeorbically at high cadmium concentrations and precipitates cadmium ssulfide,Applied and Enviornmental Microbiology,2000,66(7):3083~3087
    [49]Belly R T,Kydd G C. Silver resistance in microorganisms Dev.Ind. Microbiol,1982,23:567~577
    [50]Remacle J,Mugaruza l,Fransolet M. Cadmium removal by a strain of Alcaligenes denitrificans isolated from a metal-polluted pond,Water Resourses,1992,26(7):923~926
    [51]Sayer J A,Kierans M, Gadd,G M,Solubilisation of some naturally occurring metal-bearing minerals,limescale and lead phosphate by Aspergillus niger,FEMS.Micro.Boil.lett,1997,154(1):29~35
    [52]Thomas R A P Lawlor K, Bailey M, et al. Biodegradation of metal-EDTA complexes by an enriched microbial population.Applied Enviornmental Microbiology,1998,64(4):1319~1322
    [53]Joshi T G A,Francis A J,Mechanisms of bacterial degradation of metal-citrate complexes.Abstra.Gen. Meet.Am.Soc.Microbiol,1993,93 Meet,389
    [54]DeanW,Boening.Ecological effects,transport,and fate of mercury:a general review,Chemosphere,2000,40(12):1335~1351
    [55]Franco Baldi,Marco F,Gregory O J.Biotransformation of mercury by bacteria isolated from a river collecting cinnabar mine waters,Microbial Ecology,1989, 17(3):263~274
    [56]Chanmugathas Pushparany,Bollag J M.A column study ofthe biological mobilization and speciation of Cadmium in soil,Archives of EnvironmentalContamination and ToxicologY,1988,17(2):229~237
    [57]Ewa Kurek,Francisand A J,Bollag J M.Immobilization ofcadmium by microbial extracellular products . Archives of Environmental Contamination and Toxicology,1991,21(1):106~111
    [58]Lloyd J R,Cole J A,Macaskie L E.Reduction and removal of heptavalent technetium from solution by Escherichia coli,J Bacterio1,1997,179:2014~2021
    [59]Lloyd J R,Yong P,Macaskie L E.Enzymatic recovery of elemental Palladium by using sulfate-reducing bacteira,App1 Environ,Microbio1,1998,64:4607~4609
    [60]Kashefi K,Lovley D R.Reduction of Fe(Ⅲ),Mn(IV),and toxic metals at 100℃by Pyrobaculum islandicum,Appl Environ Mirobio1,2000,66:1050~1056
    [61]Fredrickosn J K,Kostandarithes H M,Li S W,et a1.Reduction of Fe(Ⅲ),Cr(VI),U(VI),and Tc(VII)by Deinococcus radiodurans Rl,Appl Environ Microbio1,2000,66:2006~2011
    [62]Roux M,Sarret G,Pignot-Paintrand I,et a1.Mobilization of Selenite by Ralstonia metallidurans CH34,App1 Environ Microbiol,2001,67:769~773
    [63]McLean J,Beveridge T J.Chormate reduction by a Pseudomonad isolated from a site contaminated with chromated Copper Arsenate,App1 Environ Microbio1,2001,67:1076~1084
    [64]Ma Y,Dickinson N M,Wong M H.Beneficial effects of earthworms and arbuscular mycorrhizal fungi on establishment of leguminous trees on Pb/Zn mine tailings,Soil Biology and Biochemistry,2006,38(6):1403~1412
    [65]Bradley R,Burt A,Read D.Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris,Nature,1981,292:335~337
    [66]Heggo A,Angle J S,Chaney R L.Effects of vesicular-arbuscular mycorrhizal fungi on heavy metal uptake by soybeans,Soil Biology and Biochemistry,1990, 22(6):865~869
    [67]Liao Y C,Chang Chien S W ,W ang M C,et a1.Effect of transpiration on Pb uptake by lettuce and on water soluble lowmolecular weight organic acids in rhizosphere,Chemosphere,2006,65(2):343~351
    [68]Chen B D,Zhu Y G,Duan J,et a1.Effects of the arbuscular mycorrhizal fungus Glomus mosseae on growth and metal uptake by four plant species in copper mine tailings,Environmental Pollution,2007,147(2):374~380
    [69]Tonin C,Vandenkoornhuyse P J,Straezek E J,et a1.Assessment of arbuscular mycorrhizal fungi diversity in the rhizosphere of Viola calaminaria and effect of these fungi on heavy metal uptake by clover,Mycorrhiza,2001,10(4):161~168
    [70]Marques A P G C,Oliveira R S,Rangel A O S S,et a1.Zinc accumulation in Solanum nigrum is enhanced by different arbuseular myeorrhizal fungi, Chemosphere,2006,65(7):1256~1263
    [71]Ouziad F,Hildebrandt U ,Schmelzer E,et a1.Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress,Journal of Plant Physiology,2005,162(6):634~649
    [72]Repetto 0,Bestel-Corre G ,Dumas-Gaudot E,et a1.Targeted proteomics to identify cadmium-induced protein modifications in Glomus mosseae-inoculated pea roots,New Phytologist,2003,157(3):555~567
    [73]Muller T,Avolio M,Olivi M,et a1.Nitrogen transport in the ectomycorrhiza association : The Hebeloma cylindrosporum-Pinus pinaster model ,Phytochemistry,2007,68(1):41~51
    [74]Van der Heijden E W.Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens,Mycorrhiza,2001,10(4):185~193
    [75]Dekkers T B M,Van der Werff P A.Mutualistic functioning of indigenous arbuscular mycorrhizae in spring barley and winter wheat after cessation of l ong-term phosphate fertilization,Mycorrhiza,2001,10(4):195~201
    [76]Leyval C K,Haselwandter T K.Effect of heavy metal pollution on mycorrhizal colonization and function:physiological,ecological and applied aspects, Mycorrhiza,1997,(7):139~153
    [77]吴胜春,骆永明,重金属污染土壤的植物修复研究:Ⅱ,金属富集植物Brassica Juncea根际土壤微生物数量的变化,土壤,2000,(2):75~78,98
    [78]CHEN Chan(陈灿),WANGJianlong (王建龙),Review on biosorption of heavy metal by saccharomyces cerevisiae,China Biotechnology (中国生物工程杂志), 2006,26(1):69~76
    [79]ZHU Yimin(朱一民),WEI Dezhou(魏德洲),Biosorption of mycobacterium phlei to the heavy metal ions Pb2+,Zn2+,Ni2+andCu2+,Journal of Northeastern University, Natural Science Edition (东北大学学报:自然科学版),2003,24(1): 91~93
    [80]LIU Ruixia(刘瑞霞),TANG Hongxiao(汤鸿霄),LAO Weixiong(劳伟雄), Advances in biosorption mechanism and equilibrium modelingfor heavy metals on Biomaterials,Progress in Chemistry (化学进展),2002,14(2):87~92
    [81]Burne tt P G,Handley K,Peak D,et al.Divalent metal adsorptionby the thermophile Anoxybacillus flavithermus in single and multimetal systems, Chemical Geology,2007,244:493~506
    [82]Burne tt P G,Martin A M,Wightman P G,Metal adsorption onto bacterial Surfaces development of a predictive approach,Geochimica et Cosmochimica Acta,2001,65:4267~4273
    [83]谢先德,张刚生,微生物–矿物相互作用之环境意义的研究,岩石矿物学杂志,2001,20(4):382~386
    [84]Andet B.Norberg,Hans Presson.Accumulation of heavy-metalions By Zoogloca ramigera,Biotechno1 Bioeng,1984,26:239~246
    [85]N Frils,P.Myers-Keith.Biosorption of uranium and lead by Streptomyces songwoodensis,Biotechnol Bioeng,1986,28:21~28
    [86]N.Mamen,Z.Boudries,et al.Batch zinc biosorption by a bacterial tioobving Streptomyces rimosus biomass,Wat.Res,1999,33(6):1347~l354
    [87]L J Michel,L.E.Macasbie,et al.Cadmium accumulation by ittumubilized cells of a Citrobacter sp,using various phosphate donors,Biotechnol Bioeng,1986,28:1358~1365
    [88]Brendlyn D.Faison,Carmen A.Cancel,et al.Binding of dissolved strontium by Micrococcus luteus,Appl Environ Microbiol,1990,56(12):3649~3656
    [89]Kay L.Shudleworth,Richard F.Um.Sorption of heavy metals to the filamentous bacterium Thiothtix strain Al,Appl Environ Microbiol,1993,59(5):1274~1282
    [90]M.D.Mullen D.C.Wolf.et al.Bacterial sorption of heavy metals,Appl Environ Microbiol,1989,55(12):3143~3149
    [91]Jo-Shu Chang,Juan Hong,Biosorption of mercury by the insctivated cell of Pseudomonas aeruginosa PU21,Biotechnol Bioeng,1994,44(8):999~1006
    [92]Anne Claire Texier,Yues Andres,et a1.Selective biosorption of lanthanide (La.Eu,Yb)ions by Pseudomonas aernginosa,Environ Sci Technol,1999,33:489~495
    [93]Marios Tsezos,Bohumill Volesky,Biosorption of uraniurn and thorium,Biotechnol Bioeng,1981,23:583~604
    [94]李酋健,戈吕厚,等.少根据霉吸附铅的研究,四川大学学报(自然科学版),1991,28(2):261~264
    [95]G.M.Gadd,C.White,Removal of thorium from simulated acid process Streams by fungal biomass.Potential for thorium desorption and reuse of biomass and desorbent,J Chem Tech Biotechnol,1992,55:39~44
    [96]M Tsezos , Recovery of uranium from biological adsorbents—desorption equlibrium,Biotechnol Bioeng,1984,26:973~981
    [97]Margaret E Treen—Sears,Bohurrnil Volesky,Ion exchange/complexation of the uranyl ion by Rhizopus biosorbent,Biotechnol Bioeng,1984,26:1323~1329
    [98]Riccardo A A Muzzarelli,Fabio Tanfani,et al.Chelating film forming andcoagulating ability of the chirosanglucan complex from Aspergillus niger industrial wastes,Biotechnol Bioeng,1980,22:885~896
    [99]Modak J.M,Natarajan K A,et al.Biosorption of copper and zinc using waste Aspergillus niger biomass,Miner Metall Process,1996,13:52~57
    [100]M Tsezos,D M Keller,Adsorption of radium-226 by biological origin absorbents,Biotechnol Bioeng,1983,25:201~215
    [101]M.Galun,P Keller,et a1.Recovery of uranium from solution using precultured Penicdlium biomass,Water Air and Soil Pollution,1983,20:221~232
    [102]S.Siegel,P.Keller,et al.Biosorption of lead and chromium by Penicdlium Preparations,Water Air and Soil Pollution,1986,27:69~75
    [103]牛慧,许学书,王建华,非生长产黄青霉吸附铅的研究,微生物学报,1993,33(6):459~463
    [104]B Volesky,H May,et al.Cadmium biosorption by Saccharomyces cerevisiae,Biotechnol Bioeng,1993,41:826~829
    [105]Chin-Pin Huang,Chin-Pao Huang,et al.The removal of Cu From dilute aqueous solutians by Saccharomyces cerevisiae,War Res,l988,433~439
    [106]Singleton I,Sinumons P,Factors affecting silver biosorption by an industrial strain of Saccharomyces cerevisiae,J Chem Tech Biotech,1996,65:21~28
    [107]陈玉成,污染环境生物修复工程,北京:化学工业出版社,2003,56~84
    [108]李青彬,韩永军,刘雪平,等.土壤分离菌株去除水溶液中铅离子研究,环境工程学报,2007,1(3):69~74
    [109]王新,周启星,重金属与土壤微生物的相互作用及污染土壤修复,环境污染治理技术与设备,2004,5(11):1~5
    [110]刘龙,耐镉细菌筛选与吸附镉机理研究及其在镉污染土壤修复中的应用,科学学报,2004,27(1):38~44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700