用户名: 密码: 验证码:
型钢高强高性能混凝土框架节点抗震性能及设计计算理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
型钢高强高性能混凝土结构作为高技术混凝土材料和新型结构体系的有机结合,具有优良抗震性能和耐久性能。本文针对型钢高强高性能混凝土框架节点进行了系统研究,主要研究内容及成果概括如下:
     (1)从提高结构耐久性及改善型钢与混凝土之间粘结性能的角度研制了适用于型钢混凝土结构的高强高性能混凝土。深入分析了混凝土高强高性能化的技术途径,进行了大量的混凝土配合比试验,并基于型钢混凝土粘结滑移理论,以混凝土经济成本和混凝土与型钢的协同工作能力为目标函数,进行了非线性多目标混凝土配合比优化设计。对所研制的高强高性能混凝土的拌合物性能、破坏特征及力学性能进行了试验研究,综合已有研究成果确定了其应力应变本构模型,并对高强高性能混凝土耐久性及其试验方法进行了分析。
     (2)对于可能在工程结构中大规模使用的C60~C100强度等级的混凝土,进行了5榀型钢高强高性能混凝土框架中节点在低周反复荷载作用下的试验研究,试验参数考虑了混凝土强度和柱轴压比的变化。通过试验实测的荷载位移水平、应力分布及裂缝开展情况研究了节点的破坏过程、破坏机理、承载能力、延性及耗能性能,提出了型钢高强高性能混凝土框架节点在低周反复水平荷载作用下的裂缝模式,探讨了混凝土强度和轴压比对节点受力性能的影响。试验结果表明,尽管节点核心区最终发生剪切破坏,各试件仍然具有良好的延性和耗能能力,说明该类节点具有良好的抗震性能。
     (3)根据试验所得的滞回曲线和骨架曲线,分析节点的滞回规律及恢复力特性,提出了适合于型钢高强高性能混凝土框架节点的恢复力模型,为节点抗震性能研究和非线性地震反应时程分析提供科学的理论基础。根据不同荷载水平下的变形和滞回耗能性能,对节点试件的损伤性能进行了分析比较,确定影响节点损伤的因素,对试验框架节点的损伤指数进行了分析计算,并对试验研究结果进行了损伤量化,提出了适合于型钢高强高性能混凝土框架节点的基于变形和累积耗能非线性组合的地震损伤模型。
     (4)采用分离式三维实体模型,考虑各种材料的非线性及型钢与混凝土之间的粘结滑移,对型钢高强高性能混凝土框架节点试件进行了有限元分析;通过合理的单元选取及网格划分,较为精确地分析了节点在单调和低周反复荷载作用下的受力性能,特别是节点核心区应变分布,以弥补试验研究中无法直观了解细部受力情况的缺陷。将有限元分析结果与试验研究进行了对比验证,并考察了混凝土强度和轴压比对节点受力性能的影响。通过有限元模型参数的调整进行了数值模拟,定量分析了高强度混凝土脆性对节点抗剪承载能力的影响。
     (5)基于试验研究和有限元分析结果,进行了节点核心区受力及传力机理分析,确定了节点抗剪的各组成部分,并定量分析了各部分在不同受力阶段对节点抗剪能力的贡献。确定了节点抗剪计算中混凝土强度影响系数,以考虑高强度等级混凝土脆性对抗剪能力的影响,提出了型钢高强高性能混凝土框架节点抗裂、抗剪承载能力计算公式,公式中考虑了混凝土脆性和轴压比对节点承载能力的影响。
As an optimized combination of high-tech concrete material and new-style structure, Steel reinforced high performance and high strength concrete structure (SRHSHPC structure for short) possesses excellent seismic behaviour and good endurance. The paper is devoted to studying on seismic behavoirs and design method of SRHSHPC frame joints. The main content is described as follows:
     1. To improve endurance of Steel reinforced concrete structure (SRC structure for short) and solve the bond-slip problem between steel and concrete, high strength and high performance concrete (HSHPC for short) applied to SRC structure is studied. The technical method to strengthen concrete and increase endurance is analyzed. Orthogonal test is done, and a multi-objective and nonlinear optimal mathematic model is established based on the bond-slip theory between steel shape and concrete, which takes the materials cost and bond strength as objective functions, and takes the other performance indexes of HSHPC as constraint conditions. Based on large amounts of experiments, the working mechanism of HSHPC is analyzed and stress-strain constitutive model of HSHPC is established based on the existed achievement.
     2. Cyclic loading tests were carried out on five half-scale interior joints to understand mechanical characteristics and seismic behaviors of SRHSHPC frame joints. The test parameters taken into account are concrete strength and axial column load. The study includes joints' mechanical character, stress distribution, crack development, failure mode, ductility and energy dissipation under cyclic load. A typical crack pattern is provided which can well reflect mechanical character and damage process of SRHSHPC frame joints. The influence of concrete strength and axial column load is analyzed. Though failure mode is panel shear failure, the joints' deformation and ductility factor can reach a high level, which indicates that SRHSHPC frame joints possess excellent seismic behaviors.
     3. According to seismic hysteresis curve and skeleton curve obtained from tests, restoring force characteristics of SRHSHPC frame joints including ductility, energy dissipation, and strength and rigidity degradation are analyzed. Based on the test results and numerical analysis, rigidity degradation rules and hysteretic rules are analyzed. A trilinear hysteretic model considering rigidity degradation is proposed for steel reinforced high strength and high performance concrete frame joints. The proposed restoring force model tallies with the test curves, which can be a good reference for seismic design of SRC structures. A seismic damage model applying to SRHSHPC frame joints is put forward, which takes deformation and cumulative damage into account. The damage performance of five tentative frame joints is compared and analyzed according to deformation and dissipated hysteretic energy under different loading levels, and the main influence factors on damage performance are established. The damage indexes of tentative frame joints are calculated, and the influence of strength of concrete and axial compression ratio on damage performance is discussed. The damage model presented can be a reference for seismic damage analysis of structure, prediction of earthquake damage in future, estimation of economic loss and repair after earthquake.
     4. Finite element analysis applying 3D solid elements and including material nonlinear and bond-slip between steel and concrete is presented. The bearing capacity and mechanical performance of joints under monotonic and cyclic loading is analyzed. The results of nonlinear finite element analysis can show the stresses distribution in the joints better, which provides the possibility to patch up the defects that couldn't be observed in experiments in detail. The results of finite element analysis are confirmed through contrasting with the test ones and the influences of axial compression ratio and concrete strength on the seismic behaviors of frame joints are discussed. Based on adjustment of model parameters in finite element analysis, the factor of brittle property of high strength concrete influencing on the shear capacity is analyzed.
     5. The resistant mechanism and failure pattern of SRHSHPC frame joints are analyzed based on experiment and finite element analysis. Horizontal resisting elements are determined, and contribution of each part at different loading stage is analyzed quantitatively. The factor of brittle property of high strength concrete influencing on the shear capacity is determined according to finite element analysis. The practical calculating formulas of crack resistance and shear bearing capacity of such joints were derived, in which the influence of concrete strength and axial column load are included.
引文
[1-1]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [1-2]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.
    [1-3]吴中伟.高性能混凝土-绿色混凝土[J].混凝土与水泥制品2000(1):3-7.
    [1-4]叶列平,方鄂华.钢骨混凝土构件的受力性能研究综述[J].土木工程学报.2000,33(5):1-12.
    [1-5]刘玉擎.劲性钢筋混凝土框架节点抗震性能的研究[D].西安建筑科技大学,1988.
    [1-6]中国建筑科学研究院.混凝土结构研究报告选集3[M].北京:中国建筑工业出版社,1994.
    [1-7]唐九如,陈红雪.劲性钢筋混凝土梁柱节点受力性能与抗剪强度[J].建筑结构学报.1990,11(4):28-36.
    [1-8]陈家夔,张轶群,赵世春.劲性钢筋混凝土框架顶层边节点静力及抗震性能试验研究[J].西南交通大学学报.1993(1):13-19.
    [1-9]邹昀,吕西林,钱江.上海环球金融中心大厦结构抗震性能研究[J].建筑结构学报.2006,27(6):74-80.
    [1-10]徐亚丰.钢骨高强混凝土框架节点抗震性能研究[D].东北大学,2003.
    [1-11]若林実.耐震槽造[M].森北出版株式会社,1981.
    [1-12]Minami K.Beam to Column Stress Transfer in Composite Structures[J].Architectural Institute of Japan,3rd Edition,November,1975.144-145.
    [1-13]Sheikh T M.Moment Connections Between Steel Beams and Concrete Columns[D].The University of Texas at Austin,1987.
    [1-14]Kanno R.Strength,Deformation,and Seismic Resistance of Joints Between Steel Beams and Reinforced Concrete Colunms[D].Cornell University,1993.
    [1-15]Bugeja M N,Bracci J M,Moore W P.Seismic Behavior of Composite RCS Frame Systems[R].Department of Civil Engineering,Texas A&M University,1999.
    [1-16]Parra-montesinos G,Liang X,Weght J K.Towards Deformation-Based Capacity Design of RCS Beam-Column Connections[J].Engineering Structures.2003,25(5):681-690.
    [1-17]Nognchi H,G D.Report of the Working Group on Reinforced Concrete Column and Steel Beam Systems[R].RCS Technical Sub-Committee.
    [1-18]赵鸿铁,乔玉,薛建阳.型钢混凝土框架节点非线性有限元分析[J].西安建筑科技大学学报.1997,29(4):376-380.
    [1-19]焦心亮.钢筋混凝土框架顶层中节点的非线性有限元分析[J].建筑结构学报.1995,16(5):40-47.
    [1-20]佟景伟,陆海翔,沈珉.超高层钢筋混凝土结构不同强度等级混凝土梁柱节点的模型实验与有限元分析[J].实验力学.1998,13(3):356-363.
    [1-21]中华人民共和国行业标准.型钢混凝土组合结构技术规程[S].2002.
    [1-22]中华人民共和国行业标准 钢骨混凝土结构设计规程(YB 9082-97)[S].1998.
    [1-23]刘维亚,张兴虎,姜维山.型钢混凝土组合结构构造与计算手册[M].中国建筑工业出版社,2004.
    [2-1]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.
    [2-2]吴中伟.高性能混凝土—绿色混凝土[J].混凝土与水泥制品,2000,(1):3-7.
    [2-3]陈肇元,朱金铨,吴佩刚.高强混凝土及其应用[M].北京:清华大学出版社,1992.
    [2-4]郭成举.混凝土的物理和化学[M]北京:中国铁道出版社2004
    [2-5]吴中伟,廉慧珍.高性能混凝土[M].中国铁道出版社,1999,9.
    [2-6]王德怀,陈肇元.高性能混凝土的配合比设计[J].混凝土,1996,(3):4-10.
    [2-7]罗素蓉、郑建岚、王国杰.自密实高性能混凝土力学性能的研究与应用[J].工程力学,2005(2):164-169
    [2-8]许锦峰,庄崖屏等.高强混凝土应力应变全曲线的试验研究.约束混凝土与普通混凝土强度理论及应用学术讨论会论文集[C].烟台,1987.
    [2-9]王志军、蒲心诚等.超高强混凝土单轴受压性能及应力应变曲线的试验研究[J].重庆建筑大学学报,2000,(S0):27-33.
    [2-10]陈惠发等.混凝土和土的本构方程[M].北京:中国工业出版社2004
    [2-11]蒲心诚,严吴南等.150MPa超高强高性能混凝土研究与应用前景[J].混凝土,1999(3)
    [2-12]万朝均.新型高效混凝土掺合料及其性能研究[D].重庆建筑大学博士学位论文,1999,12.
    [2-13]欧阳东.超高强混凝土及其第六组分的研究[D].华南理工大学博士学位论文,1997,7
    [2-14]祝永年、沈威、陈志源译.混凝土的结构、性能和材料[M].上海:同济大学出版社,1991年.
    [2-15]JGJ55-2000,J64-2000.普通混凝土配合比设计规程[S].
    [2-16]GB/T1596-1991.用于水泥和混凝土中的粉煤灰[S].
    [2-17]E K.Mehta.Greening of the concrete industry for sustainable Development[J],Concrete International.2002,24(7):23-28.
    [2-18]ACI,State of the Arts Report on High Strength Concrete,1994.Chapter 6.
    [2-19]Kontani,O.,Shah,S.P.,1995.Pore pressure in sealed concrete at sustained high temperatures[M].Proceeding Concrete Under Severe Conditions:Environment and Loading.Tokyo,Japan.
    [2-20]万朝均.高强超高强高性能混凝土配合比设计经验探讨[J].混凝土.2002年第3期
    [2-21]郑山锁、杨勇等.型钢混凝土粘结滑移性能研究[J].土木工程学报,2002(4):47-51
    [2-22]郑山锁、邓国专等.型钢混凝土结构粘接滑移性能试验研究[J].工程力学,2003(4):82-88
    [2-23]Zheng Shansuo,Yang Yong.Experimental Study of Bond Performance between Steel and Concrete in SRC Structure[J]s.Proc.7th Intemational Symposium in The Series Structural Engineering for Young Experts,Tian Jin,China,Science Press,2002.8:950-957
    [2-24]徐金明.MATLAB实用教程[M].北京:清华大学出版社,2005.
    [2-25]张薇,薛嘉庆.最优化方法[M].沈阳:东北大学出版社,2004.
    [2-26]曹卫华,郭正.最优化技术方法及Matlab的实现[M].北京:化学工业出版社,2005.
    [2-27]万仲平,费浦生.优化理论及方法[M].武汉大学出版社,2004.
    [2-28]万朝均.高强超高强高性能混凝土配合比设计经验探讨[J].混凝土,2002(3):41-43
    [2-29]蔡四维、蔡敏.混凝土的损伤断裂[M].北京:人民交通出版社,1999年.
    [3-1]中华人民共和国行业标准.型钢混凝土组合结构技术规程[S].2002.
    [3-2]中华人民共和国行业标准.钢骨混凝土结构设计规程(YB 9082-97)[S].1998.
    [3-3]薛建阳,赵鸿铁,杨勇.型钢混凝土节点抗震性能及构造方法[J].世界地震工程.2002,18(02):61-64.
    [3-4]Nishimura Y,Kojima T,Baba N.U.S.-Japan Cooperative Research Project on composite and hybrid structures(RCS-34:Elastic-plastic behavior of RCS composite flame(Part 1)[R].Kyushu,Japan:Architectural Institute of Japan.
    [3-5]Meinheit D F,Jirsa J O.Shear Strength of R/C Beam-Column Conneclion[J].J.Struc.Engrg.,ASCE.,107(ST11):61-71.
    [3-6]Park R.Evaluation of Ductility of Structures and Slructurai Assemblages from Laboratory Testing[J].Bulletin of the New Zealand Society for Earthquake Engineering.1989,22(3):155-166.
    [3-7]姚振纲,刘祖华.建筑结构试验[M].上海同济大学出版社,1996.
    [3-8]邱法维.结构抗震实验方法进展[J].土木工程学报.2004(10):19-27.
    [3-9]马永欣,郑山锁.北京:科学出版社,2001.
    [3-10]沈聚敏,周锡元.抗震工程学[M].北京:中国建筑工业出版社,2000.
    [3-11]过镇海.钢筋混凝土原理[M].北京:清华大学出版社,1999.
    [3-12]王连广.钢与混凝土组合结构理论与计算[M].北京:科学出版社,.
    [3-13]中华人民共和国国家标准.建筑抗震设计规范(GB 50011-2001)[S].2001.
    [3-14]张誉,李向民.型钢高强高性能混凝土柱的轴压比限值[J].建筑结构.1999(7):10-13.
    [3-15]张誉,李向民.型钢高强高性能混凝土梁柱十字节点抗剪性能的研究[J].建筑结构.1999(7):6-9.
    [4-1]郭子雄,杨勇.恢复力模型研究现状及存在问题[J].世界地震工程,2004,20(4):47-51.
    [4-2]王连广著.钢与混凝土组合结构理论与计算[M].北京:科学出版社,2005.
    [4-3]陈宏,李兆凡等.钢框架梁柱节点恢复力模型的研究[J].工业建筑,2002,36(2):64-66.
    [4-4]S.Swaddiwudhipong,D.jiang,W.cheng.Steel-reinforced Concrete Joints under Reversal cyclic Load[J].Magazine of concrete Research,2003,55(6):525-535.
    [4-5]Kanno R,and Deierlein G.G.Seismic behavior of composite RCS beam-column joint subassemblies[C].Composite construction in steel and concrete Ⅲ,ASCE,New York,1996:236-249.
    [4-6]徐亚丰,汤鸿.钢骨高强混凝土框架节点恢复力模型的研究[J].兰州理工大学学报,2004,30(5):116-118.
    [4-7]肖明葵,刘纲等.滞回恢复力模型中求折点的—种方法[J].重庆大学学报,2002,25(1):13-16.
    [4-8]葛继平,宗周红等.方钢管混凝土柱与钢梁半刚性连接节点的恢复力本构模型[J].地震工程与工程振动,2005,25(6):81-87.
    [4-9]郭子雄,周素琴.RC框架节点的弯矩—滑移转角恢复力模型[J].地震工程与工程振动,2003,23(3):118-124.
    [5-1]于海祥.钢筋混凝土结构地震损伤模型研究[D].重庆大学,2004.
    [5-2]Mahin,Bertero V.An evaluation of inelastic seismic design spectra[J].J.Struc.Engrg.,ASCE.1981,107(ST9):1777-1795.
    [5-3]Newmark,Rosenblueth.Fundamentals of earthquake engineering[Z].1974.
    [5-4]Darwin D,Nmai C K.Energy dissipation in RC beams under cyclic load[J].J.Struc.Engrg.,ASCE.1986,112(8):1826-1846.
    [5-5]Krawinkler H,Zohrei M.Cumulative damage in steel structures subjected to earthquake ground motion[J].Computers and structures.1983,16(14):531-541.
    [5-6]Gosain N K,Brown R H,Jirsa J O.Shear requirements for load reversals on RC members[J].J.Struc.Engrg.,ASCE.1977,103(ST7):1461-1476.
    [5-7]Hwang T H,Scribner C F.RC member cyclic response during various loading[J].J.Struc.Engrg.,ASCE.1984,110(3):477-489.
    [5-8]Park Y J,A A H.Mechanistic seismic damage model for reinforced concrete[J].J.Struc.Engrg.,ASCE.1985,111(4):722-739.
    [5-9]Banon H,Veneziano D.Seismic safety of reinforced concrete members and structures[J].Earthquake Engineering and Structural Dynamics.1982,10:179-193.
    [5-10]Reihorn A M,Kunnath S K,Mander J B."Seismic design of structures for damage control,"Nonlinear seismic analysis and design of reinforced concrete buildings[M].Elsevier Applied Science,1992:63-76.
    [6-1]沈聚敏,王传志,江见鲸.钢筋混凝土有限元与板壳极限分析[M].北京:清华大学出版社,1993.
    [6-2]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [6-3]曾磊.适用于型钢混凝土结构的高强高性能混凝土试验研究[D].西安:西安建筑科技大学,2005.
    [6-4]邓国专.型钢混凝土结构粘结滑移性能试验研究与基本理论分析[D].西安:西安建筑科技大学,2004.
    [6-5]杨勇.型钢混凝土结构粘结滑移基本理论及应用研究[D].西安:西安建筑科技大学,2004.
    [6-6]郑山锁,邓国专.型钢与混凝土之间粘结强度的力学分析[J].工程力学.2007,24(1):96-105.
    [6-7]邓国专郑山锁田微.型钢混凝土结构粘结滑移性能物性参数的理论分析[J].哈尔滨工业大学学报.2005,37(增刊):528-531.
    [6-8]Ansys I.Ansys Operation Guide Release 5.5.1998.
    [6-9]Ansys I.Ansys Theory Reference Release 5.5.1998.
    [6-10]Ansys I.Ansys Command Reference Release 5.5.1998.
    [6-11]Ansys I.Ansys Element Reference Release 5.5.1998.
    [6-12]Ansys I.Ansys Analysis Guides Release 5.5.1998.
    [6-13]江见鲸,陆新征,叶列平.钢筋混凝土有限元分析[M].北京:清华大学出版社,2005.
    [6-14]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社,2002。
    [6-15]朱伯龙,董振祥.钢筋混凝土非线性分析[M].上海:同济大学出版社,1985.
    [6-16]M M Attard S S.Stress-strain relationship of confmed and unconfined concrete[J].ACI materials journal.1996,93(5):432-442.
    [6-17]王勖成.有限单元法[M].清华大学出版社:2003.
    [6-18]王新敏.Ansys工程结构数值分析[M].北京:人民交通出版社,
    [6-19]李黎明.ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005.
    [7-1]江见鲸.混凝土结构工程学[M].北京:中国建筑工业出版社,1998.
    [7-2]赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001.
    [7-3]刘维亚,张兴虎,姜维山.型钢混凝土组合结构构造与计算手册[M].中国建筑工业出版社,2004.
    [7-4]徐亚丰.钢骨高强混凝土框架节点抗震性能研究[D].东北大学,2003.
    [7-5]吴杵成.装配整体式钢骨混凝土框架中节点抗震性能试验研究[D].天津大学,2006.
    [7-6]白国良;秦福华.型钢钢筋混凝土原理与设计[M].上海:上海科学技术出版社,2000.
    [7-7]Minami K.Beam to Column Stress Transfer in Composite Structures[J].Architectural Institute of Japan,3rd Edition,November,1975.144-145.
    [7-8]冯乃谦.高性能混凝土结构[M].北京:机械工业出版社,2004.
    [7-9]赵红梅.钢梁—钢骨混凝土柱节点的非线性有限元分析[D].北京工业大学,2002.
    [7-10]陈勇.型钢混凝土梁柱节点低周反复荷载下的抗震性能试验及理论研究[D].湖南大学,2005.
    [7-11]Gergely I.Design aid for shear strengthening of reinforced concrete T-joints using carbon fiber reinforced plastic composites[D].University of Utah,1998.
    [7-12]Meinheit D F,Jirsa J O.Shear Strength of R/C Beam-Column Connection[J].J.Struc.Engrg.,ASCE.,107(ST11):61-71.
    [7-13]Nishimura Y,Kojima T,Baba N.U.S.- Japan Cooperative Research Project on composite and hybrid structures(RCS-34:Elastic-plastic behavior of RCS composite frame(Part 1)[R].Kyushu,Japan:Architectural Institute of Japan.
    [7-14]中华人民共和国行业标准.型钢混凝土组合结构技术规程[S].2002.
    [7-15]钟善桐;白国良.高层建筑组合结构框架梁柱节点分析与设计[M].北京:人民交通出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700