用户名: 密码: 验证码:
大鼠DRG神经元中失活的Ca~(2+)激活的K~+通道(BK通道)特性和功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大电导的电压和Ca2+激活的K+通道(BK或MaxiK通道)在哺乳动物的组织中广泛的表达,起着各种各样重要的生理作用,如连系胞内钙信号通路和膜兴奋性,调节神经递质的释放等。BK通道由α亚基和β亚基构成,β2和β3亚基能使通道的电流失活。其中hβ3亚基在组织中的定位和功能还不清楚。尽管失活的电流在重组的BK通道中已经被广泛的研究,但是在原代细胞尤其是神经元中研究的还很少。
     在本文的工作中,我们在大鼠腰椎L4-L6背根神经节(DRG)的小神经元上发现了一种失活的Ca2+依赖的K+电流,它能够被大电导的BK通道特异的阻断剂Charybdotoxin (CTX)和Iberiotoxin (IbTX)所阻断,证实是失活的BKi电流。木瓜蛋白酶(papain)可以从胞外作用,改变通道的失活性质。
     我们在全细胞和单通道(inside-out)记录中均发现96%的神经元上存在着快失活的成分和/或慢失活的成分。用单指数或/和双指数拟合失活的平均单通道电流得到失活时间常数(τ)。这些失活时间常数的分布可以用两相的高斯函数拟合,分别得到快的失活时间常数为τi,fast=4.6 ms、慢的失活时间常数为τi,slow=31.8 ms。根据这两种电流成分的失活动力学和单通道电流的特征,我们证明了大鼠小DRG神经元上存在着β2和β3b亚基。
     单通道记录(inside-out)中,我们发现DRG神经元上存在失活的中等电导的BKi通道。在K+平衡溶液中,单通道电导为100-200 pS不等,指出大鼠DRG神经元上中等电导的BK通道是以slo2/slo1/β2/β3b组合的形式存在。
     在电流钳的模式下,我们用100 nM ChTX阻断BK通道后,小DRG神经元动作电位的爆发频率增加,动作电位的时程增宽。说明BK电流对复极化相和兴奋性起作用。我们认为小DRG神经元上的BKi电流可能在调制痛觉信息从外周向中枢传递的过程中起着重要的作用。
Large conductance voltage- and Ca2+-activated K+ channels (BK or MaxiK channels) are almost ubiquitously expressed among mammalian tissues, which play a crucial role in coupling changes in submembrane calcium concentration with changes in membrane potential and excitability. BK channels are formed fromα(Slo1) gene with itsβfamily, two of which,β2 andβ3, show ability to inactivate currents. It remains to be demonstrated where the hβ3- subunit is expressed in native tissues and what are the functional roles. Even though the inactivation of BK channels has been extensively studied mostly in expression experiments, rarely do they exhibit inactivation in native cells, especially in neurons. It is unclear what kind of native BK channels exists in Dorsal root ganglia (DRG) neurons and what are their properties and functional roles.
     In the current study, we have identified and characterized an inactivating Ca2+-dependent potassium (KCa) current in small neurons from rat lumbar L4-L6 dorsal root ganglia (DRG). The KCa currents are verified as inactivating BK currents (BKi) due to their sensitivity to the specific BK channel blockers, Charybdotoxin (CTX) and Iberiotoxin (IbTX). We demonstrated that the inactivation of BKi could be removed by extracellular treatment with papain.
     Using whole-cell recordings and inside-out patches we found that BK channels in DRG neurons exhibited a rapid inactivation and/or a slow inactivation in 96% cells. Ensemble inactivating currents from single-channel recordings were best fitted to single- or double-exponential function, which yield inactivation time constant (τ). Two gaussian fits to distribution of inactivation time constant indicate that the inactivation time constants are 4.6 ms (fast) and 31.8 ms (slow). Based on the kinetics of inactivation and the properties of single channel currents, our results indicate the presence of bothβ2 andβ3b in small DRG neurons.
     In inside-out patches, we found inactivating medium conductance BK currents, and the single-channel conductance varied from 100 to 200 pS in symmetrical K+ solution, indicated that there might be a combination of slo2/slo1/β2/β3 in rat dorsal root ganglion neurons.
     At current-clamp, blockade of the BKi channels by applying 100 nM ChTX results in increased firing and broadened action potentials. The BK currents contribute to repolarization phase and excitability and we propose BKi in small DRG neurons might play an important role in modulating nociceptive input from the peripheral to the CNS.
引文
[1] Brenner R., Perez G.J., Bonev A.D. et al. Vasoregulation by the beta1 subunit of the calcium-activated potassium channel. Nature, 2000, 407(6806): 870-876.
    [2] Li Z.W., Ding J.P., Kalyanaraman V. et al. RINm5f cells express inactivating BK channels whereas HIT cells express noninactivating BK channels. J Neurophysiol, 1999, 81(2): 611-624.
    [3] Ramanathan K., Michael T.H., Jiang G.J. et al. A molecular mechanism for electrical tuning of cochlear hair cells. Science, 1999, 283(5399): 215-217.
    [4] McLarnon J.G. Inactivation of a high conductance calcium dependent potassium current in rat hippocampal neurons. Neurosci Lett, 1995, 193(1): 5-8.
    [5] Solaro C.R., Lingle C.J. Trypsin-sensitive, rapid inactivation of a calcium-activated potassium channel. Science, 1992, 257(5077): 1694-1698.
    [6] Solaro C.R., Ding J.P., Li Z.W. et al. The cytosolic inactivation domains of BKi channels in rat chromaffin cells do not behave like simple, open-channel blockers. Biophys J, 1997, 73(2): 819-830.
    [7] Tabcharani J.A., Misler S. Ca2+-activated K+ channel in rat pancreatic islet B cells: permeation, gating and blockade by cations. Biochim Biophys Acta, 1989, 982(1): 62-72.
    [8] Pluger S., Faulhaber J., Furstenau M. et al. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res, 2000, 87(11): E53-E60.
    [9] Liu Y.C., Lo Y.K., Wu S.N. Stimulatory effects of chlorzoxazone, a centrally acting muscle relaxant, on large conductance calcium-activated potassium channels in pituitary GH3 cells. Brain Res, 2003, 959(1): 86-97.
    [10] Mistry D.K., Tripathi O., Chapman R.A. Kinetic properties of unitaryNa+-dependent K+ channels in inside-out patches from isolated guinea-pig ventricular myocytes. J Physiol, 1997, 500 ( Pt 1) 39-50.
    [11] Yuan A., Dourado M., Butler A. et al. SLO-2, a K+ channel with an unusual Cl- dependence. Nat Neurosci, 2000, 3(8): 771-779.
    [12] GARDOS G. The function of calcium in the potassium permeability of human erythrocytes. Biochim Biophys Acta, 1958, 30(3): 653-654.
    [13] Atkinson N.S., Robertson G.A., Ganetzky B. A component of calcium-activated potassium channels encoded by the Drosophila slo locus. Science, 1991, 253(5019): 551-555.
    [14] Quirk J.C., Reinhart P.H. Identification of a novel tetramerization domain in large conductance K(ca) channels. Neuron, 2001, 32(1): 13-23.
    [15] Schreiber M., Yuan A., Salkoff L. Transplantable sites confer calcium sensitivity to BK channels. Nat Neurosci, 1999, 2(5): 416-421.
    [16] Bian S., Favre I., Moczydlowski E. Ca2+-binding activity of a COOH-terminal fragment of the Drosophila BK channel involved in Ca2+-dependent activation. Proc Natl Acad Sci U S A, 2001, 98(8): 4776-4781.
    [17] Piskorowski R., Aldrich R.W. Calcium activation of BK(Ca) potassium channels lacking the calcium bowl and RCK domains. Nature, 2002, 420(6915): 499-502.
    [18] Yuan A., Santi C.M., Wei A. et al. The sodium-activated potassium channel is encoded by a member of the Slo gene family. Neuron, 2003, 37(5): 765-773.
    [19] Joiner W.J., Tang M.D., Wang L.Y. et al. Formation of intermediate-conductance calcium-activated potassium channels by interaction of Slack and Slo subunits. Nat Neurosci, 1998, 1(6): 462-469.
    [20] Schreiber M., Wei A., Yuan A. et al. Slo3, a novel pH-sensitive K+ channel from mammalian spermatocytes. J Biol Chem, 1998, 273(6): 3509-3516.
    [21] Xia X.M., Ding J.P., Lingle C.J. Molecular basis for the inactivation of Ca2+- and voltage-dependent BK channels in adrenal chromaffin cells and rat insulinomatumor cells. J Neurosci, 1999, 19(13): 5255-5264.
    [22] Meera P., Wallner M., Toro L. A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A, 2000, 97(10): 5562-5567.
    [23] Uebele V.N., Lagrutta A., Wade T. et al. Cloning and functional expression of two families of beta-subunits of the large conductance calcium-activated K+ channel. J Biol Chem, 2000, 275(30): 23211-23218.
    [24] Brenner R., Jegla T.J., Wickenden A. et al. Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4. J Biol Chem, 2000, 275(9): 6453-6461.
    [25] Knaus H.G., Folander K., Garcia-Calvo M. et al. Primary sequence and immunological characterization of beta-subunit of high conductance Ca(2+)-activated K+ channel from smooth muscle. J Biol Chem, 1994, 269(25): 17274-17278.
    [26] Cox D.H., Aldrich R.W. Role of the beta1 subunit in large-conductance Ca(2+)-activated K(+) channel gating energetics. Mechanisms of enhanced Ca(2+) sensitivity. J Gen Physiol, 2000, 116(3): 411-432.
    [27] Vergara C., Latorre R., Marrion N.V. et al. Calcium-activated potassium channels. Curr Opin Neurobiol, 1998, 8(3): 321-329.
    [28] Valverde M.A., Rojas P., Amigo J. et al. Acute activation of Maxi-K channels (hSlo) by estradiol binding to the beta subunit. Science, 1999, 285(5435): 1929-1931.
    [29] Xia X.M., Ding J.P., Lingle C.J. Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol, 2003, 121(2): 125-148.
    [30] Aldrich R.W. Fifty years of inactivation. Nature, 2001, 411(6838): 643-644.
    [31] Xia X.M., Ding J.P., Zeng X.H. et al. Rectification and rapid activation at lowCa2+ of Ca2+-activated, voltage-dependent BK currents: consequences of rapid inactivation by a novel beta subunit. J Neurosci, 2000, 20(13): 4890-4903.
    [32] Wang Y.W., Ding J.P., Xia X.M. et al. Consequences of the stoichiometry of Slo1 alpha and auxiliary beta subunits on functional properties of large-conductance Ca2+-activated K+ channels. J Neurosci, 2002, 22(5): 1550-1561.
    [33] Wallner M., Meera P., Toro L. Determinant for beta-subunit regulation in high-conductance voltage-activated and Ca(2+)-sensitive K+ channels: an additional transmembrane region at the N terminus. Proc Natl Acad Sci U S A, 1996, 93(25): 14922-14927.
    [34] Orio P., Rojas P., Ferreira G. et al. New disguises for an old channel: MaxiK channel beta-subunits. News Physiol Sci, 2002, 17 156-161.
    [35] Ding J.P., Li Z.W., Lingle C.J. Inactivating BK channels in rat chromaffin cells may arise from heteromultimeric assembly of distinct inactivation-competent and noninactivating subunits. Biophys J, 1998, 74(1): 268-289.
    [36] Solaro C.R., Prakriya M., Ding J.P. et al. Inactivating and noninactivating Ca(2+)- and voltage-dependent K+ current in rat adrenal chromaffin cells. J Neurosci, 1995, 15(9): 6110-6123.
    [37] Fettiplace R., Fuchs P.A. Mechanisms of hair cell tuning. Annu Rev Physiol, 1999, 61 809-834.
    [38] Riazi M.A., Brinkman-Mills P., Johnson A. et al. Identification of a putative regulatory subunit of a calcium-activated potassium channel in the dup(3q) syndrome region and a related sequence on 22q11.2. Genomics, 1999, 62(1): 90-94.
    [39] Gribkoff V.K., Starrett J.E., Jr., Dworetzky S.I. et al. Targeting acute ischemic stroke with a calcium-sensitive opener of maxi-K potassium channels. Nat Med, 2001, 7(4): 471-477.
    [40] Gribkoff V.K., Starrett J.E., Jr., Dworetzky S.I. Maxi-K potassium channels: form, function, and modulation of a class of endogenous regulators of intracellularcalcium. Neuroscientist, 2001, 7(2): 166-177.
    [41] Knaus H.G., Schwarzer C., Koch R.O. et al. Distribution of high-conductance Ca(2+)-activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci, 1996, 16(3): 955-963.
    [42] Petersen O.H., Maruyama Y. Calcium-activated potassium channels and their role in secretion. Nature, 1984, 307(5953): 693-696.
    [43] Kang J., Huguenard J.R., Prince D.A. Voltage-gated potassium channels activated during action potentials in layer V neocortical pyramidal neurons. J Neurophysiol, 2000, 83(1): 70-80.
    [44] Dryer S.E., Fujii J.T., Martin A.R. A Na+-activated K+ current in cultured brain stem neurones from chicks. J Physiol, 1989, 410 283-296.
    [45] Dryer S.E. Na(+)-activated K+ channels and voltage-evoked ionic currents in brain stem and parasympathetic neurones of the chick. J Physiol, 1991, 435 513-532.
    [46] Bader C.R., Bernheim L., Bertrand D. Sodium-activated potassium current in cultured avian neurones. Nature, 1985, 317(6037): 540-542.
    [47] Schwindt P.C., Spain W.J., Crill W.E. Long-lasting reduction of excitability by a sodium-dependent potassium current in cat neocortical neurons. J Neurophysiol, 1989, 61(2): 233-244.
    [48] Egan T.M., Dagan D., Kupper J. et al. Properties and rundown of sodium-activated potassium channels in rat olfactory bulb neurons. J Neurosci, 1992, 12(5): 1964-1976.
    [49] Dale N. A large, sustained Na(+)- and voltage-dependent K+ current in spinal neurons of the frog embryo. J Physiol, 1993, 462 349-372.
    [50] Safronov B.V., Vogel W. Properties and functions of Na(+)-activated K+ channels in the soma of rat motoneurones. J Physiol, 1996, 497 ( Pt 3) 727-734.
    [51] Bischoff U., Vogel W., Safronov B.V. Na+-activated K+ channels in small dorsal root ganglion neurones of rat. J Physiol, 1998, 510 ( Pt 3) 743-754.
    [52] Kameyama M., Kakei M., Sato R. et al. Intracellular Na+ activates a K+ channel in mammalian cardiac cells. Nature, 1984, 309(5966): 354-356.
    [53] Haddad G.G., Jiang C. O2 deprivation in the central nervous system: on mechanisms of neuronal response, differential sensitivity and injury. Prog Neurobiol, 1993, 40(3): 277-318.
    [54] Neely A., Lingle C.J. Two components of calcium-activated potassium current in rat adrenal chromaffin cells. J Physiol, 1992, 453 97-131.
    [55] Goodman M.B., Art J.J. Variations in the ensemble of potassium currents underlying resonance in turtle hair cells. J Physiol, 1996, 497 ( Pt 2) 395-412.
    [56] Abdulla F.A., Smith P.A. Axotomy- and autotomy-induced changes in the excitability of rat dorsal root ganglion neurons. J Neurophysiol, 2001, 85(2): 630-643.
    [57] Pannese E. The satellite cells of the sensory ganglia. Adv Anat Embryol Cell Biol, 1981, 65 1-111.
    [58] Shinder V., Amir R., Devor M. Cross-excitation in dorsal root ganglia does not depend on close cell-to-cell apposition. Neuroreport, 1998, 9(18): 3997-4000.
    [59] Pannese E., Ledda M., Conte V. et al. The perikaryal projections of rabbit spinal ganglion neurons. A comparison of thin section reconstructions and scanning microscopy views. Anat Embryol (Berl), 1990, 181(5): 427-432.
    [60] Wall P.D., Devor M. Sensory afferent impulses originate from dorsal root ganglia as well as from the periphery in normal and nerve injured rats. Pain, 1983, 17(4): 321-339.
    [61] Shinder V., Amir R., Devor M. Cross-excitation in dorsal root ganglia does not depend on close cell-to-cell apposition. Neuroreport, 1998, 9(18): 3997-4000.
    [62] Amir R., Devor M. Chemically mediated cross-excitation in rat dorsal root ganglia. J Neurosci, 1996, 16(15): 4733-4741.
    [63] Liu C.N., Amir R., Devor M. Effect of age and nerve injury on cross-excitationamong sensory neurons in rat dorsal root ganglia. Neurosci Lett, 1999, 259(2): 95-98.
    [64] Devor M. Unexplained peculiarities of the dorsal root ganglion. Pain, 1999, Suppl 6 S27-S35.
    [65] Huang L.Y., Neher E. Ca(2+)-dependent exocytosis in the somata of dorsal root ganglion neurons. Neuron, 1996, 17(1): 135-145.
    [66] Wiesenfeld Z., Lindblom U. Behavioral and electrophysiological effects of various types of peripheral nerve lesions in the rat: a comparison of possible models for chronic pain. Pain, 1980, 8(3): 285-298.
    [67] Gruss M., Henrich M., Konig P. et al. Ethanol reduces excitability in a subgroup of primary sensory neurons by activation of BK(Ca) channels. Eur J Neurosci, 2001, 14(8): 1246-1256.
    [68] Zhang X.F., Gopalakrishnan M., Shieh C.C. Modulation of action potential firing by iberiotoxin and NS1619 in rat dorsal root ganglion neurons. Neuroscience, 2003, 122(4): 1003-1011.
    [69] Naruse K., McGehee D.S., Oxford G.S. Differential responses of Ca-activated K channels to bradykinin in sensory neurons and F-11 cells. Am J Physiol, 1992, 262(2 Pt 1): C453-C460.
    [70] Armstrong C.E., Roberts W.M. Electrical properties of frog saccular hair cells: distortion by enzymatic dissociation. J Neurosci, 1998, 18(8): 2962-2973.
    [71] Swett J.E., Torigoe Y., Elie V.R. et al. Sensory neurons of the rat sciatic nerve. Exp Neurol, 1991, 114(1): 82-103.
    [72] Armstrong C.E., Roberts W.M. Rapidly inactivating and non-inactivating calcium-activated potassium currents in frog saccular hair cells. J Physiol, 2001, 536(Pt 1): 49-65.
    [73] Dworetzky S.I., Boissard C.G., Lum-Ragan J.T. et al. Phenotypic alteration of a human BK (hSlo) channel by hSlobeta subunit coexpression: changes in blockersensitivity, activation/relaxation and inactivation kinetics, and protein kinase A modulation. J Neurosci, 1996, 16(15): 4543-4550.
    [74] Nimigean C.M., Magleby K.L. The beta subunit increases the Ca2+ sensitivity of large conductance Ca2+-activated potassium channels by retaining the gating in the bursting states. J Gen Physiol, 1999, 113(3): 425-440.
    [75] Tseng-Crank J., Godinot N., Johansen T.E. et al. Cloning, expression, and distribution of a Ca(2+)-activated K+ channel beta-subunit from human brain. Proc Natl Acad Sci U S A, 1996, 93(17): 9200-9205.
    [76] McManus O.B., Helms L.M., Pallanck L. et al. Functional role of the beta subunit of high conductance calcium-activated potassium channels. Neuron, 1995, 14(3): 645-650.
    [77] Wallner M., Meera P., Ottolia M. et al. Characterization of and modulation by a beta-subunit of a human maxi KCa channel cloned from myometrium. Receptors Channels, 1995, 3(3): 185-199.
    [78] Wallner M., Meera P., Toro L. Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane beta-subunit homolog. Proc Natl Acad Sci U S A, 1999, 96(7): 4137-4142.
    [79] Zeng X.H., Xia X.M., Lingle C.J. Redox-sensitive extracellular gates formed by auxiliary beta subunits of calcium-activated potassium channels. Nat Struct Biol, 2003, 10(6): 448-454.
    [80] Harper A.A., Lawson S.N. Conduction velocity is related to morphological cell type in rat dorsal root ganglion neurones. J Physiol, 1985, 359 31-46.
    [81] Harper A.A., Lawson S.N. Electrical properties of rat dorsal root ganglion neurones with different peripheral nerve conduction velocities. J Physiol, 1985, 359 47-63.
    [82] Davies A.G., Pierce-Shimomura J.T., Kim H. et al. A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell, 2003, 115(6): 655-666.
    [83] Tseng-Crank J., Foster C.D., Krause J.D. et al. Cloning, expression, and distribution of functionally distinct Ca(2+)-activated K+ channel isoforms from human brain. Neuron, 1994, 13(6): 1315-1330.
    [84] Adelman J.P., Shen K.Z., Kavanaugh M.P. et al. Calcium-activated potassium channels expressed from cloned complementary DNAs. Neuron, 1992, 9(2): 209-216.
    [85] Saito M., Nelson C., Salkoff L. et al. A cysteine-rich domain defined by a novel exon in a slo variant in rat adrenal chromaffin cells and PC12 cells. J Biol Chem, 1997, 272(18): 11710-11717.
    [86] Lingle C.J., Solaro C.R., Prakriya M. et al. Calcium-activated potassium channels in adrenal chromaffin cells. Ion Channels, 1996, 4 261-301.
    [87] Pallotta B.S. Calcium-activated potassium channels in rat muscle inactivate from a short-duration open state. J Physiol, 1985, 363 501-516.
    [88] Ikemoto Y., Ono K., Yoshida A. et al. Delayed activation of large-conductance Ca2+-activated K channels in hippocampal neurons of the rat. Biophys J, 1989, 56(1): 207-212.
    [89] Hicks G.A., Marrion N.V. Ca2+-dependent inactivation of large conductance Ca2+-activated K+ (BK) channels in rat hippocampal neurones produced by pore block from an associated particle. J Physiol, 1998, 508 ( Pt 3) 721-734.
    [90] Jiang Z., Wallner M., Meera P. et al. Human and rodent MaxiK channel beta-subunit genes: cloning and characterization. Genomics, 1999, 55(1): 57-67.
    [91] Weiger T.M., Holmqvist M.H., Levitan I.B. et al. A novel nervous system beta subunit that downregulates human large conductance calcium-dependent potassium channels. J Neurosci, 2000, 20(10): 3563-3570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700