用户名: 密码: 验证码:
动态增强MRI评估股骨头血流灌注状态及激素性股骨头缺血性坏死的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床上非创伤性股骨头缺血性坏死(Avascular necrosis of femoral head, AvNFH)非常多见,致残率很高。其中,激素性AvNFH占第一位。随着现代医学影像技术的快速发展,形态与功能相结合的影像学技术将成为研究疾病的新思路。在激素诱导的股骨头缺血性坏死的发生和发展过程中研究股骨的微循环及血流灌注情况显得格外重要,MR灌注成像能评估单位体积骨组织的血流灌注,了解血流量和血流速度,从而评价骨组织的活性。因此,我们采用动态增强磁共振成像的方法,并结合血液流变学指标来评估激素性股骨头缺血性坏死(AvNFH)模型不同时期股骨头的血流灌注状态,达到从另外的角度研究该疾病的目的。此外,我们还采用免疫组织化学的方法,研究了不同时相点兔缺血坏死股骨头内血管内皮生长因子(VEGF)和骨形态发生蛋白-2(BMP-2)表达的动态变化特点,以探讨两者在激素诱导的骨坏死发生发展过程中发挥的作用;采用骨髓间充质干细胞体外培养技术,将细胞学和形态学的方法相结合,从新的角度探讨了激素性AvNFH的发病机制。
     本实验分为两个部分:
     第一部分,选28只健康新西兰大白兔,随机分二组: A组:模型组(马血清加用甲基氢化泼尼松龙); B组:对照组。A, B两组分别于用药前和用药后2周、4周、6周、8周,以相同方法行MR常规及动态增强、普通增强MR扫描,根据股骨头的时间-信号强度曲线计算股骨头动态增强MR成像参数。并于用药前和用药后的4周、8周取静脉血进行血液流变学指标检测。动物处死后取双侧股骨头制作病理切片, HE染色光镜观察。采用免疫组化的方法测定使用激素后2周、4周、6周、8周骨组织中VEGF和BMP-2的表达及变化。
     上述研究显示结果为:1.病理组织学切片显示:随着用药时间的延长,骨小梁空虚骨陷窝数逐渐增多,骨细胞核固缩,甚至出现骨坏死,骨髓腔内造血组织逐渐减少而脂肪组织明显增多,脂肪细胞体积增大,数量增多;
     2.反映早期激素性AvNFH血流灌注状态的时间-信号强度曲线的最大斜率随着时间的延长逐渐减小(p<0.05),相应的骨小梁空虚骨陷窝数逐渐增多(p<0.01);
     3.与正常组比较,实验组全血粘度(高切、低切)、血浆粘度及红细胞压积均升高,其中低切全血粘度及红细胞压积的升高有显著性(p<0.05);
     4.动态增强参数SSmax与低切全血粘度呈负相关, r=-0.65, p<0.05;
     5.随着激素的应用,成骨细胞、内皮细胞、骨基质中VEGF蛋白表达呈下降趋势;软骨细胞、成骨细胞及骨髓细胞间基质中BMP-2蛋白表达逐渐降低。
     小结:1.动态增强MRI可以评估AvNFH的血流灌注状态,能反映骨坏死的病理发展过程;2.糖皮质激素抑制了骨组织中VEGF和BMP-2的表达,从而抑制了骨内新生血管和新生骨组织的形成,使骨组织局部缺血,缺氧状态难以修复重建,这一研究结果阐明了股骨头血流减少的原因;3.VEGF、BMP-2在激素诱导的骨坏死发生发展过程中起着重要的作用。
     第二部分,通过贴壁法分离获取骨髓间充质干细胞(MSCs),按加入地塞米松终浓度的不同将传三代的MSCs随机分为4组:空白对照组、10-8 mol/L处理组、10-7 mol/L处理组、10-6 mol/L处理组。倒置相差显微镜下观察细胞形态变化,细胞培养至第8d时用MTT方法检测其增殖,第21d时终止培养,对各组脂肪细胞进行油红O染色,并对其进行计数;采用方差分析和t检验对上述结果进行统计学分析。
     上述研究显示结果为:(1) MSCs形态学观察:传代细胞接种贴壁后多呈纺锤形,加地塞米松进行分组培养后,增殖速度减慢,于培养第10d,发现10-6 mol/L处理组细胞浆内开始出现小圆形脂滴,主要集中于细胞核周围,随着培养时间延长,其它处理组也相继出现小脂滴,且小脂滴逐渐融合成大的脂肪泡,即含甘油三脂的囊泡,细胞亦逐渐增大,由原来的梭形变成圆形和多角形。(2)地塞米松抑制MSCs增殖:10-8 mol/L处理组、10-7 mol/L处理组、10-6 mol/L处理组细胞的吸光度值依次为0.289±0.023、0.221±0.015,0.154±0.013,与对照组细胞的吸光度值(0.352±0.012)相比较,有显著性差异(P<0.05)。(3)地塞米松促进MSCs分化为脂肪细胞:对照组、10-8 mol/L处理组、10~(-7) mol/L处理组、10~(-6) mol/L处理组中,其脂肪细胞阳性率依次为1.8±0.7,46.2±3.2,77.1±3.4,83.6±2.8 (%)。各实验组与对照组比较,差异有显著性意义(P<0.05)。
     小结:地塞米松不仅能直接抑制MSCs增殖,还可诱导其向脂肪细胞分化,且分化程度和地塞米松浓度呈正比。这一现象和激素性骨坏死的病理改变甚为相似,对阐明激素性骨坏死的病理生理机制提供实验依据。
     总而言之,本实验从活体动物水平和离体细胞水平两方面进行研究,观察了激素性股骨头缺血性坏死动物模型和原代培养的骨髓间充质干细胞各相关指标的变化,两者既是相互独立的,又能够通过糖皮质激素紧密地联系在一起。我们用动态增强MRI的方法观察到,在激素诱导的股骨头缺血性坏死的发生和发展过程中,其血流灌注状态逐渐减低;骨组织中VEGF和BMP-2的表达减低,从而抑制了骨内新生血管和新生骨组织的形成,使骨组织局部缺血,这在一定程度上解释了股骨头血流减少的原因;此外,通过细胞学和形态学相结合的方法观察到,地塞米松可直接诱导骨髓间充质干细胞分化为脂肪细胞,而且地塞米松浓度越高,脂肪细胞分化越多,研究表明大剂量应用激素后股骨头骨髓内脂肪细胞增多,造成骨髓内压升高,导致骨微循环障碍,同时骨修复过程缓慢,这阐明了股骨头缺血性坏死的病理变化过程。
The avascular necrosis of the femoral head (AvNFH), among which the most cases were induced by steroid hormone, is a common disease. It often occurs and causes disabilities in clinic. With the development of modern medical imaging technologies,the imaging technology of morphology and function will become a new way during disease research. It is important that we explore the microcirculatin and blood perfusin about femoral head. MR perfusion can evaluate the blood perfusin of bone tissue,and get the blood flow and velocity and so evaluate the viability of bone tissue. We evaluated femoral perfusion in the steroid-induced AvNFH animal model, using dynamic contrast-enhanced magnetic resonance imaging combined with hemorrheology, to explore the value of dynamic contrast-enhanced MRI. Otherwise,to explore the influence of VEGF through the observation of the expression of vascular endothelial growth factor (VEGF) and bone morphogenetic protein-2(BMP-2) in bone tissue during the progress of steroid induced osteonecrosis with immunohistochemistry. By the methods of cell and morphology we investigate further the pathogenetic mechanism of steroid-induced AvNFH with the cultured bone marrow mesenchymal stem cell in vitro.
     This study is divided into two parts:
     Firstly,twenty-eight white New Zealand rabbits were used and randomly divided into two groups. Group A: model group (horse serum and prednisone);Group B: control group. All rabbits were examined by non-enhanced, dynamic contrast-enhanced and conventional enhancement MRI scan in the same method and in the second week, fourth week, sixth week and eighth week after steroid treatment. Vein blood was attained for hemorrheology before treatment and in the fourth week, eighth week. After rabbits were killed, all femoral heads were made paraffin section and HE stained specimen for pathological investigation. Their specimens of femoral heads were taken for the expression and alteration of VEGF and BMP-2 in the second week, fourth week, sixth week and eighth week after steroid treatment by means of immunohistochemical staining and examined under microscope.
     These results were showed as follows: (1) By light microscopy, there were osteocytes pyknosis or necrosis,empty bone lacunae and fat tissue with much more adipocytes increased but hematopoietic tissue decreased with treatment of prednison. (2) The steepest slope (SSmax) of time-signal intensity curve gradually declined in the early stage decreased gradually (p<0.05). Correspondingly, the number of empty lacuna increased gradually (p<0.01). (3) Compared with control group, the index of model group include of whole blood (high and low slice), viscosity of plasma and packed cell volume elevated, but only whole blood (low slice), packed cell volume were significant (p<0.05). (4) The parameter SS of dynamic contrast-enhanced MRI correlated negatively with whole blood(low slice)(r=-0.65,P<0.05). (5) The expression of VEGF protein in the osteoblasts,vascular endothelial cells and bone matrix became lower in the femoral head of model group in the second,fourth week,but increased slightly in the sixth and eighth week. The expression of BMP-2 protein in cartilage cell,osteoblasts,matix between bone marrow cells descended during treatment with prednison.
     These results suggested that (1) Dynamic contrast-enhanced MRI can evaluate the state of blood perfusion of femoral head and show the pathologic changes during the progress of osteonecrosis. (2) The expression of VEGF and BMP-2 protein in bone tissue are inhibited by glucocorticoid during the steroid-induced necrosis of the femoral head,then angiogenesis and new bone tissue are restrained and so the degree of ischemia, anoxia of the local environment in bone tissue become serious,which explains the decrease in femoral blood perfusion.(3) It is indicated that VEGF and BMP-2 play an important role during the progress of osteonecrosis.
     Secondly,MSCs were separated and cultured in 6-well plates according to the different biological characteristics between MSCs and hematopoietic stem cells. And then the third-MSCs were planted in 6-well plates, which were divided into four groups by random: empty control, group treated with 10-8 mol/L Dex, group treated with 10-7 mol/L Dex, group treated with 10-6 mol/L Dex. The cells morphology was detected by using inverted phase-contrast microscope, whose proliferation was observed by using MTT assay. After four groups of MSCs were cultured for 21 days, they were stained with oil red O. Adipocytes was investigated and counted under a light microscope. These results were showed as follows: (1) Investigation of morphology of MSC:MSCs were planted and attached to the plates. Most of the cells exhibited fibroblast-like spindle shape. Compared with that of empty control, proliferation of cells treated with dexamethasone became slow. Under the inverted phase-contrast microscope, cytoplasmic lipid droplets, i.e. triglyceride-containing vesicles, were observed in the cells treated with dexamethasone. The cells became larger and transferred to round or polygonal shape. (2) Inhibition of the proliferation of MSCs by Dexamethasone: compared with that of control group,the OD value of group treated with 10-8 mol/L Dex, groups treated with 10-7 mol/L Dex, groups treated with 10-6 mol/L Dex group was respectively 0.289±0.023、0.221±0.015,0.154±0.013, compared with the control group(0.352±0.012),the difference was significant (P<0.05). (3) Dexamethasone can directly stimulate the differentiation of MSCs into adipocytes: the positive rates of adipocytes in four groups (empty control, group treated with 10-8 mol/L Dex, groups treated with 10-7 mol/L Dex, groups treated with 10-6 mol/L Dex) was respectively 1.8±0.7,46.2±3.2,77.1±3.4,83.6±2.8(%). Compared with that of control group,the difference between them was significant (P<0.05).
     These results suggested that dexamethasone could not only inhibit the proliferation of bone marrow mesenchymal stem cells directly, but also induce the differentiation of MSCs into adipocytes, which was similar to the pathologic changes of steroid-induced osteonecrosis, and helpful for clarifying the pathobiological mechanism of osteonecrosis induced by steroid.
     To sum up, changes of these indexes in steroid-induced avascular necrosis of femoral head animal model and bone marrow mesenchymal stem cells were observed from the whole level of animals and cellular level of in vitro in this study. They were both independent and interrelated with each other by the glucocorticoid. We observed that blood perfusion decreased gradually during the progress of osteonecrosis with dynamic contrast-anhanced MRI. The expression of VEGF and BMP-2 protein in bone tissue is inhibited by glucocorticoid during the steroid-induced necrosis of the femoral head,then angiogenesis and new bone tissue are restrained and so the degree of ischemia of the local environment in bone tissue become serious,which explains the decrease in femoral blood perfusion. Otherwise,it was observed that dexamethasone can directly induce bone marrow mesenchymal stem cells differentiation into a large number of adipocytes by the ways of cell and morphology. This might lead to an increase in marrow fat volume of the femoral head following administration of high dose of steroids; eventually an increase of intraosseous pressure occured, with a decrease of vascular perfusion. Without sufficient repair of the necrotic bone the final result is avascular necrosis of the femoral head.
引文
1. Matsui M, Saito S, Ohzono K, et al. Experimental steroid induced osteonecrosis in adult rabbit with hypersensitive vasculitis. Clin Orthop, 1992, 277: 61.
    2. Glimcher MJ, Kenzora JE. The biology of osteonecrosis of the human femoral head and its clinical implications. Clin Orthop, 1979, 140:273.
    3.张雪哲.糖皮质激素与骨缺血性坏死的相关性.中华放射学杂志,2005,39:789.
    4. Kloen P, Leunig M, Ganz R, et al.Early lesions the labrum and acetabular cartilage, in osteonecrosis of the femoral head.J Bone Joint Surg(Br) 2002,84(1): 66- 69.
    5. Smith DW. Is avascular necrosis of the femoral head the result of inhibition of angiogenesis? Med hypotheses, 1997, 49:497-500.
    6. Jones JP. Fat embolism of bone. J Bone Joint Surg(Am),1996,48: 149-151.
    7. Soucacos PN, Beris AE, Malizos K, et al. Treatment of avascular necrosis of the femoral head with vascularized fibular transplant. Clin Orthop, 2001 5(386):120.
    8. Plancher KD, Razi A. Management of osteonecrosis of the femoral head. Orthop Clin North Am.1997,28:461.
    9.郑召民,董天华.非创伤性骨坏死血栓前状态的实验研究[J].中华骨科杂志,2000, 20(5): 299-302.
    10. Nishimura T, Matsumoto T, Nishino M, et al.Histopathologic study of veins in steroid treroid rabbits. Clin Orthop,1997,334:37-42.
    11. Emoke Posan, Kalman Szepesi, Levente Gaspa r,et al. Thrombotic and fibrinolytic alterations in the aseptic necrosis of femoral head. Blood Coagulation and Fibrinolysis. 2003, 14:243–248.
    12. Glueck CJ, Freiberg R, Frontaine RN, et al. Hypofibrinolysis, Thrombopilia and osteonecrosis. Clin Orthop, 2001,386:19-332.
    13. Cha S. Perfusiun MR Imaging: basic principles and clinical applications. Magn Reson Imaging Clin N AM, 2003,11(3):403.
    14. vanRijswijk CS, Geirnaerdt MJ, Hogendoorn PC, et al. Dynamic contrast-enhanced MR imaging in monitoring response to isolated limb perfusion in high-grade soft tissue sarcoma: initial results.Eur Radiol,2003,13:1849-1858.
    15. Dyke JP, Panicek DM, Healey JH, et al. Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology,2003,228:271-278.
    16.孟悛非,吕衍春,吕凤华,等.增强MR动态增强MRI在骨骼-软组织肿瘤良恶性鉴别诊断中的价值.中华放射学杂志,2001,35:578-83.
    17. Totty WG,Murphy WA,Ganz WI,et al. Magnetic resonance imaging of the normal and ischemic femoral head. AJR,1984,143:1273.
    18. Kawamoto S, Shirai N, Strandberg JD, et a1. Nontraumatic osteonecrosis MR perfusion imaging evaluation in an experimental model. Acad Radiol,2000,7:83-93.
    19.闫燃,张雪哲.磁共振动态增强MRI在骨骼研究中的应用.中日友好医院学报, 2005,19(5):317-319.
    20. Nakamura T,Matsumoto T,Nishino M,et al. Early magnetic resonance imaging and histologic finds in model of femoral head necrosis. Clin Orthop,1997,334:68.
    21. Schneider T, Drescher W, Becker C, et al. Dynamic gadolinium-enhanced MRI evaluation of porcine femoral head ischemia and reperfusion. Skeletal Radiol. 2003, 32: 59.
    22. Streeten EA, Brandi ML. Biology of bone endothelial cells. Bone Miner, 1990, 10:8.
    23. Leuny DW, Cachienes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science.1989, 246;1306.
    24. FongGH, RossantJ,Gertsenstein M,BreitmanML. Role of the flt-1 receptor tyrosinekinase in regulating the assembly of vascular endothelium. Nature,1995; 376: 66-70.
    25. Daorak HF, Brown LC, Detmar M, et al. Vascular permeability factor/vascular endothelial growth factor, Microvascular hyperpermeability, and angingenesis. Am J Pathol.1995 ,146:1029.
    26. Neufeld G, Cohen T, Gengrinovitch, S, et al. Vascular endothelial growth factor (VEGF) and its receptor. FASEB J, 1999,13.
    27. Harada J. The effects of glucocorticoid on angiogenesis in vitro. Nippon Seikeig.1994.
    28. Mendel DB, Schreck RE, West DC, et al. The angiogenesis inhibitor SU5416 haslong-lasting effects on vascular endothelial growth factor receptor phosphorylation and function. Clin Cancer Res, 2000,6(12): 484.
    29. Gloddek J, Pagoto U, Paez perda E, et al. Pituitary adenylate cyclase activating polypeptide, interleakin-6 and glucocorticoids regulate the release of vascular endothelial growth factor in pituitary folliculostellate cells. J Endocrinology, 1999,160:483.
    30. Chen TL, Aronow L, Feldman D. Glucocorticoid receptors and inhibition of bone cell growth in primary culture. Endocrinology, 1997,100:619.
    31. Silvestrini GP, Ballan FR, Pataochioli, et al. Evaluation of apoptosis and the glucocorticoid receptor in the cartilage growth plat and metaphyseal bone cell of rats after high-dose treatment with corticosterone. Bone, 2000, 26:33.
    32. Li X, Jin L, Cui Q, et al. Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int. 2005,6(1): 101-8.
    33.杨操,杨述华,杜靖远,等.血管内皮生长因子基因转染促进股骨头坏死修复.临床骨科杂志, 2004,7(1):90-93.
    34. Luppen CA, Smith E, Spevak L, et al. Bone morphogenetic protein-2 restores mineralization in glucocorticoid-inhibited MC3T3-E1 osteoblast cultures. J Bone Miner Res. 2003; 18:1186-97.
    35. Zerath E, Holy X, Noel B, et al. Effects of BMP-2 on osteoblastic cells and on skeletal growth and bone formation in unloaded rats. Growth Horm IGF Res. 1998; 8: 141-9.
    36. Fromigue O, Marie PJ, Lomri A.Bone morphogenetic protein-2 and transforming growth factor-beta 2 interact to modulate human bone marrow stromal cell proliferation and differentiation. J Cell Biochem. 1998; 68: 411-26.
    37.赵宏斌,李林芝,李世和.激素相关性股骨头坏死股骨头内BMP-2的表达.中国矫形外科杂志,2006;14(11):842-844.
    38. Liebeman Jay R, Conduah Augustine, Urist Marshall R. Treatment of osteonecrosis of the femoral head with core decompression and human bone morphogenetic protein. Clin orthop 2004, 429:139-145
    39.周华江,薛强,张琦,等.重组合异种骨治疗股骨头缺血坏死的实验研究.中华实验外科杂志,2004 ,21(9):1148.
    40. Cui Q, Wang GT, Balian G. Steroid-induced adipogenesis in a pluriptential cell from bone marrow. J Bone Joint Surg(Arn).1997, 79-A:1054-1063.
    1. Kawai K, Tamaki A, Hirohata K. Steroid-induced accumulation of lipid in the osteocytes of the rabbit femoral head: a histochemical and electron microscopic study. Bone Joint Surg , 1985;67A:755-764.
    2. Owen ME. Marrow stromal stem cells. J Cell Sci(suppl),1988;10: 63~76.
    3. P. Hernigou, F. Beaujean, J.C.Lambotte. Decrease in the mesenchymal stem-cell pool in the proximal femur in corticosteroid-induced osteonecrosis. J Bone Joint Surg [Br] 1999; 81-B: 349-55.
    4. Kuen TS,Seung WK,Hyoung LR,et al. Decreased osteogenic differentiation of mesenchymal stem cells in alcohol-induced osteonecrosis. Clin Orthop and Rel Res,2005; 431:220-225.
    5. Simmons PJ, Przepiorka D, Thomas ED, et al. Host origin of marrow stromal cells following allogeneic bone marrow transplantation. Nature. 1987; 328: 429-439.
    6. Jones Jr JP. Etiology and pathogenesis of osteonecrosis. Semin Arthroplasty 1991; 2:160-168.
    7. Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). New Eng J Med 1992; 326: 1473-1479.
    8. Matsui M, Saito S, Ohzono K, et al. Experimental steroid-induced osteonecrosis in adult rabbits with hypersensitivity vasculitis. Clin Orthop 1992;277:61-72.
    9. Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). New Eng J Med 1992; 326: 1473-1479.
    10. Arlet J. Nontraumatic avascular necrosis of the femoral head. Past, present and future. Clin Orthop 1992;277:12-21.
    11. Mankin HJ. Nontraumatic necrosis of bone (osteonecrosis). New Eng J Med 1992; 326: 1473-1479.
    12. Rickard DJ, Kazhdan I, Leboy PS. Importance of 1,25-dihydroxyvitamin D3 and the nonadherent cells of marrow for osteoblast differentiation from rat marrow stromal cells. Bone 1995; 16:671-678.
    13. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood 2003;102: 483-493.
    14. Bianco P, Robey PG. Marrow stromal stem cells. J Clin Invest 2000; 105:1663-1668.
    15. Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997; 276:71-74.
    16. Zohar R, Sodek J, McCulloch CA. Characterization of stromal progenitor cells enriched by flow cytometry. Blood. 1997; 90:3471-3481.
    17. Cui Q, Wang GT, Balian G. Steroid-induced adipogenesis in a pluriptential cell from bone marrow. J Bone Joint Surg (Arn).1997;79-A:1054-1063.
    18. Laharragke P, Larrouy D, Fontanilles AM, et al. High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J. 1998;12(9): 742-752.
    19. Smyth MJ, Sparks RL, Wharton W. Proadipocyte cell lines: models of cellular proliferation and differentiation. J Cell Sci. 1993; 106: 1-9.
    20. Cook JS, Lucas JJ,Sibley E, et al. Expression of the differentiation induced gene for fatty acid-binding protein is activated by glucocorticord and cAMP. Proc Nat Acad Sci. 1988; 85: 2449-2953.
    21. Garcia Palacios V, Morita I, Murota S. Expression of adipogenesis markers in a murine stromal cell line treated with 15-deoxy Delta (12,14)-prostaglandin J2, interleukin-11, 9-cis retinoic acid and vitamin K2. Prostaglandins Leukot Essent Fatty Acids 2001; 65:215-221.
    22. Kadner A, Hoerstrup SP, Melnitchouk S, et al. A new source for cardiovascular tissue engineering: human bone marrow stromal cells. Eur J Cardiothorac Surg 2002; 21:1055-1060.
    23. Huang W, Chung UI, Kronenberg HM, et al. The chondrogenic transcription factor Sox9 is a target of signaling by the parathyroid hormone related peptide in the growth plate of endochondrabones. Proc Natl Acad Sci USA, 2001; 98:160-165.
    24. Ogston N,Harrison AL,Cheung HE, et al. Dexamethasone and retinoic acid diferentially regulate growth and diferentiation in an immortalised human clonal bone marrow stromal cell line with osteoblastic characteristics. Steroids. 2002; 67: 895-906.
    25. Justesen J, Stenderup K, Ebbesen EN, et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology, 2001; 2:165-171.
    26. Verma S, Rajaratnam JH, Denton J, et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol, 2002; 55:693-698.
    27. Ahdjoudj S, Lasmoles F, Oyajobi BO, et al. Reciprocal control of osteoblast/chondroblast and osteoblast/adipocyte differentiation of multipotential clonal human marrow stromal F/STRO-1(+) cells. J Cell Biochem, 2001; 81:23-38.
    28. Lecoeur L, Ouhayoun J. In vitro induction of osteogenic diferentiation from non-osteogenic mesenchymal cells. Biomaterials, 1997; 18:989-993.
    29. Nutall M, Patton A, Olivera D, et al. Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype: implications for osteopenic disorders. J Bone minerRes, 1998;13:371-82.
    30. Cui Q, Wang GJ, Balian G. Steroid-induced adipogenesis in bone marrow and osteonecrosis. ARCO news. 1994; 6:117-121.
    31. Wang YS, Li YB, Mao KY, Li J, Cui QJ, Wang GJ. Alcohol-induced adipogenesis in bone and marrow: a possible mechanism for osteonecrosis. Clin Orthop 2003; 410:213-224.
    32. Suh KT, Kim SW, Roh HL, Youn MS, Jung JS. Decreased osteogenic differentiation of mesenchymal stem cells in alcohol-induced osteonecrosis. Clin Orthop 2005; 431:220-225.
    1.Ono K, Tohjima T, Komazawa T. Risk factors of avascular necrosis of the femoral head in patients with systemic lupus erythematosus under high-dose corticosteroid theropy. Clin Orthop, 1992,277:89-97.
    2.Landmann J. Cyclosporin A and Osteonecrosis of the Femoral Head. J Bone Joint Surg(Am),1987,69:1996.
    3.Jones JP. 1ntravascular coagulation and osteonecrosis. Clin Orthop,1992,277:41-53.
    4.Koo KH, Kim R, Kim, et al.Risk period for developing osteonecrosis ofthe femoral head in patients on steroid treatment. Clin Rheumatol 2002,21:299-303.
    5.张雪哲.糖皮质激素与骨缺血性坏死的相关性.中华放射学杂志,2005,39:789-790.
    6 .王新生,许振华,陈风苞,等.激素性股骨头缺血坏死发病机理的实验研究.中华骨科杂志,1995, 15(3):168-170.
    7.Matsui M, Saito S, Ohzono K, et al. Experimental steroid induced osteonecrosis in adult rabbit with hypersensitive vasculitis. Clin Orthop, 1992, 277: 61.
    8.Chernetsky SG, Mont MA, LaPirte DM, et al. Pathologic features in steroid and nonsteroid associated osteonecrosis. Clin Orthop,1999, 368 ( 2 ):149~161.
    9.李月白.激素诱导骨髓基质细胞成脂分化的实验研究.中华骨科杂志,1999, 19(II):687- 689.
    10.Koo KH,Dussault RG,Kaplan PA,et al.Fatty marrow conversion of the proximal femoral metaphysis in osteonecrotic hips.Clin Orthop,1999,(361):159-167.
    11.Vande-Berg BC,Malghem J,Lecouvet FE,et al.Fat conversion of femoral marrow in glucocorticoid-treated patients: a cross-sectional and longitudinal study with magnetic resonance imaging.Arthritis Rheum,1999,42:1405-1411.
    12.Kawai K,Tamaki A, Hirohata K.Steroid-induced accumulation of lipid in the osteocytes of the rabbit femoral head: a histological electron microscpic study. J Bone Joint Surg(Am),1985,67:755-763.
    13.Vande BergBC,Gilon R,Malghem J,et al. Correlation between baseline femoral neck marrow status and the development of femoral head osteonecrosis incorticosteroid-treated patients: a longtitudinal study by MR imaging. Eur J Radiol,2006,58:444-9.
    14.James W. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin Orthop, 2001,386:173-178.
    15.Wang GJ, Cui Q, Balian G. The Nicolas Andry award. The pathogenesis and prevention of steroid-induced osteonecrosis. Clin Orthop. 2000, 370:295-310. Glueck CJ, Freiberg RA, Wang P. Role of thrombosis in osteonecrosis. Curr Hematol Rep. 2003, 2(5): 417-422.
    16.Drescher W, Weigert KP, Bunger MH et al. Femoral head blood flow reduction and hypercoagulablitity under 24 h megadose steroid treatment in pigs. J Orthopaedic Research.2004,22:501-508.
    17.Ichiseki T, Matsumoto T, Nishino M, et al. Oxidative stress and vascular permeability in steroid-induced osteonecrosis model. J Orthop Sci. 2004, 9(5): 509-515.
    18.Korompilias AV, Ortel TL, Urbaniak JR. Coagulation abnormalities in patients with hip osteonecrosis. Orthop Clin North Am. 2004, 35(3): 265-271.
    19.Cui Q ,W ang GJ , Balian G. Steroid2induced adipogenesis in a pluripotential cell line from bone marrow. J BoneJoint Surg (Am ),1997,79:1054-1063.
    20.Hernigou P, Beaujean F, L ambotte JC. Decrease in the mesenchymal stem cell pool in the proximal femur in corticosteroid-induced osteonecrosis. J Bone Joint Surg (Br),1999,8: 349-355.
    21.MontMA , Hungrford DS,M aryland B. Current concepts review , non-traumatic avascular necrosis of the femoral head. J Bone Joint Surg (Am ) , 1995, 77: 459-474.
    22.Hofbauer LC,Gorl F,Riggs BL, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells: potential paracrine mechanisms of glucocoticoid-induced osteoporosis. Endocrinologi,1999,140:4382-4389.
    23.王岩,迟志永,韩纲.激素性骨坏死骨质丢失与骨保护蛋白表达的相关研究.中华外科杂志, 2002, 7:534-537.
    24.Vilamitjana-Amedee J ,Barelle R , Rouais F , et al. Human bone marrow stromal cells express an osteoblastic phenotype in culture. In Vitro Cell Dev Biol Anim(Am) ,1993 ,29(9) :699~707.
    25.Wang GJ, Cui Q, Balian G. The Nicolas Andry award. The pathogenesis and prevention of steroid-induced osteonecrosis . Clin Orthop. 2000, 370:295-310.
    26.Cui Q ,Wang GL ,Balian G. Steroid induced adipogenesis in a pluripotential cell line frome bone marrow. J Bone Joint Surg(Am) ,1997 ,79 :1054~1063.
    27.李月白,殷力,王义生,等.激素诱导骨髓基质细胞成脂分化的实验研究.中华骨科杂志,1999 ,11 :687~689.
    28.Sheng Hui. Decreased Mesenchymal Stem Cells and Increased Adipogenic Differentiation In Bone Marrow Stem Cell Pool. International Osteoporosis Conference-Bone and Joint Decade October 20.
    29. Li X, Jin L, Cui Q, et al. Steroid effects on osteogenesis through mesenchymal cell gene expression. Osteoporos Int.2004, 15: 1.
    30.Li Yin, LI Yue-bai, WANG Yi-sheng, et al. Dexamethasone-induced adipogenesis in primary marrow stromal cell cultures: mechanism of steroid-induced osteonecrosis Chinese Medical Journal 2006; 119(7): 581-588.
    31.Asano T, Takahashi KA, Fujioka M, et al. Genetic analysis of steroid-induced osteonecrosis of the femoral head. J Orthop Sci. 2003, 8(3):329-333.
    32.Zalavras CG, Vartholomatos G, Dokou E, Malizos KN Genetic background of osteonecrosis: associated with thrombophilic mutations. Clin Orthop. 2004,422: 251-255.
    33.Bjorkman A, Svensson PJ,Hillarp A , et al .Factor V leiden and prothrombin gene mution:risk factors for osteonecrosis of the femoral head in adults. Clin Orthop.2004, 425: 168-172.
    34.Tektonidou MG, Moutsopoulos HM. Immunologic factor in the pathogenesis of osteonecrosis. Orthop Clin North Am, 2004,35(3): 259-263.
    35.Cuadrado MJ, Lopez-Pedrera C. Antiphospholipid syndrome. Clin Exp Med. 2003,3(3): 129-139.
    36.Soucacos PN, Urbanik JR. Osteonecrosis of the Human Skeleton. Orthop Clin of N Am, 2004,35: Preface.
    37.Norman D, Miller Y, Sabo E, et al. The effects of enoxaparin on the reparative processes in experimental osteonecrosis of the femoral head of the rat [J]. APMIS. 2002,110(3):221-228.
    38.Folwarczna J, Janiec W, Gawor M, et al. Effects of enoxaparin on histomorphometric parameters of bones in rats. Pol J Pharmacol.2004, 56(4): 451-45720.
    39.Hernigou P, Beaujean F Treatment of osteonecrosis with autologous bone marrow grafting [J]. Clin Orthop.2002, 405:14-23.
    40.Gangji V, Hauzeur JP, Matos C, et al. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am. 2004, 86-A(6):1153-1160.
    41.Valentin-Opran A, Wozney J, Csimma C, et al. Clinical evaluation of recombinant human bone morphogenetic protein-2. Clin Orthop. 2002,395:110-120.
    42.Pritchett JW. Statin therapy decreases the risk of osteonecrosis in patients receiving steroids. Clin Orthop.2001, 386:173-178.
    43.Ludwig J, Lauber S, Lauber HJ, et al. High-energy shock wave treatment of femoral head necrosis in adults. Clin Orthop. 2001, 387:119-126.
    44.Seber S, Omeroglu H, Cetinkanat H, et al.The efficacy of pulsed electromagnetic fields used alone in the treatment of femoral head osteonecrosis: a report of two cases. Acta Orthop Traumatol Turc. 2003, 37(5): 410-413.
    45.Reis ND, Schwartz O, Militianu D, et al. Hyperbaric oxygen therapy as a treatment for stage-I avascular necrosis of the femoral head. J Bone Joint Surg Br. 2003, 85(3): 371-375.
    46.Hofmann S, Mazieres B. Osteonecrosis: natural course and conservative therapy. Orthopade. 2000, 29(5): 403-410.
    47.Templeton KJ.Osteonecrosis: metabolic trentment. Current Opinion in Orthopaedics.2003, 14:2-4.
    48.Agarwala S, Jain D, Joshi VR, et al. Efficacy of alendronate, a bisphosphonate, in the treatment of AVN of the hip. A prospective open-label study. Rheumatology (Oxford). 2004, Epub ahead of print.
    49.Hofbauer LC,Gorl F,Riggs BL, et al. Stimulation of osteoprotegerin ligand and inhibition of osteoprotegerin production by glucocorticoids in human osteoblastic lineage cells;potential paracrine mechanisms of glucocoticoid-induced osteoporosis. Endocrinologi,1999,140:4382-4389.
    1. Muller TB,Haraldseth O,Jones RA,et al.Combined perfusion and diffusion and diffusion-weighted magnetic resonance imaging in a rat model of reversible middle cerebral artery occlusion. Stroke,1995,26:451-457.
    2.刘亚武.缺血性脑中风的影像学表现.国外医学临床放射学分册,2004,27:129-135.
    3.郑斐群,余永强,柏亚,等.MR灌注成像在评价神经胶质瘤肿瘤血管中的价值.中华放射学杂志,2003,37:813-817.
    4. Cha S. Perfusion MR Imaging: basic MR principles and clinical applications.Magn Reson Imaging Clin N AM,2003,11(3):403-413.
    5.张竞文,张清.动态增强磁共振成像在肿瘤的临床应用:现状及未来.国外医学临床放射学分册,2004,27:190-192.
    6.Kupprsamy K,Lin W,Cizek G,et al. In vivo regional cerebral blood volume:Quantitative assessment with 3D T1-weighted pre- and postcontrast MR imaging. Radiology,1996,201:106-112.
    7. Lin W,Celik A,Paczynski RP. Regional cerebral blood volume: a comparison of the dynamic imaging and the steady state methods. J Magn Reson Imaging,1999,9(1):44-52.
    8. Tanabel JL,Yongbi M, Branch C,et al. MR perfusion imaging in human brain using the UN-FAIR technique: un-inverted flow-sensitive alternating inversion recovery. J Magn Reson Imaging,1999,9: 761.
    9. Erlemann R,Reiser MF,Peter PE,et al. Musculoskeletal neoplasm: static and dynamic Gd-DTPA-enhanced MR imaging. Radiology,1989,171:767-773.
    10. Ma LD,Frassica FJ,McCARTHY EF,et al. Benign and malignant musculoskeletal masses: MR imaging differentiation with rim to center differential enhancement ratios. Radiology,1997,202:739-744.
    11. Verstraete KL,De Deene Y,Roles H,et al. Benign and malignant musculoskeletal lesion: Dynamic contrast-enhanced MR imaging parametric first-pass images depicttissue vascularization and perfusion. Radiology,1994,192:835-843.
    12 . Chen WY,Shih TF,Chen RC,et al. Blood perfusion of vertebral lesions evaluated with gadolinium-enhanced dynamic MRI: in comparison with compression fracture and metastasis: Jmagn Reson imaging,2002,15:308-314.
    13. Van Der Woude HJ, Bloem JL,Verstraete KL,et al. Osteosarcoma and Ewing s arcoma after neoadhuvant chemotherapy: value of dynamic MR imaging in detecing viable tumor before surgery. AJR,1995,165:593-598.
    14. Kunishiike E, MaKihata H, Tago,el al. Acute fracture of the neck of the femur. J Bone Joint Surg (Br),1999,81:596-599.
    15. Kawamoto S, Shirai N, Strandberg JD, et a1. Nontraumatic osteonecrosis MR perfusion imaging evaluation in an experimental model. Acad Radiol, 2000,7:83-93.
    16. Konstanlinos M,Aristidis Z, Zoe D, et al. MR imaging findings in transient osteoporosis of the hip.EJR,2004,50:238-244.
    17. Marti L,Montaner D, Sanfeliu M. An analysis of patellar cartilage perfusion by dynamic magnetic resonance: its application to subjects with anterior pain of patellar origin. Rev Clin Esp,1999,199:641-646.
    18. Chen WT, Shih T, Chen RC, et al. Vertebral Bone Marrow Perfusion Evaluated with Dynamic Contrast-enhanced MR Imaging:Significance of Aging and Sex. Radiology,2001,220:213-218.
    19. Jean M, Marine D, Erie L, et al. Normal Spinal Bone Marrow in Adult: Dynamic Gadolinium-enhanced MR Imaging.Radiology, 2003,229:703-709.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700