用户名: 密码: 验证码:
弹性聚合物薄膜的力电大变形及失效模式分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪九十年代末期,一类特殊的软机敏材料即电活性聚合物引起了学术界及工业界的广泛关注,该类高分子聚合物在电场作用下具有大应变、响应快、能效高等诸多优异的力学性能,可被加工成作动器、传感器及能量采集器,其核心部分是一层在上下表面附着有柔顺电极的聚合物薄膜,受电场作用时,薄膜将减小厚度而扩大面积,从而实现电能和机械能的相互转换。由于电活性聚合物薄膜在电场作用下的变形属非线性大变形,同时薄膜在力电荷载共同作用下存在多种失效模式,因此对其力电响应进行描述充满了挑战性。本文的研究内容如下:
     1.基于非线性弹性大变形理论建立了圆环形薄膜在外力作用下的力学模型,研究了一圆环状弹性薄膜的轴对称面外大变形。在未发生变形的参考构形下,平直的圆环状的薄膜的内边界连接一个圆盘,将薄膜的外边界固定在刚性的圆环上。当圆盘上作用一个竖直向下的外力时,薄膜经历面外大变形后形成轴对称的形状。结合状态平衡和热力学,推导得到了描述薄膜经历面外大变形的控制方程。采用了打靶法对控制方程进行求解,得到了薄膜在经历面外大变形时,薄膜内应力场和应变场的分布规律,可以看出薄膜的变形是非常不均匀的,这意味着薄膜在工作时材料的利用率较低,造成了材料的浪费。同时,本章的研究成果从基本理论和计算方法为本文后续的研究工作做了必要的铺垫。
     2.以电活性聚合物作动器的基本结构建立的力学模型为基础探讨了电活性聚合物薄膜在力电荷载共同作用下的面外非线性轴对称大变形。利用非线性弹性大变形理论并结合热力学的基本理论,推导得到了圆环形薄膜在受力电载荷作用时产生面外大变形的控制方程,采用打靶法对控制方程进行了数值求解,得到了电活性聚合物薄膜受到力电荷载共同作用时,薄膜内的应力场、应变场和电场的分布规律,结果表明,圆环形薄膜的变形是非常不均匀的,在靠近圆环中心处的薄膜变形较大,而靠近圆环边缘处的薄膜变形较小,导致薄膜中的电场从外向内逐渐变大,从而使得靠近圆环中心处的薄膜处于电击穿的边缘,可能导致的结果是大部分薄膜还可正常工作的时候,处在场强高的某点处的薄膜已经失效。变形场的非均匀性导致薄膜内的大部分材料并没有被有效地利用,造成了材料的浪费。
     3.以电活性聚合物作动器简化后的模型为基础,利用热力学基本原理推导得到了系统的控制方程,探讨了作动器在工作中可能存在的失效模式,并给出了各种失效模式的判断准则。本章利用这些准则在给定的条件下,得到了施加在作动器上外力F和电压Φ的有效工作区间。另外,计算结果在作动器工作前对薄膜进行预拉伸,这样可以明显的减小变形后薄膜内电场的不均匀分布的程度,如果作动器的设计参数选择适当,可以达到电场在薄膜中呈现均匀分布的状态,大大提高了材料的利用率。
     本文的研究结果对弹性聚合物的基本研究方法及商业化产品的优化设计具有实际的借鉴与指导意义。
Since 1990's, in the family of electro-active polymers, one kind of special soft smart materials, that is dielectric elastomer, has received considerable attention among researchers and engineers due to its many outstanding mechanical attributes such as large strain, fast response, high efficiency etc.when it is subject to a voltage. These attributes make dielectric elastomer promising for applications as transducers such as actuators, sensors and energy harvesters.The essential part of dielectric elastomer transducers is a dielectric membrane sandwiched between two compliant electrodes.Subject to a voltage, the dielectric membrane reduces its thickness and expands its area, converting electrical energy into mechanical energy. Due to large deformation, nonlinear equations of state, and complicated loads, modeling the electro-mechanical response for dielectric elastomer transducers has been challenging. The main contents of this thesis are as follows:
     1.The axisymmetric out-of plane nonlinear deformation of an annular elastic membrane is studied in the frame of nonlinear elastic deformation theory. The membrane is initially flat and attached to a disk in the inner circle and to a rigid ring in the outer circle, then a weight is applied to the disk and the membrane deforms into an axisymmetric shape, undergoing large out-of-plane deformation.The governing equations characterizing the out-of plane large deformation of the elastic membrane are derived by combining state equilibrium and thermodynamics.The derived governing equations are solved by using shooting method. The obtained results show that the deformation field in the membrane is very inhomogeneous.This indicates that the membrane doesn't function efficiently, which leads to a material waste.The theory and method presented in this section provide some basic outlines for the problem discussed in the next section.
     2.This part focuses on investigating the axisymmetric out-of plane nonlinear deformation of an actuator made of electro-active polymer membrane.The mechanical model describing the axisymmetric nonlinear deformation of such annular membrane is formulated, and the equations of equilibrium state characterizing the large deformation of the annular membrane subject to a concentrated force and a voltage are derived by thermodynamics.The derived state equations are solved by using shooting method and the distributions of true stress fields,stretches and true electrical fields are obtained numerically. The obtained numerical results show that the deformation field in the membrane is highly inhomogeneous.The deformation near the central part of the membrane is large while the deformation near the edge of the membrane is small, which leads to the induced electric field in the membrane increases monotonically from the edge to the central part and reaches maximum at the central part of the membrane. This results in the consequence that the membrane near the central part risks the possibility of electric breakdown while the major part of the membrane can still function normally. The inhomogeneity of deformation field leads to the consequence that the membrane does not function efficiently, which results in material waste.
     3.This part explores the potential modes of failure when the electro-active polymer membrane is subjected to a voltage and a force.The equations of equilibrium of the system are derived by thermodynamics and the criterions for each mode of failure are specified. Using these criterions, we obtain the allowed range of the force and the voltage. In addition, numerical results indicate that pre-stretch may reduce the inhomogeneity. If the design parameters of actuator are chosen suitably, the true electrical field in the membrane may tend to be homogeneous,which may greatly improve the efficiency of the material.
     The results presented in this paper could provide some guidelines for optimizing the design of such kind commercial actuators.
引文
[1]Bar-Cohen Y..Electroactive polymers as artificial muscles A review.Journal of Spacecraft and Rockets,2002,39:822-827.
    [2]Ashley S..Artificial Muscles.Scientific American,2003,10:53-59.
    [3]Kofod G.. Dielectric elastomer actuators[Ph.D].Pitney Bowes Management Services Denmark A/S.2001.
    [4]Pelrine R.E.,Kornbluh R.D and Joseph J.P.. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sensors and Actuators A-Physical,1998,64:77-85.
    [5]Pelrine R.E.,Kornbluh R.D.and Pei Q.et al.High speed electrically actuated elastomers with stretch greater than 100%.Science,2000,287:836-839.
    [6]Carpi F.,Rossi D.D. and Kornbluh R. et al. Dielectric elastomers as electromechanical transducers:Fundamentals, materials, devices, models and applications of an emerging electroactive polymer technology. Elsevier, UK,2008.
    [7]Bar-Cohen Y.,Breazeal C..Biologically inspired intelligent robotics.In: Proceedings of the SPIE Smart Structures and Materials Symposium. San Diego, CA,2003.14-28.
    [8]Zhenyi M.,Scheinbeim J.L. and Lee J.W. et al.High field electrostrictive response of polymer. Journal of Polymer Science, Part B:Polymer Physics,1994, 32:2721-2731.
    [9]Kornbluh R.,Eckerle J.and Andeen G.Artificial muscle:the next generation of robotic actuators.In:4th World Conference of Robotics Research, Pittsburgh, PA,1991.
    [10]Niino T.,Egawa S.and Kimura H..Electrostatic artificial muscle:compact, high-power linear actuators with multiple-layer structures.In:Proceeding of the IEEE Micro Electro Mechanical Systems Workshop,Oiso,Japan,1994:130-135.
    [11]Heydt R., Pelrine R. and Joseph J. et al.Acoustical performance of an electrostrictive polymer film loudspeaker. Journal of the Acoustical Society of America,2000,107(2):833-839.
    [12]Eckerle J.,Stanford S.E.and Marlow J.P.. A biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles.In:The 8th Annual Symposium on Smart Structures and Materials 2001:industrial and Commercial Applications of Smart Structures Technologies.San Diego,CA, Proc.SPIE,4332,2001:269-280
    [13]Wilbur C.,Vorus W. and Cao Y..A lamprey-based undulatory vehicle. In Neurotechnology for Biomimetic Robots, Eds. Ayers J.,Davis J.,Rudolph A. Boston, MA:MIT Press,2002.
    [14]Kornbluh R.,Full R. and Meijer K.. Engineering a muscle:an approach to artificial muscle based on field-activated electroactive polymers. In Neurotechnology for Biomimetic Robots, Eds.Ayers J, Davis J, Rudolph A. Boston, MA:MIT Press,2002
    [15]Pelrine R.,Kornbluh R. and Pei Q..Dielectric elastomer artificial muscle actuators:toward biomimetic motion. In Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices(EAPAD),Ed.Bar-Cohen Y, Proc. SPIE,2002,4695:126-137.
    [16]Prahald H.,Kornbluh R. and Pelrine R.. Polymer power:dielectric elastomers and their applications in distributed actuation and power generation.In: Proceedings of ISSS 2005 International Conference on Smart Materials Structures and Systems, Bangalore, India,2005.
    [17]Kofod G..Dielectric elastomer actuators [Ph.D].Pitney Bowes Management Services Denmark A/S.2001.
    [18]Zhao X.H.,Suo Z.G..Electrostriction in elastic dielectrics undergoing large degromation. Journal of applied physics,2008,104:12350.
    [19]Suo Z.G.,Zhao X.H.,Greene W.H..A nonlinear field theory of deformable dielectrics.Journal of the Mechanics and Physics of Solids,2008,56:467-486.
    [20]Kofod G,Sommer-Larsen P. and Kornbluh R.. Actuation response of polyacrylate dielectric elastomers.Journalof Intelligent Material Systems and Structures,2003,14:787-793.
    [21]Goubourne N., Mockenssturm E.and Frecher M..Electro-elastomers:Large deformation analysis of silicone membranes.International Journal of Solids and structures,2007,44:2609-2626.
    [22]Carpi F.,Chiarelli A.and Mazzoldi A..Electromechanical Characterization of Dielectric Elastomer Planar Actuators:Comparative Evaluation of Different Electrode materials and Different Counterloads.Sensors and Actuators A:Physical,2003,107:85-95.
    [23]Chiarelli P.,Rossi D.D..Determination of Mechanical Parameters related to the Kinetics of Swelling in an Electrically Activated Contractile Gel.Progress in Colloid and Polymer Science,1988,48:4.
    [24]Carpi F.,Migliore A.and Serra G.et al.Helical dielectric elastomer actuators. Smart Materials and Structures,2005,14:1210-1216.
    [25]Carpi F.,Salaris C.and Rossi D.D..Folded dielectric elastomer actuators.Smart Materials and Structures,2007,16(2):300-305.
    [26]Goulbourne N. C.,Mockensturm E.M.and Frecker M.. A Nonlinear Model for Dielectric Elastomer Membranes.ASME Journal of Applied Mechanics. 2005,72:899-906.
    [27]Stark K.H.,Garton C.G.Electric strength of irradiated polythene.Nature,1955 176,1225-1226.
    [28]Anderson R. A..Mechanical stress in a dielectric solid from a uniform electric field. Physical Review B (Condensed Matter),1986,33:1302-7.
    [29]Zhenyi M.,Scheinbeim J.I. and Lee J.W. et al.High field electrostrictive response of polymers.Journal of Polymer Science, Part B:Polymer Physics, 1994,32:2721-2731.
    [30]Zhang Q.M.,Su J.,Kim C.H.et al.An experimental investigation of electro mechanical responses in a polyurethane elastomer. Journal of Applied Physics, 1997,81(6):2770-2776.
    [31]Pelrine R.,Kornbluh R. and Joseph J.et al.High field deformation of elastomeric dielectrics for actuators.Materials Science and Engineering,2000, C 11:89-100.
    [32]Carpi F., Rossi D.D.. Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation.Materials Science and Engineering,2004, C24(4):555-562.
    [33]Kofod G.Dielectric Elastomer Actuators.[Ph.D].The Technical University of Denmark,2001.
    [34]Tezduyar T.E.,Wheeler L.T. and Graux L..Finite deformation of a circular elastic membrane containing a concentric rigid inclusion.International Journal Non-Linear Mechanics,1987,22:61-72.
    [35]Yang E.E.,Frecker M.and Mockensturm E..Large electroelastic deformation of a dielectric elastomer annulus.2003 ASME International Mechanical Engineering Congress & Exposition, Washington, D.C.,2003.
    [36]Wissler M.,Mazza E..Modeling of a pre-strain circular actuator made of dielectric elastomers.Sensors and Actuators,2005,A120:184-192.
    [37]Goubourne N.,Mockenssturm E.and Frecher M..A nonlinear model for dielectric elastomer membranes.Journal Applied Mechanics,2005,72:899-906.
    [38]Mockensturm E.M.,Goulbourne N..Dynamic response of dielectric elastomers. International Journal of Non-Linear Mechanics,2006,41:388-395.
    [39]Toupin R.A.. The Elastic Dielectric. Journal of Rational Mechanics and Analysis, 1956.5(6):850-915.
    [40]Eringen A.C.Nonlinear Theory of Constiuous Media. New York:McGraw-Hill Book Company,1962.
    [41]Pelrine R.,Kornbluh R. and Joseph J..Electrostriction of Polymer Dielectrics with Compliant Electrodes as a Means of Actuation. Sensors and Actuators A: Physical,1998.64:77-85.
    [42]Kofod G.. Dielectric Elastomer Actuators[PH.D].The Technical University of Denmark:Denmark.2001.
    [43]Zhao X. H.,Hong W. and Suo Z.G.Electromechanical coexistent states and hysteresis in dielectric elastomer. Physical Review B,2007,76:134-113.
    [44]Mooney M..Journal of Applied Physics.1966,17:608.
    [45]Ogden R.W..Large deformation isotropic elasticity. Proceedings of the Royal Society 1972,A326:565.
    [46]Treloar L.R.G..Stress-strain data for vulcanized rubber under various type of deformation. Transactions of the Faraday Society,1944,40:59-70.
    [47]Marckmann G,Verron E..Comparison of hyper-elastic models for rubber-link materials.Rubber chemistry and technology,2006,79(5):835-858.
    [48]李庆扬.数值计算原理.北京:清华大学出版社,2000.
    [49]Green A.E.,Adkins J.E.. Large Elastic Deformations and Non-Linear Continuum Mechanics.London, Oxford University Press,1970.
    [50]Green A.E.,Zema W..Theoretical Elasticity. London:Oxford University Press, 1975.
    [51]Szyszkowski W.,Glockner P. G.Finite deformation and stability behaviour of spherical inflatables under axi-symmetric concentrated loads.International Journal of Non-Linear Mechanics,1984,19(5):489-496.
    [52]Ruo K. R.,Wineman A. S..New exact solutions in non-linear elasticity. International Journal of Engineering Science,1985,23(2):217-234.
    [53]Fulton J.P.,Simmonds J.G.Large deformations under vertical edge loads of annular membranes with various strain energy densities.International Journal of Non-Linear Mechanics,1986,21(4):257-267.
    [54]Palplona D.C.,bevilacqua L..Large deformations under axial force and moment loads of initially flat annular membranes.International Journal of Non-Linear Mechanics,1992,27(4):639-650.
    [55]Hassager O.,Kristensen S.B.and Larsen J. R. et al.Inflation and instability of a polymeric membran. Journal of Non-Newtonian Fluid Mechanics,1999, 88:185-204.
    [56]Chen S.L.,Zheng Z. L..Large deformation of circular membrane under the concentrated force. Journal of Applied Mathematics and Mechanics.2003,24(1): 28-31.
    [57]Selvadurai A.P.S..Deflections of a rubber membrane.Journal of the Mechanics and Physics of Solids,2006,54:1093-1119.
    [58]Tezduyar T.E.,Wheeler L.T. and Graux L.. Finite deformation of circular elastic membrane containing a concentric rigid inclusion. International Journal of Non-Linear Mechanics.1987,22(1):61-72.
    [59]Wu C.H..Infinitely stretched Mooney surfaces of revolution are uniformly stretched catenoids. Quarterly of Applied Mathematics,1974,33:273-284.
    [60]Adkins J.E.,Rivilin R. S..Large elastic deformations of isotropic materials. Journal of Mathematical Physics,1952,244:505-531.
    [61]Kornbluh R.,Pelrine R.and Pei Q.et al.Electroelastomers:Applications of dielectric elastomer transducers for actuation, generation and smart structures. Proceedings of Smart Structures and Materials 2002:Electroactive Polymer Actuators and Devices (EAPAD),San Diego,CA,2002:254-270.
    [62]Pei Q.,Rosenthal M.,Pelrine R. et al.Multifunctional electroelastomer roll actuators and their application for biomimetic walking robots.In:Proceeding Of Smart Structures and Materials,2003,5051:281-290.
    [63]Dorfmann A.,Ogden R.W..Nonlinear electroelasticity. Acta Mechanica, 2005,174:167-183.
    [64]Zhao X.H.,Suo Z.G..Method to analyze electromechanical stability of dielectric elastomers.Applied physics letters,2007,91:061921.
    [65]Moscardo M.,Zhao X.H. and Suo Z.G. et al.On designing dielectric elastomer actuators.Journal of Applied Physics,2008,104:093503.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700