用户名: 密码: 验证码:
白藜芦醇对人肝癌细胞株Bel-7402作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究白藜芦醇(resverartol, Res)对人肝癌细胞株Bel-7402增殖、凋亡及其沉默信息调节因子1 (silent information regulator 1, SIRT1)表达的影响。探讨Res在人类肝癌防治中的作用及其机制。
     方法:四甲基偶氮唑蓝(Methyl thiazolyl tetrazolium, MTT)法检测不同浓度(0,12.5,25,50,100,200μM) Res和不同作用时间(24,48,72h)处理人肝癌细胞株Bel-7402的细胞抑制率;倒置显微镜和荧光显微镜观察细胞形态学改变;流式细胞术检测细胞的凋亡率和细胞周期分布;RT-PCR法检测SIRT1 mRNA的表达;western blotting法检测SIRT1蛋白的表达。
     结果:Res在12.5~200μM浓度,作用时间24~72h范围内,以浓度和时间依赖方式抑制Bel-7402细胞增殖(P<0.05);72小时半数抑制浓度为62.84μM; 200μM Res抑制率达77.62+1.51%(P<0.05)。倒置显微镜和荧光显微镜下分别观察到典型的细胞增殖抑制和凋亡的形态学改变。经0,12.5,25,50,100,200μM Res处理24 h后,流式细胞术结果显示,凋亡细胞的细胞周期主要发生S期阻滞;细胞凋亡率分别为2.56%、16.8%、20.4%、35.8%、38.0%、42.3%(P<0.01)。RT-PCR和western blotting结果显示,经相同处理(0~200μM Res处理24 h)后,Bel-7402细胞SIRT1 mRNA和蛋白表达均明显增加(P<0.01),在Res浓度为25μM时达到峰值,然后逐渐下降。
     结论:Res通过增加SIRT1表达以浓度依赖性和时间依赖性方式抑制人肝癌细胞株Bel-7402增殖,诱导其凋亡。
Objectives To investigate the effect of resveratrol on the proliferation, apoptosis, and expression level of silent information regulator 1 (SIRT1) of human hepatocarcinoma cell line Bel-7402.
     Methods Human hepatocarcinoma cell line Bel-7402 was cultured and treated with different concentrations(0,12.5,25,50,100, and 200μM) of resveratrol for 24,48 and 72 hours. The growth inhibition rate of Bel-7402 cells was detected by MTT method. The morphological changes of Bel-7402 cells were observed by the inverted microscope and the fluorescent microscope. The flow cytometry was applied to analyze the cell apoptosis rate and cell distribution in the cell cycle. The expression level of SIRT1, mRNA and protein production, was tested with RT-PCR and Western blotting, respectively.
     Results Resveratrol inhibited the proliferation of Bel-7402 cells in a time- and concentration- dependent manner ranging from 12.5 to 200μM and from 24 to 72 hours. After 72 hours of treatment, IC5o for resveratrol was 62.84μM; After treatment with 200μM resveratrol, the inhibition rate for Bel-7402 cells was 77.62±1.51%(P<0.05). Both the inverted microscope and the fluorescent microscope showed typical morphological changes in Bel-7402 cells treated with resveratrol. Results of the flow cytometry showed that resveratrol induced Bel-7402 cell cycle is mainly with S-phase arrest. After treatment with the concentration of 0,12.5,25,50,100, and 200μM resveratrol for 24 hours, the apoptosis rate of Bel-7402 cells was 2.56%,16.8%,20.4%,35.8%, 38.0%and 42.3%, respectively, the expression level of SIRT1 mRNA and SIRT1 protein production was significantly increased (P<0.01), and reached the peaked at the concentration of 25μM resveratrol treatment, then declined gradually as resveratrol concentration level increases.
     Conclusions Resveratrol can inhibit the proliferation and induce the apoptosis of Bel-7402 cells in a time- and concentration-dependent manner by increasing the expression level of SIRT1.
引文
[1]Salah N, Miller NJ, Paganga G, et al. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Archives of Biochemistry and Biophysics,1995,332(2):339-346.
    [2]Mitchell JH, Gardner PT, McPhail DB, et al. Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Archives of Biochemistry and Biophysics,1998,360(1):142-148.
    [3]Renaud S, de Lorgeril M. Wine,alcohol,platelets,and the French paradox for coronary heart disease. Lancet,1992,339(8808):1523-1526.
    [4]Baur JA, Sinclair DA. Therapeutic potential of resveratrol:the in vivo evidence. Nat Rev Drug Discov,2006,5(6):493-506.
    [5]Aggarwal BB, Bhardwaj A, Aggarwal RS, et al. Role of resveratrol in prevention and therapy of cancenpreclinical and clinical studies. Anticancer Res,2004, 24(5A):2783-2840.
    [6]Athar M, Back JH, Tang X, et al. Resveratrol:a review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol,2007,224(3):274-283.
    [7]Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants:progress and promise. Antiox Redox Signal,2008,10(3):475-510.
    [8]Pirola L, Frojdo S. Resveratrol:one molecule, many targets. IUBMB Life,2008, 60(5):323-332.
    [9]Khan N, Afaq F, Mukhtar H. Cancer chemoprevention through dietary antioxidants:progress and promise. Antiox Redox Signal,2008,10(3):475-510.
    [10]Meeran SM, Katiyar SK. Cell cycle control as a basis for cancer chemoprevention through dietary agents. Front Biosci,2008,13:2191-2202.
    [11]Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem,2004,73:417-435.
    [12]Guarente L. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev, 2000,14(9):1021-1026.
    [13]Saunders LR, Verdin E. Sirtuins:critical regulators at the crossroads between cancer and aging. Oncogene,2007,26(37):5489-5504.
    [14]Lavu S, Boss O, Elliott PJ, et al. Sirtuins-novel therapeutic targets to treat age-associated diseases. Nat Rev Drug Discov,2008,7(10):841-853.
    [15]Haigis MC, Guarente LP. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev,2006,20:2913-2921.
    [16]Huffman DM, Grizzle WE, Bamman MM, et al. SIRT1 is significantly elevated in mouse and human prostate cancer. Cancer Res,2007,67(14):6612-6618.
    [17]Bradbury CA, Khanim FL, Hayden R, et al. Histone deacetylases in acute myeloid leukaemia show a distinctive pattern of expression that changes selectively in response to deacetylase inhibitors. Leukemia,2005, 19(10):1751-1759.
    [18]Stunkel W, Peh BK, Tan YC, et al. Function of the SIRT1 protein deacetylase in cancer. Biotechnol J,2007,2(11):1360-1368.
    [19]Hida Y, Kubo Y, Murao K, et al. Strong expression of a longevity-related protein, SIRT1, in Bowen's disease. Arch Dermatol Res,2007,299(2):103-106.
    [20]Lim CS. SIRT1:Tumor promoter or tumor suppressor? Med Hypotheses,2006, 67:341-344
    [21]Wang RH, Sengupta K, Li C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell,2008, 14(4):312-323.
    [22]Wang RH, Zheng Y, Kim HS, et al. Interplay among BRCA1, SIRT1, and Survivin during BRCA1-associated tumorigenesis. Mol Cell,2008,32(1):11-20.
    [23]Howitz KT, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature,2003,425(6954):191-196.
    [24]Vaziri H, Dessain SK, Ng Eaton E, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell,2001,107(2):149-159.
    [25]Luo J, Nikolaev AY, Imai S, et al. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell,2001,107(2):137-148.
    [26]Bradamante S, Barenghi L, Villa A. Cardiovascular protective effects of resveratrol. Cardiovascular Drug Reviews,2004,22(3):169-188.
    [27]Kundu JK, Surh YJ. Cancer chemopreventive and therapeutic potential of resveratrol:Mechanistic perspectives. Cancer Letters,2008,269(2):243-261.
    [28]Goswami SK, Das DK. Resveratrol and chemoprevention. Cancer Letters,2009, 284(1):1-6.
    [29]Bishayee A. Cancer Prevention and Treatment with Resveratrol:From Rodent Studies to Clinical Trials. Cancer Prevention Research,2009,2(5):409-418.
    [30]Delmas D, Lancon A, Colin D, et al. Resveratrol as a chemopreventive agent:A promising molecule for fighting cancer. Current Drug Targets,2006, 7(4)423-442.
    [31]Hursting, S.D., Lavigne, J.A., Berrigan, D., et al. Calorie restriction, aging, and cancer prevention:mechanisms of action and applicability to humans. Annu Rev Med,2003,54,131-152.
    [32]Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase. Interntional Journal of Molecular,2004,23(12):2369-2380.
    [33]Lin JN, Lin VCH, Rau KM, et al. Resveratrol modulates tumor cell proliferation and protein translation via SIRT1-dependent AMPK activation. Agricultural and Food Chemistry,2010,58(3):1584-1592.
    [34]商林珊,人类长寿基因SIRT1的表达调控机制研究:[博士学位论文].山东:山东大学,2007.
    [35]王欣,王伟,余伟,等.白藜芦醇对心肌细胞去乙酰化酶1表达时序的影响,中国药物与临床,2009,9(7):560-562.
    [36]Bishayee A, Dhir N. Resveratrol-Mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis:Inhibition of cell proliferation and induction of apoptosis. Chemico-Biological Interactions,2009, 179(2-3):131-144.
    [37]Shen X, Lv SL, Zhang J, et al. Effects of Res on proliferation and apoptosis of human cervical carcinoma cell lines C33A, SiHa and HeLa. Journal of Medical Colleges of PLA.2009,24(3):148-154.
    [38]Notas G, Nifli AP, Kampa M, et al.Resveratrol exerts its antiproliferative effect on HepG2 hepatocellular carcinoma cells, by inducing cell cycle arrest, and NOS activation. Biochimica et Biophysica Actageneral Subjects.2006, 1760(11):1657-1666.
    [39]Kuwajerwala N, Cifuentes E, Gautam S, et al. Resveratrol induces prostate cancer cell entry into S phase and inhibits DNA synthesis. Cancer Research, 2002,62(9):2488-2492.
    [40]Atten, MJ; Godoy-Romero, E; Attar, BM, et al. Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Investigational New Drugs,2005,23(2):111-119.
    [41]Rigolio R, Miloso M, Nicolini G, et al. Resveratrol interference with the cell cycle protects human neuroblastoma SH-SY5Y cell from paclitaxel-induced apoptosis. Neurochemistry International,2005,46(3):205-211.
    [42]Kuo PL, Chiang LC, Lin CC. Resveratrol-induced apoptosis is mediated by p53-dependent pathway in HepG2 cells. Life Science,2002,72(1):23-34.
    [43]Delmas D, Rebe C, Micheau O, et al. Redistribution of CD95, DR4 and DR5 in rafts accounts for the synergistic toxicity of resveratrol and death receptor ligands in colon carcinoma cells. Oncogene,2004,23(55):8979-8986.
    [44]曲巍,王立明,朱有化,等.曲古霉素A体外诱导膀胱癌细胞凋亡及细胞周期阻滞的机制探讨.第二军医大学学报,2007,2(3):272-276.
    [45]Li Y, Backesjo CM, Haldosen LA, et al. Resveratrol inhibits proliferation and prmotes apoptosis of osteosarcoma cells. European Journal of Pharmacology, 2009,609(1-3):13-18.
    [46]Chu F, Chou PM, Zheng X, et al. Control of multidrug resistance gene mdrl and cancer resistance to chemotherapy by the longevity gene sirtl. Cancer Research, 2005,65(22):10183-10187.
    [1]Yamamoto H, Schoonjans K, Auwerx J.Sirtuin functions in health and disease. Molecular Endocrinology,2007,21(8):1745-1755.
    [2]Moynihan K A, Grimm A A, Plueger M M. Increased dosage of mammalian sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell. Metabolism,2005,2(2):105-117.
    [3]Moynihan KA, Grimm AA, Plunger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab,2005,2(2):105-117.
    [4]Arsenijevic D,Onuma H,Pecqueur C, et al. Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat G enet,2000,26 (4):435-439.
    [5]Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity,beta cell dys function,and type 2 diabetes. Cell,2001,105 (6):745-755.
    [6]Chan CB, De Leo D, Joseph JW, et al. Increased uncoupling protein-2 levels in beta-cells are associated with impaired glucose-stimulated insulin secretion mechanism of action. Diabetes,2001,50 (6):1302-1310.
    [7]Moynihan KA, Grimm AA, Plueger MM, et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab,2005,2 (2):105-117.
    [8]林超,陈慎仁,傅玉才,等.大鼠胰岛B细胞长寿基因SIRT1与转录调节因子FOXO1表达及其相关性研究.中国实用内科杂志,2007,27(19):113521138.
    [9]Yoshizaki T,Milne J C, Imamura T et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes. Molecular and Cellular Biology, 2009,29(5):1363-1374.
    [10]Milne JC, Lambert PD, Schenk S, et al. Small moleule activators of sirtl as therapeutics for the treatment of type 2 diabetes.Nature, 2007,450(7170):712-716.
    [11]Rodgers JT, Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proceedings of the National Academy of Sciences,2007,104(31):12861-12866.
    [12]Hou X Y, Xu SQ, Maitland-Toolan K A, et al. SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. The Journal of Biological Chemistry,2008,283(29):20015-20026.
    [13]Kang L, Heng W, Yuan A, Baolin L,et al. Resveratrol modulates adipokine expression and improves insulin sensitivity in adipocytes:relative to inhibition of inflammatory responses. Biochimie,2010:[doi:10.1016/j.biochi.2010.02.024].
    [14]Subauste AR, Burant CF. Role of FoxO1 in FFA-induced oxidative stress in adipocytes. American Journal of Physiology Endocrinology and Metabolism, 2007,293(1):el59-el64.
    [15]Qiao L, Shao J. SIRT1 regulates adiponectin gene expression through Foxol-C/enhancer-binding protein alpha transcriptional complex. The Journal of Biological Chemistry,2006,281(52):39915-39924.
    [16]Fulco M, Cen Y, Zhao P, et al.glucose restriction inhibits skeletal myoblast differentiation by activating sirtl through AMPK-mediated regulation of nampt.Developmental Cell,2008,14 (5):661-673.
    [17]Gerhart-Hines Z, Rodgers JT, Bare O, et al. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1 alpha. The EMBO Journa,2007,26(7):1913-1923.
    [18]Kops GJ, de Ruiter ND, De Vries-Smits AM, et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature,1999, 398(6728):630-634.
    [19]Pirola L, Bonnafous S, Johnston AM, et al. Phosphoinositide 3-kinase-mediated reduction of insulin receptor substrate-1/2 protein expression via different mechanisms contributes to the insulin-induced desensitization of its signaling pathways in L6 muscle cells. J Biol Chem,2003, 278(18):15641-15651.
    [20]Zhang J. The direct involvement of sirtl in insulin-induced insulin receptor substrate-2 tyrosine phosphorylation. The Journal of Biological Chemistry,2007, 282(47):34356-34364.
    [21]Sun C, Zhang F, Ge X, et al. sirT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell. Metabolism, 2007,6(4):307-319.
    [22]Ramsey KM, Mills KF, Satoh A, et al. Age-associated loss of Sirtl-mediated enhancement of glucose-stimulated insulin secretion in beta cell-specific Sirtl-overexpressing (BESTO) mice. Aging Cell,2008,7(1):77-88.
    [23]Lagouge M, Argmann C, Gerhart-Hines Z, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC·1. Cell,2006,127(6):1109-1122.
    [24]Szendroedi J,Chmelik M Schmid AL,et al.Abnormal hepatic energy homeostasis in type 2 diabetes.Hepatology,2009,50(4):1079-1086.
    [25]Gao CL, Zhu C, Zhao YP, et al. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Molecular and Cellular Endocrinology,2010,320(1-2):25-33.
    [26]Nishikawa T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of diabetes mellitus and its complications. Antioxidants & Redox Signaling,2007,9(3):343-353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700