用户名: 密码: 验证码:
基于裂纹扩展理论的船体结构疲劳强度研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳破坏是船舶与海洋工程结构的主要失效形式之一,目前校核船体结构疲劳强度的方法主要是各大船级社颁布的基于S-N曲线和Miner线性累计损伤的方法,本文基于裂纹扩展理论,研究船体结构疲劳裂纹在随机载荷下的扩展,希望为进一步完善船舶结构疲劳校核方法提供依据。论文完成的主要工作有:
     1、应力强度因子的计算。对现在一些计算应力强度因子的方法进行比较分析,如经验公式法、权函数法和有限元法等。比较之后确定采用权函数法计算船体结构疲劳裂纹的应力强度因子。
     2、不规则波的模拟。通过模拟不规则波以有效获得船体结构在随机海况下的应力时历。
     3、有效应力强度因子的求解。考虑到裂纹闭合效应的因素,分别采用了Newman模型和Willenberg模型计算裂纹有效应力强度因子。
     4、等效应力的求解。通过将船舶航行中的随机变幅载荷等效为恒幅来考虑裂纹扩展。
     5、研究确定断裂判据。通过结合船舶结构的实际形式、部位、材料、受力情况以及设计使用参数来确定裂纹扩展的断裂判据。
     6、裂纹扩展数据比较。比较分析了在裂纹扩展过程中是否考虑裂纹闭合效应以及通过等效应力法计算的疲劳裂纹扩展数据,并给出了详细的计算过程。
Fatigue damage is one of the main failure modes of the ship and offshore structures, the main method for the fatigue strength check of ship structures are the simplified procedures by the classification societies, which is based on S-N curves and Miner linear cumulative damage rules. Based on the crack propagation theory, the crack propagation in ship structures under random waves is studied in this paper, with the hope of providing basis to further fatigue check of ship structures. The contents completed in this paper are as follows:
     (1) The calculation of stress intensity factor. The calculation methods of stress intensity factor such as empirical formula method, weight function method and finite element method are compared and analyzed. The weight function method is chosen after the comparison.
     (2) The simulation of irregular waves. The stress history of the hull structure in random sea conditions is obtained by simulating irregular waves.
     (3) The solution of effective stress intensity factor. Considering the crack closure, Newman model and Willenberg model are adopted to calculate the crack effective stress intensity factor.
     (4) The solution of equivalent stress. The crack propagation is considered by equivalent the varying amplitude loads to constant amplitude loads when ships voyage in the sea.
     (5) The study of fracture criterion. The fracture criterion is determined by combining the actual type of the ship structure, location, materials, effect of force as well as the design parameters.
     (6) The comparison of crack propagation data. The fatigue crack growth data which are obtained by whether the crack closure is taken into account or not during the crack propagation and by utilizing the equivalent stress method are compared. And a particular process of calculation is presented.
引文
[1] Kjellander S L. Hull damage on large Swedish-built ships. Styrelsen for teknisk utceckling. Report NO.70-1272/U987, Stock-holm, Sweden, December 1972.
    [2] Proceedings of the 7th International Ship Structures Congress. Paris, August 1979
    [3]崔维成,蔡新刚,冷建兴.船舶结构疲劳强度校核研究现状及我国的进展.船舶力学.Vol.2 No.4 ,98
    [4] Fricke W., Cui W., Kierkegaard H, Kinl D, Koval M, Lee H L, Mikkola T, Parmentier G, Toyosada M, Yoon J H. Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies. Marine Structures (2002) 15,P1-13
    [5]崔维成,祁恩荣,黄小平.船舶结构强度/评估方法的现状和未来发展趋势. 2005年船舶结构力学学术会议论文集.中国造船工程学会,中国舟山.2005
    [6] Cui Weicheng. A feasible study of fatigue life prediction for marine structures based on crack propagation analysis. Journal of Engineering for the Maritime Environment, 217(5), 2003 11-23 P
    [7]胡毓仁,陈伯真.船舶及海洋工程结构疲劳可靠性分析.人民交通出版社,1996.
    [8] A.A.Griffith. The phenomena of rupture and flow in solids, phil. Trans. Royal Society of London,1921:163-197.
    [9] G.R.Irwin. Fracture dynamics, in:“Fracturing of Metals”, ASM Publications, 1948:147-166.
    [10] G.R. Irwin. Fracture, Handbuch der Physik, vol. VI, Flugge, (ed.), Springer, 1958:551-590.
    [11] Haddad M H, Green F L, Snedden T N. Fatigue strength prediction of notches based on fracture mechanics. Fatigue thresholds, EMAS, London, 1982: 777-791.
    [12] G.R.Irwin.The Crack Extention Force for a Part-Through Crack in a Plate. Trans, ASME, J. Appl. Mech. , 1982, 19:651-654
    [13] Paris P C, Sih G C. Fracture Toughness Testing and Its Application. ASTM , STP381 , 1981
    [14] Koiter W T. Stress Intensity Factors for Fatigue Cracking of Round Bars. J. Appl. Mech. 1987, 32 (2): 227
    [15] Shah R C, KobaYashi A S. The Surface Crack. J. Appl. Mech. 1972: 79
    [16] Kobayashi A S. Fatigue Life Analysis and Prediction. Proc. Of the Second International Congress on Fracture, 1985
    [17] Lin X B, Smith R A.An Improved Numerical Technique for Simulating the Growth of Planar Fatigue Cracks. Fatigue and Fracture of Engineering Materials and Structures,1997,20:1363~1373
    [18] Newman JC, Raju IS. An empirical stress intensity factor equation for the surface. Engineering Fracture Mechanics, 1981, 15:185-192
    [19] T.Fett. Estimation of stress intensity factors for semi-elliptical surface cracks. Engineering Fracture Mechanics, 2000, 66:349-356
    [20]王永伟,林哲.表面裂纹的三维模拟及应力强度因子计算.中国海洋平台, 2006, 21(3)
    [21]谢伟,黄其青,殷之平.一种求解复杂结构三维裂纹应力强度因子的工程方法——推广的片条合成法.机械科学与技术, 2005, 5
    [22]范天佑.断裂理论基础.北京:科学出版社. 2003
    [23]中国航空研究院.应力强度因子手册.北京:科学出版社. 1981
    [24] Bowness D., Lee M.M.K. Weld toe magnification factors for semi-elliptical cracks in T-butt joints comparison with existing solutions. InternationalJournal of Fatigue 22(2000b), 389-396 P
    [25] BS7910.Guide on Methods for Assessing the Acceptability of Flaws in Structures.British Standards Institution. 1999.
    [26]韩芸,黄小平,崔维成,胡勇. T型接头焊趾表面裂纹应力强度因子的简化计算方法.中国造船,2006,3
    [27] Bueckner, H. F.,“A novel principle for the computation of stress intensity factors”, Zeitschrift fur Angewandte Mathematic and Mechanic, vol. 50, pp.529-546, 1970.
    [28] Rice J. R.,“Some remarks on elastic crack-tip stress field”, International Journal of Solids and Structures, vol. 8, pp. 751-758, 1972.
    [29] Paris PC, Erdogan F. A critical analysis of crack Propagation law. J Basic Eng 1963;85:528–34.
    [30] Adib AML, Baptista CARP. An exponential equation of fatigue crack growth in titanium. Mats Sc and Eng A 2007;452-453:321-5.
    [31] Forman RG, Kearney VE, Engle RM. Numerical analysis of crack propagation in cyclic-loaded structures. J Basic Eng 1967;89:459-64.
    [32] Walker K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In: effect of Environment and Complex load history for Fatigue life, ASTM STP 1970; 462; 1-14.
    [33] Collipriest JE. An experimentalist’s view of the surface flaw problem. ASME 1972:43.
    [34] Dover WD. Fatigue crack growth in offshore structures. J Soc Environ Eng 1976.
    [35] Sulivan AM, Crooker TW. Analysis of fatigue crack growth in high strength steel. ASME Trans 1976:179.
    [36] Liu HW. A review of fatigue crack growth analysis. J Basic Eng ASME Trans 1961;83:23.
    [37] Yokobory T. In: Argon AS, editor. Physics of strength and plasticity. MIT Press; 1969. p. 327.
    [38] Xiulin Z. A simple formula for fatigue crack propagation and a new method for the determination of DKth. Eng Fract Mech 1987;27(4):465.
    [39] J.R. Mohanty, B.B. Verma, P.K. Ray. Prediction of fatigue crack growth and residual life using an exponential model: Part I (constant amplitude loading). International Journal of Fatigue,2009,31:418-424
    [40] Elber W. The significance of fatigue crack closure. In: Damage tolerance in air craft structure, ASTM STP 1971; 486: 230-242.
    [41] Newman J C.A crack—closure model for predicting fatigue crack growth under aircraft spectrum loading. NASA TM281941 ,1981.
    [42] Wheeler O E. Spectrum loading and crack growth. Journal of Basic Engineering, 1972, 94: 181- 186.
    [43]陈传尧.疲劳与断裂.武汉:华中科技大学出版社. 2001年4月.
    [44]黄小平,韩芸,崔维成,万正权,卞如冈.变幅载荷作用下焊接接头疲劳寿命预测方法.船舶力学,2005,9(1):89—97.
    [45] Cui W C.A general constitutive relation for fatigue crack growth analysis of metal structures.Accepted by Acta Metallurgica Siniea.
    [46]曲先强,崔洪斌,吕春雷,马永亮,张杰.随机载荷作用下焊接结构表面裂纹扩展研究.船舶力学. 2008年4月
    [47]张斌,郭万林.考虑闭合效应和三维应力约束的表面裂纹扩展模拟.计算力学学报, 2005(12): 716- 721
    [48] Newman J C, Jr. FASTRAN- II- A fatigue crack growth structural analysis program. NASA TM104- 159, 1992.
    [49]牛松.基于断裂力学的船体结构疲劳评估方法.哈尔滨工程大学硕士学位论文. 2008年3月
    [50] K.L. Boyd, S. Krishnan, A. Litvinov, J.H. Elsner, M.M. Ratwani, James A.Hater, Grzegorz Glinka. Development of Structural Integrity Analysis Technologies for Aging Aircraft Structures: Bonded Composite Patch Repair & Weight Function Methods. WL-TR-97-3105. July 1997.
    [51] Glinka, G.,“Rapid Stress Intensity Factors Estimations”, Progress Report 2 Submitted to BMT Fleet Technology Limited for SSC Project SR-1430.
    [52] Pierson W J, Moskowitz L. A proposed spectral form for fully developed seas based on the similarity theory of SA Kitaigorodski. Jour. Geophy. Res. ,1964,69(24).
    [53]俞聿修.随机波浪及其工程应用.大连:大连理工大学出版社. 2003年.
    [54] NO.34. IACS REC.2000/Corr.2001.
    [55]冯国庆.船舶结构疲劳评估方法研究.哈尔滨工程大学博士学位论文. 2006年8月
    [56]王东海.船体总纵弯曲时的疲劳强度分析.哈尔滨工程大学博士学位论文. 1998年9月
    [57] Miki C,Mori T,Desvigns M,et a1. Effect of stress ration and tensile residual stress on near threshold fatigue crack growth. Structural Eng. And Earthquake Eng. ,1986, 3(1): l75-182
    [58] Irwin GR. NRL Report 6598, Nov. 21, 1967.
    [59]赵章焰,雷新华,孙国正. Q235钢裂纹扩展参数的实验测定.武汉理工大学学报. 2003年1月.
    [60]赵章焰,吕运冰,孙国正. J积分法测量低碳钢Q 235的断裂韧性KIC.武汉理工大学学报. 2002年4月.
    [61] Schijve J. Four lectures of fatigue crack growth. Engng. Fract. Mech. 1979(11). 167.
    [62]甄春博.小水线面双体船结构疲劳强度研究.哈尔滨工程大学硕士学位论文. 2009年3月.
    [63] Maddox, S. J. , A fatigue crack propagation data obtained from parent plate,weld metal and HAZ in structural steels, Welding Research International, Vol. 4, NO.1 1974.
    [64] Bokalrud, T. and Karlsen, A. , Reliability analysis of fatigue damage in offshore welded structures, Proceedings 1st OMAE Specialty Symposium on Offshore and Arctic Structures, Paper 39.
    [65] Machida, S. , Matoba, M. and Hagiwara, Y. , Japanese research activities on the structural integrity and reliability of offshore structures particularly for fatigue and fracture, Proceedings Conference on Integrity of Offshore Structures, Paper 19, Glasgow, Scotland, 1990.
    [66]黄小平.高强钢潜艇锥柱焊接结构的疲劳性能研究.哈尔滨:哈尔滨工程大学,2001
    [67] ISSC 2006 committeeⅢ. Proceedings of the 16th International ship and offshore structures congress. Volume 1, 496~497. Southampton, UK. 2006
    [68]王一飞.深海立管涡激振动疲劳损伤预报方法研究.上海交通大学博士学位论文. 2008年4月.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700