用户名: 密码: 验证码:
古建城台长期力学性能和安全度有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国许多古建城台已有数百年历史,在自然及人为因素等作用下,其结构性能和建筑材料的性质均已发生较大变化。城台砌体上出现裂缝,有些城台甚至发生局部破损或倒塌。为了对城台进行保护,需要通过变形监测判断其安全性。本文以故宫午门城台为例,通过有限元软件MARC建立三维接触模型,并在力学分析中考虑它的徐变效应,对午门城台现有损伤产生的原因进行分析,为变形测量方法判断城台的安全性能提供依据。基于相关资料所提供的数据,偏于安全地确定了城台材料的力学性能和砖砌体厚度;并通过城台表观观测,分析了裂缝分布现状,结合多年变形观测结果判定城台目前仍处于稳定状态。
     针对当前对城台结构的计算多采用非接触模型的现状,本文讨论了砖土接触关系对砖砌体侧移模式、砖砌体最大侧移位置和内力分布的影响,结果表明对城台结构的力学分析必须考虑接触的影响。
     本文采用接触模型,首先计算分析城台上新建午门展厅对城台位移和应力的影响,表明新建展厅后城台是安全的;然后对影响城台的重要因素如砖砌体抗拉强度、砖土摩擦系数和内填土含水量等进行了计算分析。结果表明当前裂缝主要是由砖砌体抗拉强度的降低和内填土含水量增大造成的。为确保城台安全,必须防止雨雪水渗入城台内填土中。由于午门城台遭受长期持续荷载的作用,其力学分析需考虑其结构材料徐变的影响。通过稳定徐变阶段的计算确定了位移增量最大的测点位置,并给出了徐变引起的内力重分布和裂缝发展情况,表明对古建城台的安全性能评估应考虑徐变的影响。
     为了通过城台变形监测来判断城台的稳定性,本文对城台材料处于加速徐变阶段的城台安全性能进行了分析,给出了各测点的相对变形发展情况,同时对影响测量结果的其他长短期因素进行了分析,从而可靠地获得城台徐变值,并据此判断城台是否进入加速徐变阶段。此方法可用于类似城台结构的长期安全性能评估。
Most ancient platforms in China have a history for hundreds of years. Influenced by those factors such as natural action, human activity, and so on, all ancient platforms generally experienced great changes in the mechanical properties of their structural members and materials. Some ancient platforms have cracks in the brick masonry and even have been partly damaged or broken down. For protecting these platforms, it is necessary to determine their safety status by means of deformation monitoring method. The Wumen Platform in Forbidden City as an example in this thesis, by setting up its 3D contacting modal using FEA software MARC and taking a consideration for its creep efficiency, a judging basis for the platform safety state by deformation monitoring method is provided through analyzing its existing damage causes.
     Based on relative statistic data, the material mechanical properties of the platform and its brick masonry thickness are determined. Through the macroscopical and external observation for the platform damage and subsequently analyzing for the present crack distribution status with combination of multi-year deformation measuring results, it is shown that the Wumen Platform is still in a steady state.
     Against the non-contacting modal usually used in analyzing platform structures, the influences of contacting modes between soil and brick masonry on the deformation mode, the maximal lateral displacement location and the stress distribution of the Wumen Platform are discussed. It is shown that the contacting problem should be taken into account in the mechanical performance analysis of platform structures.
     Adopting the contacting model, the influences of newly-built exhibition hall on the platform on the deformation and stress of the Wumen Platform are firstly analyzed and the results show the platform is still in safety state after the new exhibition hall is built. Then the important factors such as the tensile strength of brick masonry, the friction coefficient between brick masonry and soil, and moisture content of soil are analyzed. It is shown that reducing of the tensile strength of brick masonry and increasing of the moisture content of soil will result in cracking in brick masonry. To make sure of the platform’s safety, some measures for avoiding inleakage of the rain and snow water into platform soil should be given.
     Because of long-term load action on the Wumen Platform, the creep effect of the platform materials should be taken into account on the platform mechanical analysis. Through calculating analysis in steady creep stage the measuring locations of maximal deformation increment, stress re-distribution and crack development caused by creep are determined. The results show that the creep factor should be taken into account in evaluating the ancient platform’s safety.
     In order to judge the platform’s stability by deformation monitoring method, the safety properties of the platform in the accelerated creep stage for its materials are analyzed and the relative deformation development status is given. Meanwhile, those long-term and short-term influencing factors on deformation monitoring results are also analyzed. Sequentially the creep value can be reliably obtained and the judge whether the platform has been in accelerated creep stage can be given. This estimation method can be applied to similar platforms for their long-term safety property estimation.
引文
[1]高大峰,赵鸿铁,薛建阳.木结构古建筑中斗栱与榫卯节点的抗震性能—试验研究[J].自然灾害学报, 2008,(02)
    [2]谢启芳,赵鸿铁,薛建阳,姚侃,隋龑.中国古建筑木结构榫卯节点加固的试验研究[J].土木工程学报, 2008,(01)
    [3]赵均海,俞茂宏,杨松岩,孙家驹.中国古代木结构有限元动力分析[J].土木工程学报, 2000,(01)
    [4]方东平,俞茂鋐,宫本裕,岩崎正二,彦坂熙.木结构古建筑结构特性的计算研究[J].工程力学, 2001,(01)
    [5]赵均海,杨松岩,俞茂宏,孙家驹.西安东门城墙的弹塑性有限元分析[J].西北建筑工程学院学报(自然科学版) , 1998,(03)
    [6]赵均海,杨松岩,俞茂宏,孙家驹.西安东门城墙有限元动力分析[J].西北建筑工程学院学报(自然科学版) , 1999,(04)
    [7]孙尚业,蒋美蓉,王波,金丰年.九华山隧道穿越段明城墙沉降的三维数值分析[J].解放军理工大学学报(自然科学版) , 2007,(01)
    [8]魏骁勇.基于无损综合评估方法故宫午门城台受力性能分析[D]清华大学, 2006
    [9]郭锦江.基于有限元方法故宫午门城台安全稳定分析[D]清华大学, 2007
    [10]文晔.故宫大修如走独木桥[J].新闻周刊, 2004,(10)
    [11]全国人大常委会.中华人民共和国文物保护法.2002年10月28日第九届全国人民代表大会常务委员会第三十次会议通过
    [12]时旭东等.故宫东、西华门台基安全性能评估报告.北京:清华大学结构工程研究所. 2004
    [13]时旭东等.故宫午门政殿内增建展览厅后台基安全性能评估报告.北京:清华大学结构工程研究所. 2003
    [14]王铭珍.午门典故[J].上海消防, 2001,(11)
    [15]郎红阳,时旭东,李晓锋.北京故宫午门展厅[J].建筑学报, 2005,(07)
    [16]郎红阳,时旭东,李晓锋,杨超英.文物建筑中的建筑创作:北京故宫博物院午门展厅设计[J].建筑创作, 2005,(09)
    [17]白丽娟.浅谈故宫古建筑基础[J].故宫博物院院刊, 1993,(03)
    [18]白丽娟.故宫的基础工程[J].古建园林技术, 1996,(02)
    [19]田志高,张伯平,郭婷婷,刘纪亮.灰土强度的时间效应研究[J].中国农村水利水电, 2004,(04)
    [20]韩晓雷,郅彬,郭志勇.灰土强度影响因素研究[J].岩土工程学报, 2002,(05)
    [21]李天顺,胡富民,向德,刘宝民.西安长乐门城楼修缮工程报告[M].北京:文物出版社,2001
    [22]庄一舟,黄承逵.模型砖砌体力学性能的试验研究[J].建筑结构, 1997,(02)
    [23]中华人民共和国建设部.建筑结构荷载规范GB50009-2001.北京:中国建筑工业出版社,2002
    [24] Buyukozturk O., Nonlinear analysis of reinforced concrete structures, Computers and Structures. 1977.7. 149-156.
    [25] Wang P T,Shah S P,Naaman A E.Stress-Strain Curves of Normal and Lightweight Concrete in Compression.J. of A. C. I,Nov. 1978,75(11),603-611
    [26]党进谦,李靖,张伯平.黄土单轴拉裂特性的研究[J].水力发电学报, 2001,(04)
    [27]中华人民共和国建设部.砌体结构设计规范GB50003-2001.北京:中国建筑工业出版社,2001
    [28] Yang Yong-hong, Zhang Jian-guo, Zhang Jian-hui,Liu Shu-zhen,Wang Cheng-hua, Xiao Qing-hua. Impact of Soil Moisture Content and Vegetation on shear strength of Unsaturated Soil. Wuhan University Journal of Natural Sciences. 2005, 10(4), 682-688
    [29]楼访梅,夏振英.红土含水量、密度与横波声速及动力学参数相关性的实验研究[J].水文地质工程地质, 1988,(05)
    [30]雷晓燕.岩土工程数值计算[M].中国铁道出版社, 1999: 27
    [31]殷建华,李廷芥、周国林.土体与时间相关的一维应力-应变性状、弹粘塑性模型和固结分析[J].岩土力学, 1994,(03)
    [32]王希玲.灰土击实试验及其应用[J].西北建筑工程学院学报(自然科学版) , 2002,(03)
    [33] C.C.维亚洛夫.土力学的流变原理[M].北京:科学出版社,1987
    [34]刘雷激,朱平一,张军.泥石流源地土抗剪强度指标φ、C值同含水量Q的关系[J].山地学报, 1998,(02)
    [35]楼访梅,夏振英.红土含水量、密度与横波声速及动力学参数相关性的实验研究[J].水文地质工程地质, 1988,(05)
    [36]张军辉,缪林昌,黄晓明.连云港软黏土次固结变形研究[J].水利学报, 2005,(01)
    [37]陈仲颐,周景星,等.土力学.北京,清华大学出版社,2003年:140
    [38]董玉文,张伯平.养护龄期对灰土工程性能的影响试验研究[J].重庆建筑大学学报, 2002,(03)
    [39] Hansen, T.C. Effect of Wind on Creep and Dry Shrinkage of Hardened Cement Mortar and Concrete. Materials Research and Standards, v 6, n 1, p 16-19, Jan, 1966
    [40]刘蕙兰,贾福根.细集料对砂浆和混凝土弹性模量的影响[J].混凝土, 1995,(01)
    [41]王元丰.钢管混凝土徐变[M].科学出版社. 2006年: 2
    [42]杨伟军,施楚贤.砌体受压本构关系研究成果的述评[J].四川建筑科学研究, 1999,(03)
    [43]惠荣发,黄国兴,易冰若.混凝土的徐变[M].中国铁道出版社, 1998年: 80
    [44]王元丰.钢管混凝土徐变[M].科学出版社,北京, 2006年3月: 19
    [45]严大凡.输油管道设计与管理[M].石油工业出版社: 67
    [46]李宝花.冻土墙围护深基坑温度场和应力场耦合有限元分析[D].西安科技大学, 2003
    [47]刘晓燕,赵军,石成,赵波.土壤恒温层温度及深度研究[J].太阳能学报, 2007,(05)
    [48]余正.土壤的比热和热导率的测量[J].土壤, 1986,(01)
    [49]王荣山.北京城铁东直门车站深基坑开挖和支护技术研究[D].天津大学, 2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700