用户名: 密码: 验证码:
织物复合材料低速冲击特性与损伤机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空间充气展开结构因为在通信和军事等方面的重要战略地位而备受关注,作为空间充气展开结构主要使用材料的织物复合材料,其研究工作也日益受到人们的重视。本文研究了固化后的空间充气展开结构材料(碳纤维织物和芳纶织物复合材料)的低速冲击破坏模式和损伤机理,考虑不同加载速率、材料自身特性参数(铺层数量和铺层方式)对低速冲击特性的影响,并针对低速冲击作用下的复合材料层合板建立三维有限元模型。
     研究表明,织物复合材料低速冲击破坏模式与增强纤维的性质有关:碳纤维织物复合材料在宏观上表现为脆性断裂模式,以纤维剪断为主,伴随沿织物方向的基体开裂以及基体与纤维脱粘,正面损伤区域近似圆形;芳纶织物复合材料呈现明显的以应力集中处为中心的十字形破坏区域,基体沿织物方向产生开裂,开裂处大量纤维拉伸断裂及拔出,纤维出现原纤化。失效过程分为四个阶段,但两种材料存在差异:碳纤维织物复合材料依次经历了弯曲变形、大量纤维断裂、穿透和扩孔阶段;而芳纶织物复合材料经历了弯曲变形、大量纤维断裂和拔出、穿透以及裂纹沿织物方向扩展阶段。织物复合材料的能量吸收过程包括初始阶段、线性增加阶段和稳定阶段,能量的吸收途径主要包括层合板的弯曲变形、纤维断裂和拔出、基体开裂、纤维与基体的脱粘以及分层等,纤维断裂是织物复合材料吸收能量的主要方式。
     织物复合材料的破坏模式和低速冲击响应受加载速率、铺层数量和铺层方式的影响。碳纤维织物复合材料的破坏模式和冲击响应与加载速率相关,表现出了明显的应变率效应,冲击速度的提高使得材料的抗穿透能力增强,芳纶纤维织物复合材料则对应变率不敏感;碳纤维织物和芳纶织物复合材料的抗冲击特性具有明显的厚度效应,随着铺层数量的增加,材料的能量吸收性能和抗冲击能力提高;铺层方式的研究表明,在设计抗冲击层合板时,要尽量避免具有相同方向铺层的铺层组,同时外表面优先选择(±45)铺层结构,并以(0,90)铺层居多为宜。
     基于显示有限元软件ABAQUS/Explicit和复合材料层合结构的力学模型,建立了冲击作用下的有限元分析模型;通过标准的拉伸试验,确定了碳纤维织物和芳纶织物复合材料的模型参数;结合复合材料Hashin失效准则和刚度退化技术对2.5m/s、3m/s和3.9m/s冲击速度下的碳纤维织物复合材料动态响应进行了有限元分析,所得的计算结果和实验结果吻合较好,证明所建模型的正确性。
Inflatable space structures get more and more attention because of its superiority in the side of communications and military affairs. The woven fabric composites on the inflatable space structures are one of the most important materials. In this paper, low velocity impact failure modes and damage mechanism of cured woven fabric composites were studied. These woven fabric composites contain carbon woven fabric composites and aramid woven fabric composites. We focused on the failure modes and impact response characteristics of woven fabric composites as a function of impact velocity, material parameters (thickness and layer). To analyze the response of composite laminated plate under low-velocity impact, a finite element analysis model is established.
     Investigations show that the failure modes after low velocity impact are related to the nature of fiber. The failure modes of carbon woven fabric composites are brittle fracture which is dominated by fiber fracture following matrix cracking along the direction of fiber and interfacial debonding. The positive damage area is round. Aramid woven fabric composites obviously show a cross damage area which makes stress concentration as a center. This damage area has matrix cracking along the direction of fiber, fiber fracture and, aplit and fiber fibrillation. Faliure progress is divided into four stages. Two types of materials are different with each other. Carbon woven fabric composites experience overall bending, a large number of fiber fracture, penetrating and reaming. But aramid woven fabric composites contain overall bending, fiber fracture and aplit, penetrating and crack extension along the direction of fiber. The process of energy absorption contains three stages which are initial stage, linear stage and stable atege. The means of energy absorption contains overall bending, fiber fracture and aplit, matrix cracking and interfacial debonding, and they are dominated by fiber fracture.
     The failue modes and impact response are related to velocity, thickness and layer. The response of carbon fiber fabric reinforced epoxy resin composites is related to impact velocity. They have shown the strain rate sensitivity. The anti-penetrate capability of composites increases when the impact speed increases. The ability of energy absorption and impact resistance is increasing with the thickness, so thickness effect is significant. Layer is also one of the most important factors affecting the impact response characteristics. When designing the composite laminates, we should avoid having the same direction of the layer, and the surface must be (±45) layer. Also the proportion of (0,90) layer structure should be increased. The result also showed that internal damage area is larger than the surface after impacting.
     We establish the finite element model based on explicit finite element software ABAQUS/Explicit and the mechanical model of laminated structure. The material model parameters of carbon fiber fabric and aramid fabric composites are determined. The Hashin failure criteria and stiffness degradation are used to model the failure and response of composite material by comparing the computed results with the test data at the velocity of 2.5m/s, 3.0m/s and 3.9m/s. we can confirm that finite element analysis model is effective to analyze composite laminated plate under low velocity impact.
引文
1 W. Z. Sadeh, J. E. Abarbanel, M. E. Criswell. Structure Analysis of an Inflatable Module for Lunar/Martian Surface. IAF-96-Q.4.06:1~7
    2 R. E. Freeland, G. D. Bilyeu, M. M. Mikulas. Inflatable Deployable Space Structures Technology Summary. 49th International Astronautical Congress. IAF-98-I.5.01:1~17
    3崔海坡,温卫东,崔海涛,层合复合材料板的低速冲击损伤及剩余压缩强度研究.机械科学与技术. 2006, 25(9):1013~1017
    4詹世革,孟庆国,方岱宁.航空航天纺织结构复合材料力学性能研究进展与展望. China Basic Science. 2008, 2:5~10
    5张岩.复合材料用纺织结构物的现状与发展.北京纺织. 2003, 24(6):9~11
    6 A. P. Mouritz, M. K. Bannister, P. J. Falzon. Review of Applications for Advanced Three-dimensional Fiber Textile Composite: Part A. 1999, 30:1445~1461
    7沃丁柱.复合材料大全.化学工业出版社, 2000:511
    8戴青春,胡红.纬编针织增强复合材料的拉伸性能.纺织学报. 2008, 29(1):58~61
    9张彦.纤维增强复合材料层合结构冲击损伤预测研究.上海:上海交通大学, 2007
    10温卫东,徐颖,崔海坡.低速冲击下复合材料层合板损伤分析.材料工程. 2007, 7:6~11
    11 P. O. SiOblom, J. T. Hartness, T. M. Cordell. On Low-velocity Impact Testing of Composite Materials. Journal of Composite Materials. 1998, 22:30~52
    12 Abrate. Impact on Laminated Composite Materials. ASME Appl Mech Rev. 1991, 44(4):155~190
    13 Liu, D. Malvren. Matrix Cracking in Impacted Glass/Epoxy Plates. Journal of Composite Materials. 1997, 21:94~609
    14 Jang-kyo Kim, Impact and Delamination Failure of Woven-fabric Composites. Composite Science and Technology. 2000, 60:745~761
    15 Cesim Atas, Onur Sayman. An Overall View on Impact Response of Woven Fabric Composite Plates. Composite Structures. 2008, 82:336~345
    16刘晓辉,黄英,李郁忠.编织物增强层板的抗冲击性研究.兵器材料科学与工程. 1998, 21(6):12~21
    17黄英,刘晓辉,李郁忠. G/K织物混杂增强复合材料层合板冲击损伤特性研究.宇航材料工艺. 2002, 6:26~31
    18黄英,刘晓辉,李郁忠. Kevlar织物增强复合材料层合板冲击损伤特性究.宇航材料工艺. 2002, 20(8):486~491
    19熊杰,肖庆亮.织物-树脂复合材料层压板的准静态侵彻机理.材料科学与工程学报. 2003, 21(1):26~29
    20 R. ReidS, G. Zhou. Impact Behavior of Fiber-reinforced Composite Materials and Structure Cambridge: Woodhead Publishing limited, New York, CRC Press. 2000:l~9
    21 Tien-Wei Shyr, Yu-Hao Pan. Impact Resistance and Damage Characteristics of Composite Laminates. Composite structures. 2003, 62:193~200
    22 S. A. Hitchen, R. M. J. Kemp. The Effect of Stacking Sequence on Impact Damage in a Carbon Fiber/epoxy Composite. Composites. 1995, 26:207~214
    23 P. Robinson, G. A. O. Davies. Impactor Mass and Specimen Geometry Effects in Low Velocity Impact of Laminated Composites. International journal of impact engineering. 1992, 12(2):189~207
    24魏俊,赵建华,梁越明,李剑荣.复合材料板受低速冲击时能量吸收的实验研究.实验力学. 1998, 13(2):207~211
    25蒋海滨,魏伯荣,陈青,李名琦.薄层复合材料的抗平头冲击特性研究.航空材料学报. 2005, 25(3):45~49
    26 M. V. Donadon, L. Iannucci, B. G. Falzon, J. M. Hodgkinson. A Progressive Failure Model for Composite Laminates subjected to Low Velocity Impact Damage. Computers and Structures. 2008, 86:1232~1252
    27 L. Lammerant, I. Verpoest. Modeling of the Interaction between Matrix Cracks and Delaminations during Impact of Composite Plates. Compos Sci Technol. 1996, 56:1171~1178
    28 P. Tan, L. Y. Tong, G. P. Steven. Behavior of 3D Orthogonal Woven CFRP Composites.Ⅱ. FEA and Analytical Modeling Approaches. Composites Part A. 2000, 31(3):273~281
    29郑海燕.编织型复合材料的低速冲击及冲击后压缩特性研究-试验及数值计算.西安:西北工业大学. 2002:46~48
    30皇甫劭炜,童小燕,姚磊江.编织型复合材料低速冲击损伤及剩余压缩强度研.机械设计与制造. 2009, 3:120~122
    31 J. C. Brewer, P. A. Lagace. Quadratic Stress Criterion for Initiation of Delamination. J. Compos. Mater. 1988, 22:1141~1155
    32 R. K. Luo, E. R. Green, C. J. Morrison. Impact Damage Analysis of Composite Plates. International Journal of Impact Engineering. 1999, 22 (4):435~444
    33 F. Chang, K. Chang. A Progressive Damage Model for Laminated Composites Containing Stress Concent rations. J. Compos. Mater. 1987, 21:834~855
    34 J. P. Hou, N. Petrinic, C. Ruiz. Prediction of Impact Damage in Composite Plates.Compos. Sci.Technol. 2000, 60(2):273~281
    35 C. F. Li, N. Hu. Low-velocity Impact-induced Damage of Continuous Fiber- reinforced Composite Laminates. PartⅠ-an FEM numerical model. Composites: Part A. 2002, 33(8):1055~1062
    36 B. Qi, I. Herszberg. An Engineering Approach for Predicting Residual Strength of Carbonepoxy Laminates after Impact and Hygrothermal Cycling. Composite Structures. 1999, 47(8):483~490
    37王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺.科学出版社, 2003:205~207
    38陈祥宝.聚合物基复合材料手册.化学工业出版社, 2004:54~58
    39黄发荣,周燕.先进树脂基复合材料.化学工业出版社, 2008:266~267
    40 M. Colakovic. Probability Estimation for the Self-ignition of the Gun Powder. Propellants. Explosives and Pyrotechnics. 1992(17):110~115
    41 J. Isler. A None Destructive Method for Evaluating the Self-ignition in Ammunition. Proc Symp Explos Pyrotech. 1984:21~27
    42 G. Zhu, W. Goldsmith, C. K. H. Dharan. Penetration of Laminated Kevlar by Projectiles-II analytical Model. Int J Solids Struct. 1992, 29(4): 421~436
    43金子明,沈峰,曲志敏.纤维增强复合材料抗弹性能研究.纤维复合材料. 1999, 16(3):5~9
    44 J. P. Hou, N. Petrinic. Prediction of Impact Damage in Composite Plates. Composites Science and Technology. 2006, (60):273~281
    45周荣星,冯勋伟.针织结构增强材料能量吸收特性的研究进展.中国纺织大学学报. 2000, 26(6):131~136
    46焦亚男,李嘉禄,董孚允.织物结构复合材料的破坏机理.玻璃钢/复合材料. 2003, 1:7~10
    47徐宝龙,虞吉林.低速撞击下正交型纤维增强复合材料的脱层研究.试验力学. 2004, 19(2):163~169
    48魏伯荣,蒋海滨,李名琦.锥体冲击芳纶复合材料的损伤及其机理研究.航空材料学报. 2001, 21(1):47~50
    49王元博,王肖钧,胡秀章,王峰. Kevlar层合材料准静态侵彻特性实验研究.弹道学报. 2004, 16(2):56~60
    50 N. K. Naik, Y. Chandra Sekher, Sailendra Meduri. Damage in Woven-fabric Composites Subjected to Low-velocity Impact. Composites Science and Technology.2000, 60:731~744
    51矫桂琼,贾普荣.复合材料力学,西北工业大学出版社, 2008:35~40
    52庄茁,由小川,廖剑辉,岑松,沈新普.基于ABAQUS的有限元分析和应用.清华大学出版社, 2008:492~503
    53张彦,朱平,来新民.低速冲击作用下碳纤维复合材料铺层板的损伤分析.复合材料学报. 2006, 23(2):150~157
    54 S. Sanchez-saez, E. Berbero, R. Zaera. Compression after Impact of thin Composite Laminates. Composites Science and Techology. 2005, 65:1911~1919
    55程小全,康蒙,邹健,俞彬彬,郦正能.平面编织复合材料层合板低速冲击后的拉伸性能.复合材料学报. 2008, 25(5):163~168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700