用户名: 密码: 验证码:
生物活性香菇多糖衍生物表面修饰聚氨酯材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的新型高技术合成高分子材料,不仅技术含量和经济价值高,而且对人类的健康生活和社会发展具有极其重大的意义,它已渗入到医学和生命科学的各个部门并应用于临床的诊断与治疗。
     对于医用高分子材料而言,材料的生物相容性至关重要,而在不改变材料本体性质的前提下实施表面修饰是一种重要而相对实用的手段之一。本研究首先从香菇子实体中提取香菇多糖,分别对其进行羧甲基和硫酸酯衍生化修饰,再将其固定到聚氨酯基材表面改善其生物相容性,并研究了通过不同方法将香菇多糖衍生物固定在聚氨酯基材表面后其表面性能的变化。
     本工作首先对聚氨酯基材表面进行氨基化,然后通过层层自组装的方法将带正电荷的壳聚糖和带负电荷的香菇多糖硫酸酯固定在官能化后的聚氨酯基材表面。水接触角测试表明经表面修饰后的聚氨酯亲水性得到明显提高,并且组装层具有较好的稳定性;通过蛋白吸附测试表明表面修饰后的聚氨酯材料具有良好的排斥蛋白质非特异性吸附的能力,纤维蛋白原的吸附量与未修饰聚氨酯相比下降了81%;通过抗菌活性测试可知,表面修饰后的聚氨酯材料具有一定抑制绿脓杆菌的效果,其抗菌率为57.6%;此外,L-929小鼠成纤维细胞能够较好地在修饰后的聚氨酯材料表面生长繁殖。
     对于聚氨酯材料表面层层自组装香菇多糖硫酸酯和纳米银粒子的修饰,首先对表面氨基化的聚氨酯基材在带负电荷的香菇多糖硫酸酯溶液和带正电荷的PEI-AgNO3溶液中进行层层自组装,自组装五个双分子层后,再通过NaBH4的还原作用将Ag+还原为Ag0,从而得到表面带有纳米银粒子和香菇多糖硫酸酯的聚氨酯材料。经表面修饰后的材料表面对纤维蛋白原的吸附量下降了41%,对大肠杆菌的抑菌率为63%。
     本研究通过层层自组装和化学接枝的方法采用香菇多糖衍生物对生物医用高分子材料进行表面修饰,该研究将对利用真菌多糖及其衍生物进行医用高分子材料表面修饰的研究,以及制备具有特殊生物活性的新型医用高分子材料的研究提供了新的方法和思路。
Biomedical polymer material is one of advanced hi-tech materials which have special functions on repairation, replacement and regeneration of organic tissues. It has not only highly economic values but also has great applications to human health and society development.
     Biocompatibility is one of the most important characteristic of biomedical polymer material. Surface modification is an important and useful method to improve the surface properties but not damage the bulk properties of the material. In this study, lentinan extracted from shiitake mushroom was sulfated and carboxymethylated to afford two water-soluble polysaccharides, respectively. Then, the lentinan derivatives were immobilized onto the surface of polyurethane by different methods.
     Positively charged amino groups were introduced to the surface of polyurethane. Then, positively charged chitosan and negatively charged lentinan sulfate were alternatively deposited onto polyurethane surface through layer-by-layer self-assembly technique. The results showed that the water contact angle decreased gradually during the progressive buildup of the polyelectrolyte multilayers, and reached a steady value after five bilayers were assembled. At the same time, the fibrinogen adsorption decreased 80% and reached a steady value after five bilayers. In addition, the modified PU possessed antibacterial activity against Pseudomonas aeruginosa, the number of viable bacteria on the modified surface decreased by 57%.
     PEI-AgNO3 and lentinan sulfate were alternatively deposited onto polyurethane surface through layer-by-layer self-assembly technique. Then, a composite film containing Ag nanoparticals was obtained through the reducion reaction between Ag ions and NaBH4. The adsorption of fibrinogen decreased 41%, compared with unmodified polyurethane. In addition, the modified PU possessed antibacterial activity against Escherichia coli.
     The results of this foundation research have scientific significance and application value. These works have scientific significance and application value for preparing biocompatible materials with specific bioactivity, such as antibacterial, antitumor, or antiviral bioactivity.
引文
[1]李世普.生物医用材料导论[M].武汉:武汉工业大学出版社,2000:129-130.
    [2]徐海忠.生物医用材料产业将振翅欲飞[EB/OL].2003,06,13.
    [3]俞耀庭,王连永,王深琪.生物医学材料发展状况与对策[EB/OL].2002,02,02.
    [4]马建标,李晨曦.功能高分子材料(第一版)[M].北京:化学工业出版社,2000:51-53.
    [5]Chu PK, Chen JY, Wang LP, et al. Plasma-surface modification of biomaterials[J]. Mater. Sci. Eng. R.,2002,36:143-206.
    [6]Hollahan JR, Stafford BB. Attachment of amino groups to polymer surfaces by radiofrequency plasmas[J]. Journal of Applied Polymer Science,1969,13:807-816.
    [7]Ishikwa M, Yuhara M, Fujino T. Three-dimensional computation of magnetohydrodynamics in a weakly ionized plasma with strong MHD interaction[J]. Journal of Materials Processing Technology,2007,181(1-3):254-259.
    [8]Hoffman AS. Biomedical applications of plasma gas discharge processes[J]. Journal of Applied Polymer Science, Applied Polymer Symposium,1988,42:251-267.
    [9]Hsu SH, Chen WC. Improved cell adhesion by plasma-induced grafting of L-lactide onto polyurethane surface[J]. Biomaterials,2000,21(4):359-367.
    [10]郑玉峰,李莉.生物医用材料学[M].哈尔滨:哈尔滨工业大学出版社,2006,08:349-352.
    [11]石淑先.生物材料制备与加工[M].北京:化学工业出版社,2009,08:420-436.
    [12]Colwell JM, Wentrup BE, Bell JM, et al. A study of the chemical and physical effects of ion implantation of micro-porous and nonporous PTFE[J]. Surface and Coatings Technology,2003, 168(2-3):216-222.
    [13]Bacakova L, Mares V, Lisa V, et al. Molecular mechanisms of improved adhesion and growth of an endothelial cell line cultured on polystyrene implanted with fluorine ions[J]. Biomaterials, 2000,21:1173-1179.
    [14]Schiller TL, Sheeja D, Mckenzie DR, et al. Plasma immersion ion implantation of poly(tetrafluoroethylene)[J]. Surf. Coats. Technol.,2004,178:483-488.
    [15]Lee JS, Kaibara M, Iwaki M, et al. Selective adhesion and proliferation of cells on ion-implanted polymer domains[J]. Biomaterials,1993,14(12):958-960.
    [16]吴瑜光,张通和.离子束医用生物聚合物材料改性研究[J].北京师范大学学报(自然科学版),2002,38:41-44.
    [17]Schwarz F, Stritzker B. Plasma immersion ion implantation of polymers and silver-polymer nano composites [J]. Surface & Coatings Technology,2010,204(12-13):1875-1879.
    [18]Yuan J, Chen L, JiangXF, et al. Chemical graft polymerization of sulfobetaine monomer on polyurethane surface for reduction in platelet adhesion[J]. Colloids and surfaces B-Biointerfaces, 2004,38(1-2),87-94.
    [19]Zhu YB, Gao CY, Shen JC. Surface modification of polycaprolactone with poly(methacrylic acid) and gelatin covalent immobilization for promoting its cytocompatibility. Biomaterilas,2002, 23:4889-4895.
    [20]Yuan YL, Ai F, Zang XP, et al. Polyurethane vascular catheter surface grafted with zwitterionic sulfobetaine monomer activated by ozone[J]. Colloids and surfaces B-Biointerfaces, 2004,35(1),1-5.
    [21]Vasita R, Shanmugam K, Katti DS. Improved biomaterials for tissue engineering applications: Surface modification of polmers[J].2008,8(4):341-353.
    [22]Eckert AW, Grobe D, Rothe U. Surface-modification of polystyrene-microtitre plates via grafting of glycidylmethacrylate and coating of poly-glycidylmethacrylate[J]. Biomaterils,2000, 21:441-447.
    [23]Nakabayashi N, Ishihara K. Nonthrombogenic polymers-designs and evaluation[J]. Macromol. Symp.,1996,101:405-412.
    [24]Sagiv J. Organized Monolayers by Adsorption[J]. J. Am. Chem. Soc.,1980,102(1):92-98.
    [25]Lewandowska K, Pergament E, Sukenik CN, et al. Cell-Type-Specific adhesion mechanisms mediated by fibronectin adsorbed to chemically derivatized substrata[J]. J. Biomed. Mater. Res., 1992,26(10):1343-1363.
    [26]Decher G, Hong JD, Schmitt J. Buildup of ultrathin multilayer films by a self-assemnly process:I Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surface[J]. Thin Solid Films,1992,210/211:831-835.
    [27]Lvov Y, Decher G, Mohwald H. Assembly structural characterization and thermal behavior of layer-by-layer deposited ultrathin films of polyvinylsulfate and polyallylamine[J]. Langmuir,1993, 9:481-466.
    [28]Lvov Y, Ariga K, Ichinose I, et al. Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption[J]. J. Am. Chem. Soc.,1995,117:6117-6123.
    [29]Schlenoff J. Redox-active polyelectrolyte multilayers[J]. Adv. Mater.,1998,10:347-351.
    [30]Mendelson J, Barrett C, Chan V, et al. Fabrication of microporous thin films from polyelectrolyte multilayers [J]. Langmuir,2000,16:5017-5023.
    [31]Sullivan DM, Bruening ML. Ultrathin ion-selective polyimide membranes prepared from layered polyelectrolytes [J]. J. Am. Chem. Soc.,2001,123:11805-11806.
    [32]Tan QG, Ji J, Barbosa MA, et al. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant[J]. Biomaterials,2003,24(25): 4699-4705.
    [33]Thierry B, Winnik FM, Merhi Y, et al. Bioactive coatings of endovascular stents based on polyelectrolyte multilayers[J]. Biomacromolecules,2003,4(6):1564-1571.
    [34]袁伟永,计剑,付洪金等.层层静电自组装构建壳聚糖/肝素抗菌多层膜的研究[J].高等学校化学学报,2005,26(10):1963-1965.
    [35]Chen J, Huang SW, Lin WH, et al. Tunable film degradation and sustained release of plasmid DNA from cleavable polycation/plasmid DNA multilayeres under reductive conditions [J]. Small, 2007,3(4):636-643.
    [36]任科峰,计剑,沈家骢.层层自组装构建固相可降解基因传递体系的研究[J].高等学校化学学报,2004,25(8):1576-1578.
    [37]Dai JH, Bruening ML. Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films[J]. Nano Letters,2002,2(5):497-501.
    [38]Yu DQ Lin WC, Yang MC. Surface modification of poly(L-lactic acid) membrane via layer-by-layer assembly of silver nanoparticle-embedded polyelectrolyte multilayer[J]. Bioconjugate. Chem.,2007,18(5):1521-1529.
    [39]Maisin JR, Topalova S, Kondi-Tamba A, et al. Radioprotection by polysaccharides[J]. Pharmacology & Therapeutics,1988,39(1-3):255-259.
    [40]Chang ST. Mushroom biology:the impact on mushroom production and mushroom products[J]. Mushroom Biology and Mushroom Products,1993,122:3-20.
    [41]Jong SC, Birmingham JM. Medicinal and Therapeutic Value of the Shitake Mushroom[J]. Advances in Applied Microbiology,1993,39:153-184.
    [42]Chihara G, Maeda YY, Hamuro J, et al. Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes[J]. Nature,1969,22:687-688.
    [43]雷霆.新型抗肿瘤药物——香菇多糖[J].中国生化药物杂志,1987,04:39-41.
    [44]曲章义,牛美娟,郭彩玲等.香菇多糖抗肿瘤作用的机理[J].中国食用菌,1997,16(5):3-4.
    [45]王格林.香菇多糖的药理作用及应用[J].基础医学与临床,1993,13(3):79-80.
    [46]张俐娜,张平义,李翔等.香菇多糖的成分及其分子量的研究[J].高等学校化学报,1998,19(9):1513-1517.
    [47]龚俊涛,王宗成,董可因等.香菇多糖的研究[J].药学实践杂志,1996,14(1):23-75.
    [48]Han SB, Kim YH, Lee CW, et al. Characteristic immunostimulation by angelan isolated from Angelica gigas Nakai[J]. Immunopharmacology,1998,40(1):39-48.
    [49]颜邦干.香菇多糖的分离纯化及其分子结构改性的研究[硕士学位论文].杭州:浙江大学,2006,6-8.
    [50]Wasser SP, Weis AL. Medicinal properties of substances occurring in Higher Basidiomycetes mushrooms:current perspectives[J]. Med.Mushrooms.,1999,1:31-62.
    [51]Taguchi T, Furue H, Kimura T, et al. End point results of phase III study of Lentinan[J]. Japanese Journal of Cancer Chemotherapy,1985,12:366-380.
    [52]刘栋,钱建亚,卜敏.香菇多糖抗肿瘤作用研究现状[J].中国食用菌,2003,22(2):6-7.
    [53]Wasser SP, Weis Al. Shiitake mushrooms [Lentinus edodes (Berk.)Sing][J]. Nevo. E(ed). Medicinal mushrooms,1997,15:6-7.
    [54]杨旭,万克青,郑宣鹤等.香菇多糖对慢性乙肝患者T细胞亚群和Ⅰ L-2受体表达的影响[J].临床内科杂志,1994,11(4):47-48.
    [55]Markova N, Kussovski V, Drandarska L, et al. Protective activity of lentinan in experimental tuberculosis[J]. International Immunopharmacology,2003,3(10-11),1557-1562.
    [56]Kupfahl C, Geginat G, Hof H. Lentinan has a stimulatory effect on innate and adaptive immunity against murine listeria monocytogenes infection[J]. International Immunopharmacology, 2006,6(4):686-696.
    [57]Thierry B, Winnik FM, Merhi Y, et al. Biomimetic hemocompatible coatings through immobilization of hyaluronan derivatives on metal surface[J]. Langmuir,2008,24(20): 11834-11841.
    [58]Zhu HG, Ji J, Barbosa MA, et al. Surface Engineering of Poly(DL-lactide) via Electrostatic Self-Assembly of Extracellular Matrix-like Molecules [J]. Biomacromolecules,2003,4(2): 378-386.
    [59]Kirchhof K, Groth T. Surface modification of biomaterials to control adhesion of cells[J]. Clinical Hemorheology and Microcirculation,2008,39(1-4):247-251.
    [60]Ratner BD. The engineering of biomaterials exhibiting recogonition and specifity[J]. Journal of Molecular Recognition,1996,9:617-625.
    [61]杨建军.聚氨酯医用材料[M].北京:化学工业出版社,2008:19-21.
    [62]Guan JJ, Sacks MS, Beckman EJ, et al. Synthesis, characterization, and cytocompatibility of efastomeric, biodegradable poly(ester-urethane) ureas based on poly(caprolactone) and putrescine[J]. Journal of Biomedical Materials Research,2002,61(3):493-503.
    [63]Ishihara K, Tanaka S, Furukawa N, et al. Improved bloodcompatibility of segmented polyurethanes by polymeric additives having phospholipid polar groups[J]. Journal of Biomedical Materials Research,1996,32(3):391-399.
    [64]Bhat RR, Tomlinson MR, Wu T, et al. Surface-grafted polymer gradients:Formation, characterization, and applications[J]. Surface-initiated polymerization II,2006,198:51-124.
    [65]Decher G. Fuzzy nanoassemblies:Toward Layered Polymeric Multicomposites[J]. Science, 1997,277(5330):1232-1237.
    [66]Chung AJ, Rubner MF. Methods of loading and releasing low molecular weight cationic molecules in weak polyelectrolyte multilayer films[J]. Langmuir,2002,18(4):1176-1183.
    [67]Vazquez E, Dewitt DM, Hammond PT, et al. Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes[J]. J. Am. Chem. Soc.,2002, 124(47):13992-13993.
    [68]Tan QG, Ji J, Barbosa MA, et al. Construction thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant[J]. Biomaterials,2003,24(25): 4699-4705.
    [69]Hu XF, Ji J. Construction of multifunctional coatings via layer-by-layer assembly of sulfonated hyperbranched polyether and chitosan[J]. Langmuir,2010,26(4):2624-2629.
    [70]Wittmer CR, Phelps JA, Saltzman WM, et al. Fibronectin terminated multilayer films: Protein adsorption and cell attachment studies[J]. Biomaterials,2007,28(5):851-860.
    [71]Blacklock J, You YZ, Zhou QH, et al. Gene delivery in vitro and in vivo from bioreducible multilayered polyelectrolyte films of plasmid DNA[J]. Biomaterials,2009,30(5):939-950.
    [72]Kim GY, Roh SI, Park SK, et al. Alleviation of experimental septic shock in mice by acidic polysaccharide isolated from the medicinal mushroom phellinus linteus[J]. Bioloogical&Pharmaceutical Bulletin,2003,26(10):1418-1423.
    [73]将挺大.壳聚糖[M].北京:化学工业出版社,2001:12-32.
    [74]Ito M, Yamagishi T, Sugai T. Experimental development of a chitosan-bonded hydroxyapatite bone filling paste[J]. Shika Zairyo Kikai,1990,9(4):608-616.
    [75]Duan J, Park SL, Daeschel MA, et al. Antimicrobial chitosan-lysozyme (CL) films and coatings for enhancing microbial safety of Mozzarella cheese[J]. Journal of Food Science,2007, 72(9):355-362.
    [76]Li XG, Yang ZY, Zhang AF. The effect of neurotrophin-3/chitosan carriers on the proliferation and differentiation of neural stem cells[J]. Biomaterials,2009,30(28):4978-4985.
    [77]中华人民共和国轻工行业标准.QB/T 2591-2003.抗菌塑料-抗菌性能试验方法和抗菌效果.2003-09-29.
    [78]中华人民共和国国家标准.GB/T 4789.2-2008.食品卫生微生物学检测菌落总数测定.2008-11-21.
    [79]Arjan E, Vania R, Giancarlo M, et al. Synthesis and preliminary characterization of charged derivatives and hydrogels from scleroglucan[J]. Carbohydrate Research,2000,324(2):116-126.
    [80]Yang J, Du Y. Chemical modification, characterization and bioactivity of Chinese lacquer polysaccharides from lac tree Rhus vernicifera against leucopenia induced by cyclophosphosphamide[J]. Carbohydrate Polymer,2003,52:405-410.
    [81]Sasisekharan R, Shriver Z, Venkataraman G, et al. Roles of heperan-sulphate glycosaminoglycans in cancer[J]. Nature Reviews/cancer,2002,2:521-528.
    [82]Melo MRS, Feitosa JPA, Freitas ALP, et al. Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea[J]. Carbohydrate Polymers,2002,49(4): 491-498.
    [83]Kolender AA, Matulewicz MC. Sulfated polysaccharides from the red seaweed Georgiella confluens[J]. Carbohydrate Research,2002,337(1):57-68.
    [84]Jouault SC, Chevolot L, Helley D,et al. Charaterization, chemical modifications and in vitro anticoagulant properties of an exopolysaccharide produced by Alteromonas infernos[J]. Biochimica et Biophysica Acta,2001,1528(2-3):141-151.
    [85]Ruperez P, Ahrazem O, Leal JA. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus[J]. Jouranl of Agricultural and Food Chemistry,2002,50(4):840-845.
    [86]Amornrut C, Toida T, Imanari T, et al. A new sulfated β-galactan from clams with anti-HIV activity[J]. Carbohydrate Research,1999,321(1-2):121-127.
    [87]王长云,管华诗.多糖抗病毒作用研究进展Ⅱ.硫酸多糖抗病毒作用[J].生物工程进展,2000,20:17-20.
    [88]Zhu XL, Chen J, Scheideler L, et al. Effects of topography and composition of titanium surface oxides on osteoblast response[J]. Biomaterials,2004,25(8):4087-4103.
    [89]Curtis A, Wilkinson C. Nantotechniques and approaches in biotechnology [J]. Trends in Biotechnology,2001,19(3):97-101.
    [90]今井庸二.不均质表面结构对凝血性能的影响[J].人工器官,1973,2(2):95-101.
    [91]Kataoka K, Okano T, Sakurai Y, et al. Effect of microphase separated structure of polystyrene/polyamine graft copolymer on adhering rat platelets in vitro[J]. Biomaterials,1982, 3(4):237-240.
    [92]Van PB, Blaauw EH, De HG, et al. Tissue reactions to bacteria-challenged implantable leads with enhanced infection resistance [J]. Journal of Biomedical Materials Research,1998,41(1), 142-153.
    [93]McArthur SL, McLean KM, Kingshott P, et al. Effect of polysaccharides structure on protein adsorption[J]. Colloids and Surfaces B:Biointerfaces,2000,17(1):37-48.
    [94]Tang ZY, Kotov NA. One-dimensional assemblies of nanoparticles:preparation, properties and promise[J]. Advanced Materials,2005,17(8):951-962.
    [95]Sun YQ Yin YD, Mayers BT, et al. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone)[J]. Chem. Mater.,2002, 14(11):4736-4745.
    [96]Wang W, Asher SA. Photochemical incorporation of silver quantum dots in monodisperse silica colloids for photonic crystal application[J]. J. Amer. Chem. Soc.,2001,123(50): 12528-12535.
    [97]廖学红,朱俊杰,赵小宁等.纳米银的电化学合成[J].高等学校化学学报,2000,21(12):1837-1839.
    [98]Liu HR, Ge XW, Ni YH, et al. Synthesis and characterization of polyacrylonitrile-silver nanocomposites by y-irradiation[J].Radiation Physics and Chemistry,2001,61(1):89-91.
    [99]Belfiore LA, Indra EM. Transition metal compatibilization of poly(vinylamine) and poly(ethylene imine)[J]. J. Polym. Sci. B:Polym. Phys.,2000,38(4):552-561
    [100]Dederichs T, Moller M, Weichold O. Colloidal stability of hydrophobic nanoparticles in ionic surfactant solutions:definition of the critical dispersion concentration[J]. Langmuir,2009, 25(4):2007-2012.
    [101]王洪水.纳米银及载银纳米抗菌材料的研究[博士学位论文].武汉:华中科技大学,2006,10-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700