用户名: 密码: 验证码:
转EdHP1(氢离子焦磷酸化酶)基因烟草促进磷、钾吸收的生理机制及调控机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢离子焦磷酸化酶(H+-pyrophosphatase,H+-PPase)水解无机焦磷酸(PPi)产生自由能并与H+跨膜转运相耦联形成质子梯度,建立的跨膜质子梯度为各种溶质(如阳离子、阴离子、氨基酸和糖类等)的跨膜的次级主动运输提供驱动力。H+-PPase作为一种有效的质子泵,在植物对水分和盐分胁迫的响应中扮演着重要的角色。H+-PPase与液泡膜H+-ATPase一起,既能维持细胞离子平衡和渗透平衡,又能为减轻一些无机离子(如Na+)对细胞质的毒害起重要的作用。本研究的前期工作已从披碱草(Elymus dahuricus)中克隆了新的氢离子焦磷酸化酶基因(EdHP1)。基因功能研究证明EdHP1能够显著提高转基因烟草对磷和钾的吸收。然而,对于EdHP1促进营养吸收的生理机制和调控机理还不十分清楚。本研究通过比较转EdHP1基因烟草及野生型烟草的各项生理指标,初步分析了EdHP1促进转基因烟草吸收磷和钾的生理机制,增加对植物磷和钾生理代谢过程的了解。同时,本研究对EdHP1的抗旱性及信号调控途径也进行了初步探索:
     1.以转EdHP1基因烟草为实验材料,在低营养条件下,比较了转基因植株和野生型烟草在根系发育,植株形态,体内生长素含量,叶绿素含量,体内钾、磷含量等方面的差异,结果显示,在低钾条件下(0.05 mmolL-1),转基因烟草相对于野生型烟草根系明显发达,转基因烟草体内钾含量及生长素含量明显高于野生型烟草。低钾胁迫主要影响植物细根发育,转基因烟草的细根明显比野生型烟草发达,而中等根和粗根二者差别不大;在低钾条件下,采用非损伤探测技术研究了转基因烟草和非转基因烟草在根尖,伸长区,根毛区钾离子和氢离子的流速值。结果发现,在低钾条件下,钾离子外排速率转基因株系低于非转基因烟草,氢离子外排速率则高于非转基因烟草。在低磷条件下(0.016 mmolL-1),实验结果与低钾条件下的结果相似,转基因烟草根系比野生型烟草发达,体内的磷含量,生长素含量比野生型烟草高;根据以上实验结果推测,EdHP1基因的作用机制可能是提高转基因烟草根部细胞的质子梯度,质子梯度提高一方面使根部细胞酸化,提高IAA等生长素在根部的分布,促进了根系发育,另一方面可以促进细胞质膜上的磷和钾转运体的活性,促进了根部磷和钾的主动运输,最终两方面的生理过程综合作用提高了植物根部对钾、磷的吸收。
     2.以转EdHP1基因烟草为实验材料,在干旱条件下(2% PEG)对转基因株系和野生型烟草进行抗旱性鉴定,结果证明转基因烟草的发芽率明显高于野生型烟草,转基因烟草的根系相对于野生型烟草发达,EdHP1基因的过表达可以提高转基因植物的抗旱性。
     3.为了研究氢离子焦磷酸化酶基因在植物中的调控机制。以拟南芥的氢离子焦磷酸化酶(AtVP1)为诱饵,采用酵母双杂交系统筛选拟南芥的cDNA文库,初步筛选到一些阳性克隆。同时,为了研究AtVP1是否参与了两个重要的与植物营养吸收有关的信号传导途径,选择在这两个传导途径中重要的调控蛋白(LKS和SOS2),鉴定AtVP1是否和LKS、SOS2可以互作,结果显示AtVP1不与LKS、SOS2互作,证明AtVP1不受这两个重要蛋白调控。
     EdHP1作为H+-PPase家族中的一个重要成员既可以促进植物的营养吸收又可以提高植物的抗逆性,具有重要的应用价值。EdHP1生理机制的剖析不仅为利用这个基因改良作物的抗逆性提供理论依据,而且可以增加我们对植物吸收营养元素生理过程的了解,具有重要的理论价值。
Pyrophosphate (PPi) is hydrolyzed by pyrophosphorylase (H+-PPase) and releases free energy, and then produces proton gradient, which provide driving power for secondary active trans-membrane transportation of solutes such as positive ion, negative ion, ammonium acid, sugar, and etc. As efficient H +pump, H+-PPase plays a key role in responding to salinity and drought stresses in plants. Working together with vacuole-membrane-located H+-ATPase, H+-PPase not only can maintain the balance of ion and osmotic of the cell, but also can reduce the toxic effect to the cytoplasm causing by inorganic ion such as Na+. In pervious work, an H+-PPase gene, EdHP1 had been cloned from Elymus dahuricus. Result of gene functional analysis indicated that the EdHP1 gene could improve the Na+ and K+ uptaking in transgenic tobacco plants. However, the physiological and regulation mechanisms of nutritional absorption of EdHP1 transgenic plants still remain unknown. In the present study, by comparing each physiology index between EdHP1 transgenic and non-transgenic tobacco, we studied the physiological mechanism of P +and K+ uptaking controlled by EdHP1 gene, and those results led to better understanding of respective regulation mechanism. Meanwhile, we studied signaling regulation pathway involving EdHP1underlying drought tolerance. And the results are demonstrated below:
     1. Using the EdHP1 transgenic tobaccos as the studying materials, under low nutritional condition of low K+ and P+ concentration (0.05 level and 0.016 respectively), we compared parameters difference between transgenic tobacco and wide-type (WT) tobacco in terms of root system development, plant morphology, growth hormone levels in vivo, chlorophyll content, K+ and P+ content of plants. The results indicated that, under low content of K+ (0.05 mmolL-1) condition, the root systems of transgenic tobacco were more healthy than that of WT’s, and similarly, the K+ content in vivo was higher than that of WT’s. In general, low content of K+ effect on thin root developing specifically, and in this research, thin root of transgenic tobacco were more healthy than wild type tobacco, whereas there were no differences between transgenic and WT tobaccos in medium-thick and thick roots. Facilitated by the Non-Invasive Detection Method, the H+ and K+ flux in the root tip, elongation zone, and hair zone of both transgenic and WT tobaccos were detected under the low potassium condition. The results indicated that there were less K+ efflux and more H+ efflux in transgenic tobaccos compared to WT ones. Similar with above, the result coming from low phosphorus experiment (0.016 mmolL-1) was demonstrated as follows: Root system of transgenic tobaccos were better developed than of WT tobaccos’, and growth hormone content of transgenic tobaccos was higher than that of WT tobaccos’. According the result above, it was suggested that the mechanism of EdHP1 gene might increase the H+ gradient in transgenic tobacco’s root cells, which can resulted in cells acidic, increasing the IAA distribution among roots, and in turn, improving the roots development. On the other hand, higher H+ gradient can also active the transporter of the potassium and phosphorus on the membrane, which can improve the active transportation in roots. Both two effects resulted in higher the potassium and phosphorus up taking in root eventually.
     2. Result of drought tolerance experiment (2% PEG) indicated that the seed germination of EdHP1 transgenic tobacco were higher than that of WT plants’. The root systems of transgenic tobaccos were better-developed than that of WT ones’, as suggested that overexpression of EdHP1 can confer higher drought tolerance to plants.
     3. To reveal the regulation mechanisms of EdHP1 in plants, Yeast Two-Hybrid system was used to screen Arabidopsis cDNA library, and AtVP1 from Arabidopsis was used as the bait protein, and finally some positive clones were obtained. On other hand, two key regulation proteins, LKS and SOS2 that are two key regulation proteins involved in signaling pathway underlying nutrition uptaking, were used for this experiment to identify whether they interacted with AtVP1. As a result, AtVP1 didn’t interacted with none of them in other words, suggested that AtVP1 was not controlled by LKS or SOS2.
     The an member of H+-PPase family, EdHP1 can not only increase nutrition up taking, but also improve the tolerance to abiotic stress in plants, which were important for improving crop stress tolerance. Dissection of physiological mechanism provided a theoretical basis to improve the tolerance to abiotic stress in crops, and give better understand on the process of nutrient absorption.
引文
包爱科. 2006. AVP1基因转化紫花苜蓿的初步研究.CNKI中国优秀硕士学位论文全文数据库
    程钰宏,赵瑞雪,董宽虎.2008.植物钾(K+)离子通道的研究西农业科学, 36(2): 03-07
    陈沁,刘友良.1999.H202和.OH及其清除剂对大麦叶片液泡膜微囊质子转运活性的影响.植物生理学报,25(3):281—286
    董建辉,陈明.2008.披碱草(Elymus dahuricus)焦磷酸化酶基因EdHP1的克隆及功能鉴定。麦类作物学报,28(3),364-371
    高宁,胡宝成. 2006.酵母双杂交系统的发展及其衍生系统的比较.生物技术通讯, 17(3):421- 424
    简令成.1983.生物膜与植物寒害和抗寒性的关系.植物学通报, 1: 17-22
    李俊华,种康.2006.植物生长素极性运输调控机理的研究进展.植物学通报, 23(5):466-477
    李玉京,李滨,李振声等.1998.植物有效利用土壤磷特性的遗传学研究进展.遗传, 20(3): 38-41
    李继云,李振声.1995.有效利用土壤营养元素的作物育种新技术研究.中国科学(B辑),25:41--48
    廖红,严小龙.2000.菜豆根构型对低磷胁迫和适应性变化及其基因型差异.植物学报, 42: 158-163
    林翠兰,张福锁.1992.缺磷对不同品种玉米分泌物组成的影响.见:李晓林.土壤资源的特性与利用
    —第四届全国青年土壤科学工作者学术会议论文集.北京农业大学出版社: 377-378
    刘国栋,李振声.1995.植物高效活化土壤磷素的化学机理.植物营养学报, 3: 32-37
    陆景陵.2001.植物营养学(上).北京:中国农业大学出版社:26
    孟繁霞,张蜀秋,娄成后.2000.气孔功能的结构基础.植物学通报,17(1):27-33
    倪迪安,许智宏.2000.生长素的生物合成、代谢、受体和极性运输.植物生理学通讯, 37(4): 346-352
    倪为民,陈晓亚,许智宏,薛红卫.2000.生长素极性运输研究进展.植物学报,42(3):221-228
    施卫明,王校常,严蔚东,汤利. 2002.外源钾通道基因在水稻中的表达及其钾吸收特征研究.作物学报,28(3):374- 378
    孙敏.2009.毛棉杜鹃花芽分化过程及某些生理特性的研究.[硕士学位论文].呼和浩特:内蒙古农业大学
    孙羲. 1997.植物营养原理.北京:中国农业出版社: 134-159
    涂书新,郭智芬,张平. 2000.植物吸收利用钾素研究的某些进展.土壤, 5: 248-252
    王宝山,邹琦,赵可夫, 1996.液泡膜转运蛋白与植物耐盐性研究进展.植物学通报, 13(3): 30-36
    王瑞新,韩富根. 1998.烟草化学品质分析法.郑州:河南科技出版社:102-105
    王延枝. 1990.植物液泡膜上的焦磷酸酶.植物生理学通讯, ,4: 73-76
    吴平,印莉萍,张立平.2001.植物营养分子生理学.北京:科学出版社: 163—211
    张福锁,林翠兰. 1992.植物磷营养基因型差异的机理.北京:北京农业大学出版社: 1-12
    严小龙,廖红,戈振扬,罗锡文. 2000.植物根构型特性与磷吸收效.植物学通报, 17(6): 511-519
    张芬琴,沈振国,刘友良.2000.铝和钙对小麦幼苗根尖质膜、液泡膜微囊ATP酶和膜流动性的影响.植物生理学报, 26(2), 105-110
    张福锁.植物营养生态生理学和遗传学.北京:中国科学技术出版社:993;63-69
    赵利辉,刘友良. 1999.液泡膜H+-PPase及其对逆境胁迫的反应.植物生理学通讯, 35: 441-445
    邹奇主编. 2000.植物生理学实验指导.北京:中国农业出版社
    Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema M R, Hedrich R. 2000. GORK, a delayedoutward rcctifier expressed in guard cells of Arabidpsis thaliana,is a K+-selective, K+-sensing ion channel. FEBS Lett, 486: 93-98
    Alain Chanson, Paul-Emile Pilet. 1989. Target Molecular Size and Sodium Dodecyl Sulfate- Polyacrylamide Gel Electrophoresis Analysis of the ATP-and Pyrophosphate Dependent Proton Pumps from Maize Root Tonoplast. Plant Physiol, 90: 934-938
    Anderson M A, McFadden G B, wrnatzky R. 1989. Sequence variabifity of three alleles of the self-incompatibility gene of Nicotiana. Plant Cell, 1:483~49l
    Anghinoni I,Baber S A. 1980. Phosphorus influx and growth characteristics of corn roots as influenced by phosphorus supply. Agron J, 172: 655-668
    Ashley M K, Grant M, Grabov A. 2006. Plant responses to potassium deficiency:A role for potassium transport proteins. J Exp Bot, 57: 425–436
    BanueIos M A, Klein R D, Alexander-Bowman S J, Rodrfguez NaVarro A. 1995. A potassium transporter of the yeast Schwanniomyces occidentalis homologous to the Kup system of Escherichia coli has a high concentrativc capacity. EMBO J. 14: 3021-3027
    Barber S A, Walker J M, Vasey E H. 1963. Mechanisms for themovement of plant nutrients from the soil and fertilizer to the plant root. J Agri Food Chem, 11: 204-207
    Barber S A and A D Mackay.1986. Root growth and phosphorus and potassium uptake by two com genotypes in the field. Fertilizer Research, 11(3): 217-230
    Bariola P A, Howard C J, Taylor C B. 1994.The Arabidopsis ribonuclease gene RNase is tightly controlled in response to phosphate limitation. Plant J, 6: 673-685
    Baykov A A, Bakuleva N P, Rea P A. 1993. Steady-state kinetics of substrate hydrolysis by vacuolar H+-pyrophosphatase. A simple three-state model. Eur J Biochem, 217: 755-762
    Becker D, Geiger D, DunkeI M. 2004. AtTPK4, an Arabidopsis tandem·pore K+ channel, poised to control the pollen mbrane Voltage in a pH·and Ca2+-dependent manner. PNAS. 101: 1562l-15626
    Belogurov GA, Lahti, R . 2002. A lysine substitute for K+:A460K mutation eliminates K+ dependence in H+-pyrophosphatase of carboxydothermus hydrogenofonnans. J Biol Chem, 277:49651-49654
    Bei Li, Aiying Wei, 2008. Heterologous expression of the TsVP gene improves the drought resistance of maize. Plant Biotechnology Journal, 6, 146–159
    Blumwald E. 1987.Tonopast vesicles for the study of ion transport in plant vacuoles. Physiol plant, 69: 731-734
    Blumwald E. 2000. Sodium transport and salt tolerance in plants. Curr Opin Cell Biol, 12(4):431-434
    Blumwald E, Gelli A. 1997. Secondary inorganic ion transport in plant vacuoles. Adv Bot Res, 25: 401-407
    Bradford M M.1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 72: 248-254
    Bremberger C, Luttge U. 1992. Dynamics of tonoplast proton pumps and other tonoplast proteins of Mesembryanthemum crystallinum L. during the induction of crassulacean acid metabolism. Planta, 188: 575580
    Brini F, Gaxiola R A, Berkowitz G A, et al. 2005. Cloning and characterization of a wheat vacuolar cation/proton antiporter and pyrophoshatase proton pump. Plant Physiology and Biochemistry, 43: 347-354
    Britten C J, Zhen R C, Kim E J, et al. 1992. Reconstitution of transport function of vacuolar H+- translocating inorganic pyrophosphatase. Biol Chem, 267 (30): 21850-21855
    Bucher M, Rausch C, Daram P. 2001. Molecular and biochemical mechanisms ofphosphorus uptake into plants. J Plant Nutr Soil Sci ,164: 209-217
    Casimiro I, Beeckman T, Graham N. 2003. Dissecting Arabidopsis lateral root development. Trends Plant Sci, 8: 165–170
    Carystinos G D, MacDonald H R, Momoy A F. 1995. Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedling of rice . Plant Physiol, 108:641-649
    Chérel I,Michard E,Platet N,Mouline K,Alcon C,Sentenac H, Thibaud JB. 2002. Physical and functional interaction of the Arbidopsis K+ channel AKT2 and phosphata∞AtPP2CA. Plant Cell,14: 1133-1146
    Churchill KA, Sze H.1984.Anion-sensitive, H+-pumping ATPase of oat roots: direct effects of CI-, N03- and a disulfonic stilbene. Plant Physiol,76: 490-497
    Colombo R, Cerana R. 1993. Enhanced activity oftonoplast pyrophosphatase in NaCI-grown cells of Daucus carota, Plant Physiol. 142: 226-229
    Darara P, Brunner S, Rauach C. 1999. Pht2;1 encodes a low-affinity phosphate transporter from Arabidopsis. Plant Cell, 11: 2153-2166
    Darley C P, Davies J M, Sanders D. 1995. Chill·induced changes in the activity and abundance of the vacuolar proton—pumping pyrophosphatase from mung bean hypocotyls.Plant Physiol. 109: 659-665
    David R, Colette T R, Wojciech S.1998. Cloning of the V-ATPase subunit G in plant: functional expression and sub-cellular localization. FEBS Lett , 437(3): 287-292
    Davies J M, Poole R J, Rca P A, et al. 1992. Potassium transport into plant vacuoles energized directly by a proton-pumping inorganic pyrophosphatase. PNAS, 89: 11701-11705
    De Boer AH, Wegner L H. 1997. Regulatory mechanisms of ion channels in xylem parenchyma cells. J Exp Bot, 48: 441-449
    Deeken R, Geiger D, Fromm J, KoroleVa O, Ache P, Hedrich R. 2002. Loss of the AKT2; 3 potassium channel affbcts sugar loading into the phloem of Arabidopsis. Planta, 216: 334-344
    Diurnal and Circadian Regulation of Putative Potassium Channels in a Leaf Moving Organ. Plant Physiol. 128: 634-642
    Desbrosses G, Josefsson C, Rigas S, Hatzopoulos P, Dolan L. 2003. AKTl and TRH1 are required during root hair elongation in Arabidopsis. J Exp Botany, 54(383): 781-788
    Dinkelaker B, Romheld V, Marschner H. 1989. Citric acid exeretion and precipitation of calcium citrate in the rhizosphere ofwhite lupin(Lupinus.Albus.L.). Plant Cell and Envion, 12: 285-292
    Dodds P N, Clarke A E, Newbigin E.1996. Molecular characterization of an S-like RNase of Nicohana alata that is induced by phosphate starvation. Plant Mol Biol, 3l: 227-238
    Dreyer I, Poree F, Schneider A, et a1. 2004. Assembly of plant Shaker like K+ out channels requires two distinct sites of the channel asubunit. Biophys J, 87: 858-872
    Drozdowicz Y M, Kissinger J C, Rea P A. 2000. H+-translocatinginorganic pyrophosphatase AVP2, a sequence-divergent, K+-insensitivefrom Arabidopsis. Plant Physiol, 123: 353-362
    Duan X G, Yang A F, Gao F. 2007. Heterologous expression of vacuolar H_-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance.Protoplasma. 232: 87–95
    Emanuel Epstein, D W Rains, and O E Elzam.1963. resolution of dual mechanisms of potassium absorption by roots. PNAS, 49(5): 684–692
    Ferru M, Salvi D, Riviere- Roll H. 2002. Integral membrane protein of the chloroplast envelope: Identification and sub—cellular location of new transporter. PNAS, 99: 11487- 11492
    Fohse D, Classen N, Jungk A. 1991. Phosphorus efficiency of plants significance of root radius root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant and Soil, 16(132): 261-272
    Francisco Rubio, Walter Gassmann, Julian I. Schroeder. 1995. Sodium-Driven Potassium Uptake by the Plant Potassium Transporter HKT1 and Mutations Conferring Salt Tolerance. Science, 270. 1660– 1663
    Fukuda A, Chiba K, Maeda M, et al. 2004. Effect of salt and osmotic stresses on the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiport from barley. Journal of Experimental Botany, 55 (397): 585-594
    Gaxiola R A, Rao R I, Sherman A. 1999.The Arabidopsis thaliana proton transporters, AtNhx1 and Avp1 can function in cation detoxification in yeast. PNAS, 96: 1480-1485
    Gaymard F, Pilot G, Lacombe B, Bouchez D, Sentenac H. 1998. Identification and disruption of a plant shaker-like outward channel involved in k+ release into the xylem sap. Cell, 94: 647- 655
    Gaymard F, Cerutti M, Horeau C. 1996.1996.The Baculovirus/Insect Cell System as an Alternative to Xenopus Oocytes: first characterization of the akt1 k+ channel from arabidopsis thaliana. J Biol Chem. 271: 22863-22870
    Gerald Sch?nknecht, Petra Spoormake, Ralf Steinmeyer.2002. KCO1 is a component of the Slow-Vacuolar (SV) ion channel. FEBS Lett. 511: 28-32
    Gerald Sch?nknecht, Petra Spoormake, Ralf Steinmeyer.2002. KCO1 is a component of the Slow-Vacuolar (SV) ion channel. FEBS Lett. 511: 28-32
    Gordon-Weeks R, Steele S H. 1996. Leigh R A. The role of magnesium, pyrophosphate and their complexes as substrates and activators of the vacuolar H+-pumping inorganic pyrophosphatase. Plant Physiol, 111: 195-202
    Goff S A, Rieke D, Lnn T H, et a1. 2002. A draft sequence of the rice genome (Oryza sativa L. sap. japonica). Science, 296: 92- 100
    Gordon-Weeks R, Koren'kov V D, Steele S H. 1997. Tris is a competitive inhibitor of K+ activation of the vacuolar H+-pumping pyrophosphatase. Plant Physiol, 114(3): 901-905
    Guo SL, Yin HB, Zhang X, et al. 2006.Molecular cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte Suaeda salsa and its overexpression increases salt and drought tolerance of Arabidopsis. Plant Mol Biol, 60: 41-50
    Guillaume Pilot, Frédéric Gaymard, Karine Mouline. 2003. Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant .Plant Mol Biol. 51: 773-787
    Hamburger D, Rezznnieo E, Petetot J M C. 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphme loading to the xylem. Plant Cell, 14: 889-902
    Harrison M J, Buuren M L. 1995. A phosphate transporter from the myeorrhizal fungus Glomus Glomus versiforme. Nature, 378: 626-632
    Harrison M J, Dewbre G R, Liu J Y. 2002. A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by Arbuscular mycorrhizal fungi. Plant Cell, 14: 2413-2429
    Hasegawa PM, Bressan RA, Zhu JK, et al. 2000.Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol, 51: 463-499
    Hirsch RE, Lewis BD, Spalding EP, Sussman MR.998. A Role for the AKTl Potassium Channel in Plant Nutrition, science, 280, 918- 923
    Hoffland E. 1992. Quantafive evaluation of the role of organic acid exudation the Mobilization of rock phosphatebyrape. Plant and Soil, 140: 279-289
    Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F.2003.The Arabidopsis outward K+ channel GORK is involved in regulation of stomatal movements and plant transpiration. PNAS, 100: 5549-5554
    Kang H M, Saltveit M E. 2002.Reduced chilling tolerance in elongating cucumber seedling radicals is related to their reduced antioxidant enzyme and DPPH-radical scavenging activity. Physiol Plant, 115: 244–250
    Karlsson.1975. Membrane-bound potassium and magnesium ion-stimulated inorganic pyro- phosphatese from roots and cotyledons of sugar beet (Beta vugaris). biochim biophys acta, 399,356-363
    Katrin Czempinski, Sabine Zimmermann, Thomas Ehrhardt. 1997. New structure and function in plant K+ channels: KCO1, an outward rectifier with a steep Ca2+ dependency. EMBO, 16, 2565– 2575
    Kazuki Moriguchi, Tadzunu Suzuki, Yukihiro Ito, et al. 2005. Functional isolation of novel nuclear proteins showing a variety of subnuclear localizations. Plant Cell, 17(2):389-403
    Kenndey RA, Rumpho ME, Fox TC. 1992. Anaerobic metabolism in plants. Plant Physiol, 100:1-6
    Kunitz.M.J. 1952. crystalline Inorganic pyrophosphatase inolated from baker’s yeast, gene physiol, 35(3): 425-450
    Kuo S Y, Chien L F, Hsiao Y Y. 2005. Proton pumping inorganic pyrophosphatase of endoplasmic reticulum-enriched vesicles from etiolated mung bean seedlings. J Plant Physiol, 162 (2):129-138
    Lacombe B, Pilot G, Michard E, Gaymard F, Sentenac H, Thiband J B. 2000. A Shaker—like K+ channel with weak rectification is expressed in both source and sink phloem tissues ofArabidopsis. Plant Cell, 12: 837-851
    Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Gfignon C. 1996. Tissue- specific expression of Arabidopsis AKTl gene is consistent with a role in K+ nutrition. Plant J, 9: 195- 203
    Lahti R, Pitk?ranta T, 1988.Cloning and characterization of the gene encoding inorganic pyrophosphatase of Escherichia coli K-12. Bacteriol, 170(12): 5901–5907
    Leggewie G, Willmitzer L, Riesmeier J W.1997.Two cDNAs from potato are able to complement a phosphate uptake deficient yeast mutant:Identification of phosphate transporters from higher plants. Plant Cell, 9(3): 381- 392
    Leigh R A, Pope A J, Jennings I R. 1992. Kinetics of the vacuolar H+-pyrophosphatase, The roles of magnesium, pyrophosphate, and their complexes as substrates, activators, and inhibitors. Plant Physiol, 100: 1698-1705
    Li J, Yang H, Peer WA, 2005.Richter G et aL Arabldopsis H+-PPase AVPl Regulates Auxin-Mediated Organ Development. Science, 310(7): 121-125
    Long A R, Williams L E, Nelson S J, et al. 1995.Localization of membrane pyrophosphatase activityin ricinus communis seedlings. J Plant Physiol, 146: 629-638
    López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L. 2003.The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol, , 6: 280–287
    LüS Y,Jing Y X, Pang B.2005. cDNA Cloning of a Vacuolar H+-PyrOphOsphatase and Its Expression in Hordeum brevisubulatum(Trin.) Link in Response to Salt Stress. Agricultural Sciences in China, 4(4): 247-251
    Luttge U, Ratajczak R. 1997. The physiology, biochemistry and molecular biology of the plant vacuolar ATPase. The Plant Vacuole Adv Bot Res, 25: 253-296
    Maathusis FJM, Sanders D, Schroeder JI. 1997. Roles of higher plant K+ channels. Plant Physio1. 114: 1141- 1149
    Maathuis FJM. Sanders D. 1994. Machanism of high- affinity potassium uptake in roots of Arabidopsis thaliana. PNAS, 9l: 9272- 9276
    Madhur Gupta, Xuhua Qiu, Lei Wang, 2008. KT/HAK/KUP potassium transporters gene family and their whole-life cycle expression profile in rice (Oryza sativa) Mol Genet Genomics. 280(5): 437-452
    Maeshima M. 2001.tonoplast transporters: organization and function, Annu. Rev. Plant Physiol. Plant Mol. Biol, 52:469-497
    Maeshima M, Nakayasu Q, Kawauchi K, et al. 1999. Cycloprodigiosin uncouples H+ pyrop- hosphatase of plant vacuolar membrane in the presence of chloride ion. Plant Cell Physiol, 40: 439-442
    Maeshima M . 2000,Vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 1465 (1-2): 37-51 María A. Ba?uelos, Blanca Garciadeblas, Beatriz Cubero. 2002. Inventory and Functional Characterization of the HAK Potassium Transporters of Rice Plant Physiol, 130: 784-795
    Martínez-Cordero M A, Vicente Martínez and Francisco Rubio. 2005. High-affinity K+ uptake in pepper plants. Journal of Experimental Botany. 56(416): 1553-1562
    Matsumoto H, Chung GC. 1988. Increase in proton-transport activity of tonoplast vesicles as an adaptive response of barley roots to NaCI stress. Plant Cell Physiol, 29(7): 1133-1140
    MatsurrDio H,Yamaya T,Kasai M.1992.Changes of some properties of the plasma membrane enriched fraction of barley roots related to aluminium stress membrane associated ATPase alumininm and calcium.Soil Sci Plant Nutr,38(3):411-419
    Matsushita N, Motoh J. 1991.Characterization of Na exclusion mechanismof salt tolerant reed plants in comparison with salt- sensitive rice plants. Physiol Plant, 83: 170-176
    Marschner H.1995. Mineral nutrition of higher plants. London:Academic Press: 1889
    Mitsuda N, Enami K, Nakata M T et al. 2001.Novel type Arabidopsis thaliana H+-PPase is localized to the Golgi apparatus. FEBS Letter, 488 (1-2): 29-33
    Moran N, Ehrenstein G, 1wasa K, Mischke C, Bare C,Satter RL. 1988. Potassium channels in motor cells of Samanea saman: a patch—clamp study. Plant Physiol, 88: 643- 648
    Mouline K, Very A, Gaymard F, Boucherez J, Pilot G, DeVic M. 2002. Pollen tube development and competitive ability are impaired by dismp-tion of a Shaker K+ channel in Arabidpsis.Genes Dev, 16: 339-350
    Muchhal U S, Pardo J M, Raghothama K G. 1996. Phosphate transporters from the higher plant Arabidopsis thaliana. PNAS, 93(7): 10519- 10523
    Mudge S R, Rac A L, Diafloff E, et a1. 2002. Expression analysis suggests novel roles for membersof the Phtl family of phosphate transporters in Arabidopsis. The Plant Journal, 2002, 31: 341- 353
    Nagy R, Karandashov V, Chague V, et al. 2005. The characterization of novel mycorrhiza-spacific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncover functional redundancy in symbiotic phosphate transport in solanaceous species. The Plant Journal, 42: 236- 250
    Nakamura Y, Kasamo K, Shimosato N, et al. 1992.Stimulation of the extrusion of protons and H+-ATPase activities with the decline in pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCI stress and its relation to external levels of Ca2+ ions. Plant Cell Physiol, 33(2): 139-149
    Nakamura RL, Mc Kendree WL, Hirsch RE. 1995. Expression of an Arabidopsis potassium channel gene in guard cells. Plant Physiol. 109: 37l-374
    Nakanishi Y, Maeshima M, 1999a. Cycloprodigiosin Uncouples H+-pyrophosphatase of Plant Vacuolar Membranes in the Presence of Chloride Ion. Plant Cell Physiol, 40: 439– 442
    Nakanishi Y, Matsuda N Maeshima M. 1999b. Molecular cloning and sequencing of the cDNA for vacuolar H+-pyrophosphatase from Chara corallina1. Biochim Biophys Acta, 1418(1): 245-250
    Nakanishi Y, Saijo T, Wada Y, et al. 2001.Mutagenic analysis of functional residues in putative substrate-binding site and acidic domains of vacuolar H+-pyrophosphatase. J Biol Chem, 276 (10): 7654-7660
    Nakanishi Y, Yabe I, Maeshima M. 2003. Patch clamp analysis of a H+ pump heterologously expressed in giant yeast vacuoles. J Biol Chem, 134: 615-623
    Nakamori K, Takabatake R, Umehara Y et a1. 2002. Cloning, functional Expression and mutational analysis of a cDNA for lotus japonicus mitochondrial phosphate transporter. Plant and Cell Physiology, 2002, 43: 1250- 1253
    Newman E I, Rosalie E. Andrews.1973.Uptake of hosphorus and potassium in relation to root growth and root density. Plant and Soil,38( 1):49-69
    Niu X, Bressan RA, Hase PM, et al. 1995.Ion homeostasis in NaCI stress environment. Plant Physiol, 109: 735-742
    Obermeyer G, Sommer A, Bentrup FW. 1996. Potassium and voltage dependence of the inorganic pyrophosphatase of intact vacuoles from Chenopodium rubrum. Biochem Biophys Acta, 1284: 203-212
    Park S, Li JS, Pittman JK, Berkowitz GA, et al.2005.Up-regulation of a H+-pyrophosphatase (H+-PPase) as a strategy to engineer drought-resistant crop plants. PNAS, 102(52): 18830-18835
    Parvanova D, Ivanov S, Konstantinova T, et al. 2004.Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol Biochem, 42: 57-63
    Pascal M?ser, Sébastien Thomine, Julian I. Schroeder. 2001. Phylogenetic Relationships within Cation Transporter Families of Arabidopsis. Plant Physiol, 126: 1646-1667
    Pauline A B,Gustavo C M,Pamela J G. 1999. Regulation of S-like ribonuclease levels in Arabidopsis, Antisense Inhibition of RNSl or PHS2 Elevates Anthocyanin Accumulation. Plant Physiol, 119: 331-342
    Pilot G, Lacombe B, Gaymard F, Sentenac H. 2001. Guard cell inward K+ channel activity in Arabidopsis involves; expression of the twin·channel subunits KATI and KAT2. J Biol Chem, 276: 3215- 3221
    Poirier Y,Thoma S,SomerviHe C.1991. A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiology, 97: 1087-1093
    Pugliarella M C. Rasi-Caldogno F. 2006. The tonoplast H+-pyrophosphatase of radish seedlings: biochemical characteristics .Physiologia Plantarum, 83(3): 339– 345
    Rae A L, Cybinski D H, Jarmey J M, Smith F W.2003. Characterization of two phosphate transporters from barley: evidence for diverse function and kinetic properties among members of the Pht1 family. Plant Mol Biol, 53: 27-36
    Raghothama K G. 1999. Phosphate acquisition. Annu. Rev. Plant Physiol Plant Mol Biol, (50): 665-693
    Ranach C, Daram P, Brunner S. 2001. A phosphate transporter expressed in arbuscule containing cells in potato. Nature, 414: 462-166
    Ranseh C, Bucher M. 2002. Molecular mechanisms of phosphate transport in plants. Planta, 2002, 16:23-37
    Rausch C, Zimmermann P, Amrhein N. 2004. Expression analysis suggests novel roles for the plastidic phosphate trmmporter Pht2;1 in auto and heterotrophic tissues in potato and Arabidopsis. The Plant Journal, 39: 13-28
    Rea P A, Britten C J, Sarafian V. 1992. Common Identity of Substrate Binding Subunit of Vacuolar H+-Translocating Inorganic Pyrophosphatase of Higher Plant Cells. Plant Physiol. 100: 723-732
    Rea P A, Kim Y, Sarafian V. 1992. Vacuolar H+-translocating pyrophosphatase: a new category of ion translocase.Trends Biochem Sci,17: 348-353
    Rea P A, and R J Poole. 1993. Vacuolar H+-Translocating Pyrophosphatase. Annual Review of Plant Physiology and Plant Molecular Biology, 44: 157-180
    Reintanz B, Szyroki A, Ivashikina N, Ache P,Godde M, Becker D, Palme K and Hedrich R. 2002. AtKC1, a silent Arabidopsis potassium channelα-subunit modulates root hair K+influx. PNAS, 99(6): 4079-4084
    Rhodes D, Hanson AD. 1993. Quaternary ammonium and tertiary sulphonium compounds in higher plants, Annu Rev Plant Physiol Plant Mol Biol, 44: 357-384
    Rhodes J A. Gerdeman J W. 1975. Phosphate uptake zones of mycorrhizal and non- mycorrhizal onion. New physiol, 75:55-561
    Rigas S, Debrosses G Haralampidis K, Hatzopoulos E. 2001. Trh1 encodes a potassium transporter required for tip growth inArabidopsis roothairs. Plant Cell, 13: 139-151
    Robinson D G, Haschke H P, Hinz G. 1996. Immunological detection of tonoplast polypeptides in the plasma membrane of pea cotyledons. Planta, 198: 95-103
    Robinson D G, Hoppenrath M, Oberbeck K. 1998.Localization of pyrophosphatase and V-ATPase in Chlamydomonas reinhardtii. Bot Acta, 111: 108-122
    Rodriguez HG, Boberts JKM, Jordan WR, et al. 1997. Growth, water relations, and accumulation of organic and inorganic solutes in roots of Maize seedlings during salt stress. Plant Physiol, 113: 881-893
    Ros R, Romieu C, Gibrat R, et al. 1995.The plant inorganic pyrophosphatase does not transport K+ in vacuole membrane vesicles multilabeled with fluorescent probes for H+, K+, and membrane potential. J Biol Chem, 270: 4368-4374
    Sato MH, Kasahara M, Ishii N, et al. 1994.Purified vacuolar inorganic pyrophosphatase consisting of a 75-kDa polypeptide can pump H+ into reconstituted proteoliposomes. J Biol Chem, 269: 6725-6728
    SarafianV, Kim Y, Poole R J, et al. 1992. Molecular cloning and sequence of cDNA encoding thepyrophosphate-energized vacuolar membrane proton pump of Arabidopsis thaliana. PNAS, 89: 1775-1779
    Schachtman D R, Reid R J, Ayling S M. 1998. Phosphorus uptake by plants:From soil to cell. Plant Physiology, 116: 447-453
    Schunmann P H D, Richardson A E, Smith F W et a1. 2004. Charaeterization of promoter expression patterns derived from the Phtl phosphate transporter genes of barely (Hordeum vulgareL.). Journal of Exporimental Botany, 55: 855-865
    Schroeder, Ward JM, Gassmann W. 1994. Perspectives on the Physiology and structure of inward-rectifying K+ channels in higher plants: biophysical implications for K+ uptake. Annu Rev Biophys Biomol Struct, 23: 44l- 47l
    Sentenac H, Bonneaud N, Minet M, Lacroute F'Salmon JM, Gaymard F, Grignon C. 1992. Cloning and expression in yeast of a plant potassium ion transport system. Science, 256: 663-665
    Smith S E,Smith F A,Jakobsen I. 2003. Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiology, 33: 16-20
    Shanghai Institute of Plant Physiology and Ecology. 1999. Experimental Guide of Modern Plant Physiology. Beijing: Science Press: 66-67
    Smith FW. 2001. Sulphur and phosphorus transport systems in plants. Plant soil, 232: 109-118
    Smith S E, Read D J. 1997. Mycorrhizal symbiosis. Cambridge: Academie Press:199
    Smith S E, Smith F A, Jakobson I. 2004. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptske. New Phytologist, 162: 511-524
    Stanley Fidds,Ok-kyu Song. 1989. A novel genetic system to detect protein-protein Interactions. Nature, 1989, 340(6230): 245-246
    Staal M, Maathuis FJM, Elzenga TM, et al. 1991. Na+/H+ antiport activity in tonoplast vesicles from roots of the salt-tolerant Plantago maritima and the salt sensitive Plantago media. Physiol Plantrum, 82: 179-184
    Skene K R. 1998. Cluster roots: some ecological considerations. Journal of Ecology, 86(33): 1060 - 1064
    Sulian Lv, Kewei Zhang, Qiang Gao.2008. Overexpression of an H1-PPase Gene from Thellungiella halophila in Cotton Enhances Salt Tolerance and Improves Growth and Photosynthetic Performance. Plant Cell Physiol. 49(8): 1150–1164
    Sun J, Chen S, Dai S.2009. NaCl-induced alternations of cellular and tissue ion fluxes in roots of salt-resistant and salt-sensitive poplar species. Plant Physiol. 149(2): 1141-1153
    Sung JA, Shin R, Schachtman DP. 2004. Expression of KT/KUP genes in Arabidopsis and the role of root hairs in K+ uptake. Plant Physiol. 134: 1135- 1145
    Sze H, Schumacher K, Muller M L, et al. 2002.A simple nomenclature for a complex proton pump: VHA genes encode the vacuolar H+-ATPase. Trends Plant Sci, 7:157-161
    Talke IN, Blaudez D, Maathuis FJM, Sanders D. 2003. CNGCs: prime targets of plant cyclic nucleotide signaling,Trends Plant Sci,8:286-293
    Takahatake R, Hata S, Taniguchi M. 2002. Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell, 14:889-902.
    Taylor C B, Bariola P A, Del Cardayre S B. 1993. RNS2: A senescence associated RNase of Arabidopsis that diverged from the S-RNases before speciation. PNAS, 90: 5118- 5122
    Toshinobu S, Tan I, Hideaki S. 2001. A senescence associated S-like RNase in the multicellular green alga Volvox carteri. Gene, 274: 227-235
    Toshinobu S, Tan I, Hideaki S. 2001. A senescence-associatcd S-like RNase in the multicellular green alga Volvox carteri. Gene, 274: 227- 235
    Tsuyoshi Ohnishi, Robert S. Gall and Michael L. Mayer. 1975. An improved assay of inorganic phosphate in the presence of extralabile phosphate compounds: Application to the ATPase assay in the presence of phosphocreatine. Analytical Biochemistry, 69(1): 261-267
    Udge SR,Rae AL,Diatloff E,Smith FW. 2002. Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis.Plant J, 31: 34 1-353
    VahéSarafian, Ronald J. Poole.1989. Purification of an H+-Translocating Inorganic Pyrophosphatase from Vacuole Membranes of Red Beet. Plant Physiol. 91: 34-38
    Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, et al. 2005. Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol, 139: 1507-1517
    Véry AA,Sentenac H. 2003.Molecular mechanisms and regulation of K+transpoft in higher plants. Annu Rev Plant Biol, 54: 575-603
    Vicente-Agullo F, Rigas S, Desbrosses G, Dolan L, Hatzopoulos P, Grabov A. 2004. Potassium carrier TRH1 is required for auxin transport in Arabidopsis roots. Plant J, 40: 523–535
    Walker RR,Leigh RA. 1981.Mg2+-dependent,cation-stimulatedinorganic pyrophosphatase associated with vacuoles of red beet(Beta vulgaris L.). Planta, 153: 150-155
    Wang BS, Luttge U, Ratajczak R. 2001. Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot, 52 (365): 2355-2365
    Ward JM, Pei ZM, Schroeder JL. 1995. Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell, 7: 833-844
    Wegner LH And De Boer AH. 1997. Properties of Two Outward—Rectifying Channels in Root Xylem Parenchyma Cells Suggest a Role in K+Homeostasis and Long- Distance Signaling. Plant Physiol, 115:1707- 1719
    White.1990. Substrate Kinetics of the Tonoplast H+-Translocating Inorganic Pyrophosphatase and Its Activation by Free Mg2+. Plant Physiol, 93, 1063-1070
    Xu J, Y Wang, W Wu H. 2006. A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell,125:1347-1360
    Maeshima M, 2000.Vacuolar H+-pyrophosphatase. Biochim Biophys Acta, 1465 (1-2): 37-51 Xue ZY, Zhi DY, Xue GP, et al. 2004. Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na}/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science, 167: 849-859
    Yazaki Y, Asukagawa N, Ishikawa Y, et al. 1988.Estimation of cytoplasmic free Mg2+ levels and phosphorylation potentials in mung bean root tips by in vivo 31P NMR spectroscopy. Plant Cell Physiol, 29: 919-924
    Yin XY, Yang AF,Zhang KW, et al. 2004. Production and analysis of transgenic maize with improved salt tolerance by the introduction of AtNHXI gene. Acta Botanica Sinica, 46 (7): 854-861
    Yokoi S, Quintero FJ, Cubero B, et al. 2002. Differential expression functions of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J, 30 (5): 529-539
    Yoshida S, Matsuura C, Etani S. 1989.Impairment of tonoplast H+-ATPase as an initial physiological response of cells to chiling in mung bean. Plant Physiol, 89: 634-642
    Yoshida S. 1991a. Chilling-induced inactivation and its recovery of tonoplast H+-ATPase in mung bean cell suspension cultures. Plant Physiol, 95: 456-460
    Yoshida S, Matsuura-Endo M. 1991b. Comparison of temperature dependency of tonoplast translocating etween plants sensitive and insensitive to chilling. Plant Physiol, 95: 504-508
    Yoshida S.1994. Low temperature-induced cytoplasmic acidosis in cultured mung bean(Vigna radiate cells Plant Physiol, 104: 1131-1138
    Yu BJ, Lam HM, Shao GH, et al. 2005.Effects of salinity on activities of H+-ATPase,H+-PPase and membrane lipid composition in plasma membrane and tonoplast vesicles isolated from soybean (Glycine max L.) seedlings. J Environ Sci (China) ,17 (2):259-262
    Zhao L M, Versaw W K. 2003. A phosphate transporter from Medicago truncatula is expressed in the photosynthetic tissues of the plant and located in the chloroplast envelope. New Phytolngist, 157: 291-302
    Zhu J K. 2003.Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology, 6: 441-445
    Zingarelli L, Anzani P, Lado P. 1994.Enhanced K+-stimulated pyrophosphatase activity in NaCI-adapted cells of Acer pseudoplatanus. Physiologic Plantarum, 91: 510-516
    Z. Rengel.1992.Disturbance of cell Ca2+ homeostasis as a primary trigger of Al toxicity syndrome.Plant Ceil atid Environtvetit, 15, 931-938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700