用户名: 密码: 验证码:
铸铝合金的高低周复合疲劳裂纹扩展和寿命研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车轻量化设计已经成为降低汽车自重、提高燃油经济性的重要手段。铸铝合金以其较高的比强度和优良的综合性能已经逐渐取代传统的铸铁成为汽车发动机部件的主要材料。汽车发动机部件如气缸盖和气缸体等在工作状态下承受着复杂的高低周复合疲劳载荷历程,传统的常幅载荷高、低周疲劳设计方法不再适用于高低周复合疲劳载荷条件下材料与结构的耐久性分析与设计。铸铝合金材料的高低周复合疲劳行为研究将为新一代高性能轻量化汽车发动机部件的耐久性设计提供必要的理论基础。学术界和工程界对于高低周复合载荷作用下的疲劳裂纹扩展、疲劳损伤机理及疲劳寿命预测模型的研究仍然不够充分。本文针对Al-Si-Cu系铸铝合金,采用试验研究和理论建模的手段,开展高低周复合载荷条件的裂纹扩展试验和光滑试件疲劳寿命试验,研究疲劳裂纹扩展规律和疲劳损伤机制,并建立了疲劳裂纹扩展数值建模方法和高低周复合疲劳损伤模型。本文的主要工作和结论如下:
     (1)对铸铝合金E319-T7开展了常幅载荷疲劳裂纹扩展速度曲线试验和含拉伸或压缩过载的裂纹扩展试验。观察到单个压缩过载后的裂纹扩展加速现象:在单个压缩过载之后,裂纹扩展速度立即提高,然后很快回落至常幅载荷下的稳态水平。裂纹扩展试验结果表明,高低周复合载荷谱的压缩过载作用使裂纹发生额外长度的扩展,对材料与结构的耐久性具有一定的危害性。提出了裂纹长度增量ΔaUL来定量评估不同压缩过载水平和不同常幅载荷ΔK下的裂纹扩展加速水平。ΔaUL越大,表示压缩过载对裂纹扩展的贡献越大。本文的裂纹扩展试验和理论模型都指出:在相近的常幅载荷ΔK下,压缩过载越大导致ΔaUL越大;而当压缩过载相同时,ΔaUL随着常幅载荷ΔK的增大而增大。
     (2)提出并建立了基于临界距离理论的疲劳裂纹扩展数值建模方法。该模型基于裂尖临近距离处的塑性耗散能密度决定裂纹扩展的思想,具有明确的物理意义。开发了模拟裂纹扩展的有限元模型(包括相关子程序UEL和UVARM)和计算裂纹扩展速度的MATLAB后处理程序,基于R=0.1裂纹扩展试验曲线建立了裂纹扩展判据(即临界距离和临界塑性耗散能密度),定量预测了裂纹在不同应力比条件和含拉伸/压缩过载条件下的扩展速度,预测结果与试验结果基本一致。有限元分析表明压缩过载后的裂尖钝化作用是导致裂纹张开应力水平下降的原因;而裂纹张开应力的下降导致裂尖区域(包括临界距离处)塑性耗散能密度增量的增大,最终使裂纹扩展加速。压缩过载越大,裂纹张开应力水平下降越多,裂尖区域塑性耗散能密度增量越大,裂纹扩展加速越显著。此外还发现,裂纹扩展数值建模方法的临界距离与铸铝合金材料的微观组织特征和宏观力学性能相关,即临界距离、微观组织特征长度(SDAS)以及ΔKth对应的循环塑性区尺寸等三者比较接近,处于同一数量级。
     (3)分别建立了常幅高、低周疲劳寿命回归模型,拟合得到了概率疲劳寿命曲线。断口分析指出,近自由表面处的铸造缺陷为主要裂纹萌生源,其中以氧化膜最多。裂纹萌生源大小不一是导致常幅高、低周疲劳寿命分散性的主要原因。裂纹萌生源大小(等效直径)近似符合对数正态分布规律。裂纹源等效直径的累积概率与疲劳寿命在任意载荷水平的的累积概率具有明确的45度线性关系,即裂纹源等效直径的累积概率与疲劳寿命的累积概率相加等于1。考虑了试验本身分散性对高低周复合疲劳损伤计算精度的影响,提出并采用了概率疲劳寿命作为计算高低周复合疲劳损伤所需的常幅高、低周疲劳寿命。概率疲劳寿命由常幅载荷疲劳寿命回归模型结合高低周复合疲劳裂纹源等效直径的累积概率计算得到。
     (4)提出并建立了高低周复合疲劳损伤指数衰减模型。对铸铝合金AS7GU-T64光滑试件开展了高低周复合疲劳试验。研究了各种载荷条件对复合疲劳损伤的影响,载荷条件涉及高周应力幅值(σHa),低周相对应力范围(σ HLmin σmin)以及每个载荷块的高周循环数(η)。结果表明:复合疲劳损伤随着高周应力幅值和低周相对应力范围的增大而增大。η对复合疲劳损伤的影响可分为三个区间,每个区间都有明显特征。低周循环后裂纹张开应力的降低及回复为高周循环复合疲劳损伤产生与衰减的主要原因。当η较小时(小于约30),频繁施加的低周循环易于促使裂尖循环塑性区内的Si颗粒提前发生损伤,从而为裂纹在高周循环期间的扩展提供弱化的路径,加快裂纹扩展速度,η值越小,复合疲劳损伤量越大。在这个阶段,复合疲劳损伤是裂纹张开应力水平降低和周期性低周循环共同作用的结果。基于以上结果,通过拟合光滑试件高低周复合疲劳试验结果,提出并建立了高低周复合疲劳损伤指数衰减模型,该模型能够比较全面的描述各种载荷条件对复合疲劳损伤的影响。相比线性累积损伤模型,包含高低周复合疲劳损伤模型的累积损伤模型能够明显改进高低周复合疲劳寿命的预测精度。
The lightweight design in the automotive industry has been growing rapidly because of theincreasingly need to reduce weight and increase fuel efficiency. Automotive engine components, suchas cylinder heads and cylinder blocks, which are increasingly manufactured by cast aluminum alloysinstead of cast iron, are subjected to complex high-cycle and low-cycle (HCF-LCF) interaction loadhistories. The traditional durability design based on high-cycle and low-cycle fatigue alone might benon-conservative and not appropriate. Study on the HCF-LCF interaction fatigue behavior for castaluminum alloys would provide fundamental understandings for the development ofhigh-performance&light-weight engines in future. Unfortunately, the HCF-LCF interaction fatiguehas received limited investigation in the literature. The present thesis aims to get a betterunderstanding of the HCF-LCF interaction fatigue mechanisms using experimental and theoreticalapproaches. Fatigue crack propagation model which is able to predict fatigue crack propagation ratesunder HCF-LCF interaction loading are developed. The HCF-LCF interaction fatigue damage modelis also built based on the experimental results.
     The main work of this thesis is summarized as follows,
     (1) Fatigue crack propagation tests including the fatigue crack propagation curve testing andoverload/underlaod testing have been carried out. The crack propagation acceleration has beenobserved after the application of single underload. Specifically, crack propagation rates increaseimmediately after the application of the underload and then recover to the steady-state crackpropagation rate under constant amplitude loading. The traditional growth of crack under HCF-LCFinteraction loading would be detrimental for the durability of materials and structures. The incrementin crack length after the application of an underload, ΔaUL, has been proposed as a suitable factor toevaluate the magnitude of the crack acceleration. It has been found that ΔaULincreases with both theapplied underload level and the constant amplitude loading ΔK level at which the underload isapplied.
     (2) A numerical modeling approach based on the theory of critical distances has been developedto quantitatively simulate the fatigue crack propagation for cast aluminum alloys. In the proposedapproach, the fatigue crack advances by one element length when the plastic energy density at thecritical distance point ahead of crack tip accumulates to a critical level. A finite element model hasbeen developed to simulate the fatigue crack propagation and the calculation of fatigue crack propagation rates are carried out by a post-process program. The crack propagation criterion has beenestablished by fitting the simulated crack propagation curve to the R=0.1experimental data. Theeffects of different R-ratios and overload/underload are then accurately predicted using the establishedpropagation criterion. The proposed FE model has also successfully simulated the plasticity-inducedcrack closure. The findings from the present FE analyses indicate that crack opening stress intensity isreduced after an underload is applied, which directly affects the plastic energy dissipation ahead of thecrack tip, which has been assumed to be the main damage mechanism controlling the fatigue crackpropagation rate. For the W319-T7cast aluminum alloy, the secondary dendrite arm spacing (SDAS),the cyclic plastic zone size for ΔKthand the critical distance have been found to be of the same orderof magnitude.
     (3) Constant amplitude loading (CAL) HCF and LCF tests have been performed on the AS7GUcast aluminum alloy. The probabilistic fatigue lives are estimated by fit the life regression models tothe experimental S-N data. The scatter in fatigue life is related to the fatigue crack initiation sites.Fractographic studies indicated that fatigue cracks in most specimens initiated from casting defectslocated near specimen surface. Special attention has been paid to the fatigue crack initiator size, whichis the major cause of the scatter in fatigue life. The Lognormal distribution provides appropriate fit tothe fatigue initiator sizes. For both HCF and LCF tests, the cumulative density function (CDF) offatigue life has been found to be approximately equal to the complementary value of the CDF of thenear-surface fatigue initiator size. To take into consideration the influence of the inherent scatter infatigue life on the accuracy of interaction damage calculation, probabilistic fatigue lives are used asthe estimates of the CAL HCF and LCF lives for the calculation of HCF-LCF interaction fatiguedamage.
     (4) A HCF-LCF interaction damage model based on exponential decay law has been proposed.HCF-LCF interaction tests have been carried out under various load conditions. The effects of HCFstress amplitude (σHa), LCF relative stress range(σ H σLminmin), and number of HCF cycles perblock (η) are investigated. The interaction damage increases with HCF stress amplitude and LCFrelative stress range. The impact of the number of HCF cycles per block, η, can be divided into threeregions, each of which has distinct feature. The evolution of crack opening stresses following anunderload has been proposed as the major mechanism. The additional interaction damage caused bythe frequent applications of LCF cycles (η<30) is explained by the fracture or debonding of Siparticles within the LCF reversed plastic zone, which facilitates subsequent crack propagation. Aninteraction damage model based on exponential law has been proposed to account for the effects of the three loading parameters mentioned above. The proposed model can correctly characterize theinteraction damage for the load conditions investigated in this paper. The damage summation lawmodified by including the HCF-LCF interaction damage model has been found to achieve moreaccurate fatigue life predictions compared with the Miner’s linear damage summation law.
引文
[1]潘复生,张丁非.铝合金及应用.北京:化学工业出版社,2006:341~346.
    [2]姚贵升.汽车金属材料应用手册(下).北京:北京理工大学出版社,2000:450~463.
    [3] M.E. Seniw, M.E. Fine, E.Y. Chen, M. Meshii, J. Gray.1998. Relation of defect size and locationto fatigue failure in Al alloy A356cast specimens. W.O. Soboyejo, T.S. Srivatsan, High cyclefatigue of structural materials: symposium proceedings in honor of Professor Paul C. Paris,Warrendale, PA: TMS,1997:371–379.
    [4] J.M. Boileau, J.E. Allison. The Effect of Solidification Time and Heat Treatment on the FatigueProperties of a Cast319Aluminum Alloy. Metall. Mater. Trans. A,2003,34A:1807–1820.
    [5] M.J. Couper, A.E. Neeson, J.R. Griffiths. Casting defects and the fatigue behaviour of analuminium casting alloy. Fatigue Fract. Engng Mater. Struct.,1990,13(3):213–227.
    [6] Y. Jang, S. Jin, Y. Jeong, S. Kim. Fatigue Crack Initiation Mechanism for Cast319–T7AluminumAlloy. Metall. Mater. Trans. A,2009,40A:1579–1587.
    [7] B. Zhang, D.R. Poirier, W. Chen. Microstructural effects on high-cycle fatigue-crack initiation inA356.2casting alloy. Metall. Mater. Trans. A,1999,30A:2659–2666.
    [8] C.M. Styles, P.A.S. Reed. Fatigue of an Al-Si gravity die casting alloy. Materials Science Forum,2000,331:1457–1462.
    [9] K. Shiozawa, Y. Tohda, S-M. Sun. Crack initiation and small fatigue crack growth behaviour ofsqueeze-cast Al-Si aluminum alloys. Faituge Fract. Engng Mater. Struct,1997,20(2):237–247.
    [10] Q.G. Wang, D. Apelian, D.A. Lados. Fatigue behavior of A356-T6aluminum cast alloys. Part I.Effect of casting defects. Journal of Light Metals,2001,1:73–84.
    [11] C. Nyahumwa, N.R. Green, J. Campbell. Influence of casting technique and hot isostatic pressingon the fatigue of an Al-7Si-Mg alloy. Mater. Trans. A,2001,32A,349–358.
    [12] P. Paris, F. Erdogan. Critical analysis of crack propagation laws. Journal of Basic Engineering,1963,85(4):528–534.
    [13] B. Skallerud, T. Iveland, G. Harkegard. Fatigue life assessment of aluminum alloys with castingdefects. Engng Frac. Mech.,1993,44(6):857–874.
    [14] J.C. Newman Jr., E.P. Phillips, M.H. Swain. Fatigue-life prediction methodology usingsmall-crack theory. Int. J. Fatigue,1999,21(2):109–119.
    [15] K. Tanaka, Y. Akiniwa. Small fatigue cracks in advanced materials. G. Lütjering, H. Nowack,Fatigue ‘96Proc.6th Int. Fatigue Congr., Tarrytown, NY: Elsevier Science, Inc.,1996:27–38.
    [16] M.H. El Haddad, K.H. Smith, T.M. Topper. Fatigue crack propgation of short cracks. J. Eng.Mater. Technol.,1979,101:42-46.
    [17] N.E. Frost, D.S. Dugdale. The propagation of fatigue cracks in sheet specimens. J. Mech. Phys.Solids,1958,6:92–110.
    [18] H. Nisitani, M. Goto, N. Kawagoishi. Small-crack growth law and its related phenomena. Eng.Fract. Mech.,1992,41(4):499–513.
    [19] M.J. Caton, J.W. Jones, J.M. Boileau, J.E. Allison. The effect of solidification rate on the growthof small fatigue cracks in a cast319-type aluminum alloy. Metall. Mater. Trans. A,30A (1999)3055–3068.
    [20] A. Shyam, J. E. Allison, C. J. Szczepanski, T. M. Pollock, J. W. Jones. Small fatigue crackgrowth in metallic materials A model and its application to engineering alloys. Acta Materialia,2007,55:6606–6616.
    [21] B.A. Bilby, A.H. Cottrell, K.H. Swinden. The spread of plastic yield from a notch. Proc Roy SocA,1963,272:304.
    [22] J.R. Rice. Mechanics of Crack Tip Deformation and Extension by Fatigue. ASTM SpecialTechnical Publication,1967,415:247–311.
    [23] K. Morino, F. Nishimura, K. Takahashi, Y.H. Kim, H. Nisitani. Study of crack propagationbehavior on low cycle fatigue in squeeze cast aluminium alloy. Key Engineering Materials,2000,183:1017–1022.
    [24] J. Stolarz, O. Madelaine-Dupuich, T. Magnin. Microstructural factors of low cycle fatiguedamage in two phase Al-Si alloys. Materials Science and Engineering A,2001,299:275–286.
    [25] D. Ovono Ovono, I. Guillot, D. Massinon. Study on low-cycle fatigue behaviours of thealuminium cast alloys. Journal of Alloys and Compounds,2008,452:425–431.
    [26] A.R. Emami, S. Begum, D.L. Chen, T. Skszek, X.P. Niu, Y. Zhang, F. Gabbianelli. Cyclicdeformation behavior of a cast aluminum alloy. Materials Science and Engineering A,2009,516:31–41.
    [27] M.S. Song, Y.Y. Kong, M.W. Ran, Y.C. She. Cyclic stress-strain behavior and low cycle fatiguelife of cast A356alloys. International Journal of Fatigue,2011,33(12):1600–1607.
    [28]车欣. Al-Si-Cu-Mg-(RE)系铸铝合金的疲劳行为及其损伤机理.[博士学位论文].沈阳:沈阳工业大学,2011年.
    [29] T. Beck, D. L he, J. Luft, I. Henne. Damage mechanisms of cast Al–Si–Mg alloys undersuperimposed thermal–mechanical fatigue and high-cycle fatigue loading. Materials Science andEngineering A,2007,468:184–192.
    [30] T. Beck, I. Henne, D. L he. Lifetime of cast AlSi6Cu4under superimposed thermal–mechanicalfatigue and high-cycle fatigue loading. Materials Science and Engineering A,2008,483:382–386.
    [31] T.H. Topper and M.T. Yu. The effect of overloads on threshold and crack closure. Int J Fatigue,1985,7(3):159–164.
    [32] N.A. Fleck. Fatigue crack growth due to periodic underloads and overloads. Acta Metall.,1985,33:1339–1354.
    [33] V. Zitounis, P.E. Irving. Fatigue crack acceleration effects during tensile underloads in7010and8090aluminium alloys. International Journal of Fatigue,2007,29(1):108–118.
    [34]陈瑞峰,王利生,任明法,何宇延,傅祥炯.压载对裂纹超载迟滞作用的影响.大连理工大学学报,1997,37(1):24–28.
    [35] F.J. McMaster and D.J. Smith. The effect of load excursions and sheet thickness on crack closuremeasurements. ASTM Special Technical Publication,1999,1343:246–264.
    [36] R. Yang. Prediction of crack growth under complex loading cycles. Int. J. Fatigue,1994,16:397–402.
    [37] R.L. Carlson, G.A. Kardomateas. Effects of compressive load excursions on fatigue crack growth.Int. J. Fatigue,1994,16:141–146.
    [38] H. Buschermohle, D. Memhard, M. Vormwald. Fatigue crack growth acceleration or retardationdue to compressive overload excursions. G. Lütjering, H. Nowack, Fatigue ‘96Proc.6th Int.Fatigue Congr., Tarrytown, NY: Elsevier Science, Inc.,1996:583–588.
    [39] N. Ohrloff, A. Gysler, G. Lütjering. Fatigue crack propagation behaviour under variableamplitude loading. J. Petit, D.L. Davidson, S. Suresh, P. Rabbe, Fatigue Crack Growth UnderVariable Amplitude Loading, London: Elsevier Applied Science,1988:24–34.
    [40] C. Robin, M.L. Busch, M. Chergui, H.P. Lieurade, G. Pluvinage. Influence of series of tensile andcompressive overloads on316L crack growth. J. Petit, D.L. Davidson, S. Suresh, P. Rabbe,Fatigue Crack Growth Under Variable Amplitude Loading, London: Elsevier Applied Science,1988:87–97.
    [41] R.I. Stephens, D.K. Chen, B.W. Hom. Fatigue crack growth with negative stress ratio followingsingle overloads in2024-T3and7075-T6aluminium alloys. ASTM Special TechnicalPublication,1976,595:172–183.
    [42] J.A. Henkener, T.D. Scheumann, A.F. Grandt. Fatigue crack growth behaviour of a peakagedAl–2.56Li-00.092r alloy. H. Kitagawa, H. Kitagawa, T. Tanaka, Proc.4th InternationalConference Fatigue and Fatigue Thresholds, UK: MPCE,1990:957–962.
    [43] S. M. Russ. Effect of LCF on HCF crack growth of Ti-17. International Journal of Fatigue,2005,27:1628–1636.
    [44] A.A. Dabayeh, T.H. Topper. Changes in crack-opening stress after underloads and overloads in2024-T351aluminum alloy. Int. J. Fatigue,1995,17(4):261–269.
    [45] W. Yu, R.O. Ritchie. Fatigue crack propagation in2090aluminium-lithium alloy: effect ofcompression overload cycles. J Eng Mater Technol,1987,109:81–85.
    [46] A. Varvani, T.H. Topper. Closure-free biaxial fatigue crack growth rate and life prediction undervarious biaxiality ratios in SAE1045steel. Fatigue Fract Eng Mater Struct,1999,22(8):697–710.
    [47] F.S. Silva. Fatigue crack propagation after overloading and underloading at negative stress ratios.International Journal of Fatigue,2007,29:1757–1771.
    [48] F. Romeiro, M. de Freitas, S. Pommier. Effect of overloads and underloads on fatigue crackgrowth and interaction effect. ASTM Special Technical Publication,2003,1439:453–467.
    [49] R.L. Carlson, G.A. Kardomateas. Effects of compressive load excursions on fatigue crack growth.Int. J. Fatigue,1994,16:141–146.
    [50] W. Elber, The Significance of Fatigue Crack Closure. ASTM Special Technical Publication,1971,486:230–242.
    [51] S. Suresh, R.O. Ritchie, Propagation of Short Fatigue Cracks. International MetallurgicalReviews,1984,29:445–476.
    [52] G.T. Gary, J.C. Williams, A.W. Thompson. Roughness Induced Crack Closure an Explanation forMicro-Structurally Sensitive Fatigue Crack Growth. Metallurgical Transactions,1983,14:421–433.
    [53] D.E. Macha, D.M. Corby, J.W. Jones. On the Variation of fatigue-Crack-Opening Load withMeasurement Location, Experimental Mechanics,1979,19(6):207–213.
    [54] D. Kujawski. A new(Δ K+K)0.5maxDriving Force Parameter for Crack Growth in AluminumAlloys, International Journal of Fatigue,2001,23(8):733–740.
    [55] R.E. Garz, M.N. James. Observations on Evaluating Fatigue Crack Closure from ComplianceTraces. International Journal of Fatigue,1989,11:437–440.
    [56] B.K. Parida, T. Nicholas. Effect of Stress Ratio on Fatigue Crack Growth in a TitaniumAluminide Alloy. International Journal of Fracture,1991,52: R51–R54.
    [57] T.T. Shih, R.P. Wei. A Study of Crack Closure in Fatigue. Engineering Fracture Mechanics,1974,6:19–32.
    [58] J.A. Henkener, T.D. Scheumann, A.F. Grandt. Fatigue crack growth behaviour of packagedAl–2.6LI–0.09ZR alloy. H. Kitagawa, H. Kitagawa, T. Tanaka, Proc.4th InternationalConference Fatigue and Fatigue Thresholds, UK: MPCE,1990:957–962.
    [59] A.A. Dabayeh, A.J. Berube, T.H. Topper. An experimental study of the effect of a flaw at a notchroot on the fatigue life of cast Al319. Int. J. Fatigue,1998,20(7):517–530.
    [60] M. Khalil, T.H. Topper. Prediction and correlation of the average crack-opening stress withservice load cycles. Int. J. Fatigue,2003,25(7):661–670.
    [61] M. El-Zeghayar, T.H. Topper, K.A. Soudki. A model of crack opening stresses in variableamplitude loading using smooth specimen fatigue test data for three steels. International Journalof Fatigue,2011,33:1337–1350.
    [62] R.C. McClung, H. Sehitoglu. On the finite element analysis of fatigue crack closure.1. Basicmodeling issues Source: Engineering Fracture Mechanics, v33, n2, p237–252,1989
    [63] R.C. McClung, H. Sehitoglu. On the finite element analysis of fatigue crack closure. II.Numerical results. Engineering Fracture Mechanics,1989,33(2):253–272.
    [64] K. Solanki, S.R. Daniewicz, J.C. Newman Jr.. Finite element analysis of plasticity-inducedfatigue crack closure: an overview. Engineering Fracture Mechanics,2004,71(2):149–171.
    [65] X. Zhang, A.S.L. Chan, G.A.O. Davies. Numerical simulation of fatigue crack growth undercomplex loading sequences. Engineering fracture Mechanics,1992,42(2):305–321.
    [66] J. Schijve, Fatigue crack propagation in light alloy sheet material and structures. Advances inAeronautical Sciences,1962,3:387–408.
    [67] M. Lang, X. Huang. The influence of compressive loads on fatigue crack propagation in metals.Fatigue Fract Engng Mater Struct,1998,21:65–83.
    [68] M. Lang. A model for fatigue crack growth. II. Modelling. Fatigue Fract Engng Mater Struct,2000,23:603–617.
    [69] K. Sadananda, A.K. Vasudevan, G. Glinka. Critical Parameters For Fatigue Damage.International Journal of Fatigue,2001,23: S39–S53.
    [70] H. Tsukuda, H. Ogiyama, T. Shiraishi. Fatigue Crack Growth And Closure At High Stress Ratios.Fatigue Fract. Engng. Mater. Struct.,1995,18(4):503–514.
    [71] F. Ellyin, J. Wu. Numerical investigation on the effect of an overload on fatigue crack openingand closure behaviour. Fatigue Fract Engng Mater Struct,1999,22:835–848.
    [72] R.W. Lardner. A Dislocation Model for Fatigue Crack Growth in Metals. Phil. Mag.,1967,17,71–82.
    [73] L.P. Pook, N.E. Frost. Fatigue Crack Growth Theory. Internat. J. Fracture,1973,9(1):53–61.
    [74] J.F. Knott. Models of fatigue crack growth. R.A. Smith, Fatigue Crack Growth:30Years ofProgress, Proceedings of a Conference on Fatigue Crack Growth Cambridge, UK: Pergamon,1986:31–52.
    [75] S.R. Bodner, D.L. Davidson. J. Lankford. A description of fatigue crack growth in terms ofplastic work. Engineering Fracture Mechanics,1983,17(2):189–191.
    [76] N.W. Klingbeil. A total dissipated energy theory of fatigue crack growth in ductile solids.International Journal of Fatigue,2003,25(2):117–128.
    [77] K.N. Pandey, S. Chand. Fatigue and crack growth model for constant amplitude loading. Fatigueand Fracture of Engineering Material and Structures,2004,27(6):459–472.
    [78] J.T.P. de Castro, M.A. Meggiolaro, A.C. de Oliveira Miranda, Fatigue crack growth predictionsbased on damage accumulation calculations ahead of the crack tip. Computational MaterialsScience,2009,46(1):115–123.
    [79] D. Kujawski, F. Ellyin. A fatigue crack propagation model. Engineering Fracture Mechanics,1984,20:695–704.
    [80] G. Glinka. A cumulative model of fatigue crack growth. Int. J. Fatigue,1982,4(2):59–67.
    [81] G. Glinka, C. Robin, G. Pluvinage, C. Chehima. A cumulative model of fatigue crack growth andthe crack closure effect. International Journal of Fatigue,1984,6(1):37–47.
    [82] R.P. Skelton, T. Vilhelmsen, G.A. Webster. Energy criteria and cumulative damage during fatiguecrack growth. International Journal of Fatigue,1998,20(9):641–649.
    [83] D.K. Brown, M.J. Cowling. Numerical simulation of fatigue crack growth. International Journalof Fatigue,1983,5(4):199–206.
    [84] J.W. Hutchinson. Singular behaviour at the end of a tensile crack in a hardening material. J.Mech. Phys. Solids,1968,16:13–31.
    [85] G.R. Irwin. Fracture mechanics. J.N. Goodier, N.J. Hoff, Proceedings of the1st Symposium onNaval Structural Mechanics, New York: Pergamon,1960:557–592.
    [86] G.C. Sih, E.T. Moyer Jr.. Path dependent nature of fatigue crack growth. Engineering FractureMechanics,1983,17(3):269–280.
    [87] V. Oliva; I. Kunes. FEM analysis of cyclic deformation around the fatigue crack tip after a singleoverload. ASTM Special Technical Publication,1993,1211:72–90.
    [88] V. Oliva, L. Cseploe, A. Materna, L. Blahova. FEM simulation of fatigue crack growth. MaterialsScience&Engineering A,1997,234–236:517–520.
    [89] D. Cojocaru, A.M. Karlsson. Assessing plastically dissipated energy as a condition for fatiguecrack growth. International Journal of Fatigue,2009,31(7):1154–1162.
    [90] P.J. Hurley, W.J. Evans. A new method for predicting fatigue crack propagation rates. MaterialsScience and Engineering A,2007,466:265–273.
    [91] K. Walker, The Effect of Stress Ratio During Crack Propagation and Fatigue for2024–T3and7075-T6Aluminum. ASTM Special Technical Publication,1970,462:1–14.
    [92] Y. Jiang, M. Feng. Journal of Engineering Materials and Technology,2004,126:77–86.
    [93] A. Palmgren. Die Lebensdauer von Kugellagern. Verfahrenstechinik, Berlin,1924,68:339–341.
    [94] M.A. Miner. Cumulative damage in fatigue. Journal of Applied Mechanics,1945,67:A159–A164.
    [95] A. Fatemi, L. Yang. Cumulative Fatigue Damage and Life Prediction Theories: A Survey of theState of the Art for Homogeneous Materials. International Journal of Fatigue,1998,20:9–34.
    [96]陶表福,候静泳,谢济洲. GH901合金的高低周复合疲劳及其累积损伤研究.航空材料学报,1990,10:35–43.
    [97]李睿,鲍蕊,费斌军.2024-T3铝合金孔板高低周复合疲劳试验研究.飞机设计,2010,30(3):18–22.
    [98]赵振华,陈伟,吴铁鹰.高低周复合载荷下的钛合金疲劳寿命估算.机械强度.2011,33(4):629–632.
    [99] V.I. Trufyakov, V.S. Kovalchuk. Determination of life under two-frequency loading: Report2:Proposed method. Strength of Materials,1982,10:15–20.(In Russian)
    [100] R.W. Suhr. Fatigue Fract. Engng Mater. Struct.1992,15(4):399–415.
    [101] D.L. DuQuesnay, M.A. Pompetzki, T.H. Topper, M.T. Yu. Effects of Compression andCompressive Overloads on the Fatigue Behavior of a2024-T351Aluminum Alloy and a SAE1045Steel. ASTM Special Technical Publication,1988,942:173–183.
    [102] M. Vormwald, T. Seeger. The consequences of short crack closure on fatigue crack growthunder variable amplitude loading. Fatigue Fract. Engng Mater. Struct.,1991,14(2/3):205–225.
    [103] R.C. McClung, H. Sehitoglu. Closure behaviour of small cracks under high strain fatiguehistories. ASTM Special Technical Publication,1988,982:279–299.
    [104] M.A. Pompetzki, T.H. Topper, D.L. DuQuesnay. The effect of compressive underloads andtensile overloads on fatigue damage accumulation in SAE1045steel. Int J Fatigue,1990,12(3):207–213.
    [105] M.A. Pompetzki, T.H. Topper, D.L. DuQuesnay, M.T. Yu. The effect of compressive underloadsand tensile overloads on fatigue damage accumulation in2024-T351aluminum. Journal ofTesting and Evaluation,1990,18:53–61.
    [106] R. Jurcevic, D.L. Duquesnay, T.H. Topper, M.A. Pompetzki. Fatigue damage accumulation in2024-T351aluminium subjected to periodic reversed overloads. Int. J. Fatigue1990,12,259–266.
    [107] G.R. Irwin. Plastic zone near a crack and fracture toughness. Mechanical and MetallurgicalBehauior of Sheet Materials, Seventh Sagamore Ordnance Materials Research Conference,1960,IV-63-IV-78.
    [108] M. Skorupa. Load interaction effects during fatigue crack growth under variable amplitudeloading-a literature review. PART I: EMPIRICAL TRENDS. Fatigue Fract. Eng. Mater. Struct.,1998,21:987–1006.
    [109] J. Ahmad, V. PapaspyroPoulos, A.T. Hopper. Elast-plastic analysis of edge-notched panelssubjected to fixed grip loading. Eng. Fract. Mech.,1991,38:283–294.
    [110] D.B.R. John, D. Coker. Stress intensity factor and compliance solutions for a single edgenotched specimen with clamped ends. Eng. Fract. Mech.,1994,47:521–532.
    [111] ABAQUS user’s manual V6.8;2008
    [112] A.H. Noroozi, G. Glinka, S. Lambert. A study of the stress ratio effects on fatigue crack growthusing the unified two-parameter fatigue crack growth driving force. Int. J. Fatigue,2007,29:1616–1633.
    [113] D.A. Lados, D. Apelian. Relationships between microstructure and fatigue crack propagationpaths in Al-Si-Mg cast alloys. Eng. Fract. Mech.,2008,75:821–832.
    [114] D. Taylor. The theory of critical distances. Eng. Fract. Mech.,2008,75:1696–1705.
    [115] L. Susmel. The theory of critical distances: a review of its applications in fatigue. Eng. Fract.Mech.,2008,75:1706–1724.
    [116] T. Yokobori, S. Konosu. Effects of ferrite grain size, notch acuity and notch length on brittlefracture stress of notched specimens of low carbon steel. Engng Fract Mech,1977,9:839–847.
    [117] J. Lemaitre, J.L. Chaboche. Mechanics of Solid Materials. UK: Cambridge University Press,1990.
    [118] P.F.P. de Matos, D. Nowell. Numerical simulation of plasticity-induced fatigue crack closurewith emphasis on the crack growth scheme:2D and3D analyses. Engineering FractureMechanics,2008,75(8):2087–2114.
    [119] G. Chalant, L. Remy. Model of fatigue crack propagation by damage accumulation at the cracktip. Eng. Fract. Mech.1983,18:939–952.
    [120] S. Antolovich, A. Saxena, G.R. Chanani. A model for fatigue crack propagation. Eng. Fract.Mech.,1975,7:649–652.
    [121] F.G. Pascual, W.Q. Meeker. Estimating fatigue curves with the random fatigue-limit model.Technometrics,1999,41(4):277–290.
    [122] C.C. Engler-Pinto Jr., J.V. Lasecki, R.J. Frisch Sr., M.A. DeJack, J.E. Allison. Statisticalapproaches applied to fatigue test data analysis. SAE2005-01-0802,2005.
    [123] C.C. Engler-Pinto Jr., J.V. Lasecki, J.M. Boileau, J.E. Allison. A Comparative Investigation onthe High Temperature Fatigue of Three Cast Aluminum Alloys. SAE2004-01-1029,2004.
    [124] K.N. Smith, P. Watson, T.H. Topper. Stress-strain function for the fatigue of metals. J. Mater.,1970,5(4):767–778.
    [125] N.E. Dowling. Mechanical Behavior of Materials: Engineering Methods for Deformation,Fracture, and Fatigue,2nd ed., New York: Prentice Hall,1998.
    [126] A. Ince, G. Glinka. A modification of Morrow and Smith-Watson-Topper mean stress correctionmodels. Fatigue Fract. Eng. Mater. Struct.,2011,34:854–867.
    [127] T. Zhao, Y. Jiang. Fatigue of7075-T651aluminum alloy. Int. J. Fatigue,2008,30:834–849.
    [128] A. Fatemi, A. Plaseied, A.K. Khosrovaneh, D. Tanner. Application of bi-linear log-log S-Nmodel to strain-controlled fatigue data of aluminum alloys and its effect on life predictions. Int. J.Fatigue,2005,27:1040–1050.
    [129] MIL-HDBK-17(1E), Composite Materials Handbook,1997.
    [130] J.Z. Yi, Y.X. Gao, P.D. Lee, H.M. Flower, T.C. Lindley. Scatter in fatigue life due to effects ofporosity in cast A356-T6aluminum-silicon alloys. Metall. Mater. Trans. A,2003,34A:1879–1890.
    [131] H. Abdel-Raouf, T.H. Topper, A. Plumtree. A short fatigue crack model based on the nature ofthe free surface and its microstructure. Scripta Metallurgica et. Materialia,1991,25:597–602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700