用户名: 密码: 验证码:
Stats激活对缺血/再灌注诱导近曲肾小管上皮细胞凋亡的影响及其细胞内机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景及目的:急性肾衰竭(Acute renal failure,ARF)是常见的临床综合症。近半个世纪以来,在住院病人、尤其是重症监护病人中,ARF病死率一直居高不下。ARF最主要的形式是急性肾小管坏死(acute tubular necrosis,ATN),而凋亡是ATN时肾小管上皮细胞死亡的主要方式,是ATN治疗的重要靶点。但目前对引起肾小管上皮细胞凋亡的分子机制尚不清楚。深入了解ATN时凋亡的细胞内机制非常重要。Janus激酶-信号传导与转录活化因子(Januskinase-signal transducers and activators of transcription,Jak-Stat)信号途径可介导炎症、增殖、凋亡、发育、肿瘤等过程,并受细胞因子信号传导抑制因子(suppressors of cytokinesignaling,SOCS)负反馈调控。目前尚不清楚Jak-Stat-SOCS通路在ATN病理生理过程中的作用。本研究旨在探讨Jak-Stat-SOCS信号途径是否参与缺血再灌注诱导ATN中的发病机制,试图明确该途径对缺血再灌注诱导的近曲肾小管上皮细胞凋亡的调控作用,以期寻找阻断上皮细胞凋亡、改善ARF临床预后的有效方法。
     方法:制作缺血再灌注肾损伤的细胞模型,诱导体外培养的近曲肾小管上皮细胞凋亡。Western印迹、细胞免疫荧光染色检测Stat1,Stat3激活。使用特异性阻断剂AG 490抑制酪氨酸激酶Jak2,或利用RNA干涉(RNA interference,RNAi)技术分别基因敲低Stat1和Stat3,通过流式细胞术检测其对缺血再灌注诱导近曲肾小管上皮细胞凋亡的影响,判定Stat1和Stat3激活在缺血再灌注诱导肾小管上皮细胞凋亡中的作用。应用反转录-多聚酶链反应(reversetranscription-polymerase chain reaction,RT-PCR),Western印迹检测Stats负反馈因子SOCS3是否被诱导表达,并利用RNAi技术基因敲低SOCS3,通过Western印迹和流式细胞术观察SOCS3敲低后对缺血再灌注诱导Stat1,Stat3激活和上皮细胞凋亡的影响,探讨Jak2-Stat1/Sta3-SOCS3途径激活在缺血再灌注诱导肾小管上皮细胞凋亡中的作用。最后稳定转染Stat3组成性激活质粒,通过流式细胞术检测Stat3组成性激活质粒过表达对缺血再灌注诱导小管上皮细胞凋亡和线粒体膜电位的影响,以进一步明确Stat3激活的保护作用及机制。
Background and objective Acute renal failure (ARF) remains a common clinical entity and results in unacceptable high mortality among hospitalized patients, especially in the intensive care unit setting. Despite advances in medical care, the outcome has not improved during the past 50 years. Acute renal failure(ATN) is the most common form of ARF and is characterized by tubular cell death. Recent evidence suggests that apoptosis is the primary mode of tubular cell death found in ATN and apoptosis is an important therapeutic target in ATN. Unfortunately, the molecular basis underlying apoptosis during ATN is largely unknown. It is important to understand the intracellular signaling pathways that are involved in apoptosis in ATN. Janus kinase-signal transducers and activators of transcription(Jak-Stat) pathway participates in imflammation, apoptosis, proliferation, tumorigenesis and negatively regulated by the family of suppressors of cytokine signaling ( SOCS ) . To our knowledge , there have been no reports regarding the role of Jak-Stat-SOCS in ATN and their contribution to tubular cell apoptosis. The present study was conducted to examine the role of the Jak-Stat-SOCS pathway in kidney proximal tubular epithelial cell apoptosis following ischemia and reperfusion injury (IRI) , and hopefully, to open a new therapeutic modality to mitigate the development of ATN.
引文
[1] Hugh R B, Michael R. C, Wilfred L. Acute Renal Failure. Brenner & Rector's The Kidney, 7th ed., 2004: 1215
    [2] Ympa YP, Sakr Y, Reinhart K, et al. Has mortality from acute renal failure decreased? A systematic review of the literature. Am J Med 2005; 118:827-832
    [3] Uchino S, Kellum JA, Bellomo R, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005 Aug 17;294(7):813-8
    [4] Wang Y, Cui Z, Fan M. Retrospective analysis on Chinese patients diagnosed with acute renal failure hospitalized during the last decade (1994-2003). Am J Nephrol. 2005 Sep-Oct;25(5):514-9.
    [5] Schrier RW, Wang W, Poole B, et al. Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 2004; 114:5-14
    [6] Norbert L, Wire V, Raymond V. Acute renal failure. Lancet 2005; 365: 417-430
    [7] Devarajan P. Cellular and molecular derangements in acute tubular necrosis. Curr Opin Pediatr. 2005 Apr; 17(2): 193-9
    [8] Lorz C, Benito-Martin A, Justo P, et al. Modulation of renal tubular cell survival: where is the evidence? Curt Med Chem. 2006;13(4):449-54
    [9] Saikumar P, Venkatachalam MA. Role of apoptosis in hypoxic/ischemic damage in the kidney. Semin Nephrol 2003; 6:512-521.
    [10] Kaushal GP, Basnakian AG, Shah SV. Apoptotic pathways in ischemic acute renal failure. Kidney Int 2004; 66:500-505.
    [11] Kelly KJ, Plotkin Z, Dagher PC. Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J Clin Invest 2001;108: 1291-1298
    [12] Kelly KJ, Plotkin Z,Vulgamott SL, et al. p53 mediates the apoptotic response to GTP depletion after renal ischemia-reperfusion: Protective role of a p53 inhibitor. J Am Soc Nephrol 2003;14:128-138
    [13] Ortiz A, Justo P, Sanz A, et al. Targeting apoptosis in acute tubular injury. Biochem Pharmacol. 2003 Oct 15;66(8): 1589-94.
    [14] Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT. Science. 2002 May 31;296(5573): 1653-5
    [15] Levy DE, Darnell JE Jr. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002 Sep;3(9):651-62
    
    [16] Calo V, Migliavacca M, Bazan V, et al. STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol. 2003 Nov; 197(2):157-68.
    
    [17] Bromberg J. Stat proteins and oncogenesis. J Clin Invest. 2002 May; 109(9): 1139-42
    
    [18] Darnell JE. Validating Stat3 in cancer therapy.Nat Med. 2005 Jun;11(6):595-6
    
    [19] Xuan YT, Guo Y, Han H, et al. An essential role of the JAK-STAT pathway in ischemic preconditioning. Proc Natl Acad Sci U S A. 2001 Jul 31 ;98(16):9050-5.
    
    [20] Stephanou A, Brar BK, Scarabelli TM, et al. Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem. 2000 Apr 7;275(14):10002-8
    
    [21] Oshima Y, Fujio Y, Nakanishi T, et al. STAT3 mediates cardioprotection against ischemia/reperfusion injury through metallothionein induction in the heart. Cardiovasc Res. 2005 Feb 1;65(2):428-35
    
    [22] Abell K, Bilancio A, Clarkson RW, et al. Stat3-induced apoptosis requires a molecular switch in PI(3)K subunit composition. Nat Cell Biol. 2005 Apr;7(4):392-8. Epub 2005 Mar 27.
    
    [23] Wormald S, Hilton DJ. Inhibitors of cytokine signal transduction. J Biol Chem. 2004 Jan 9;279(2):821-4
    
    [24] Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol. 2002 Jun;2(6):410-6
    
    [25] Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol. 2003 Dec;4(12):1169-76
    
    [26] Kamizono S, Hanada T, Yasukawa H, et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem. 2001; 276(16): 12530-8
    
    [27] Thirone AC, Scarlett JA, Gasparetti AL, et al. Modulation of growth hormone signal transduction in kidneys of streptozotocin-induced diabetic animals: effect of a growth hormone receptor antagonist. Diabetes. 2002 Jul;51(7):2270-81
    
    [28] Banes AK, Shaw S, Jenkins J, et al. Angiotensin II blockade prevents hyperglycemia-induced activation of JAK and STAT proteins in diabetic rat kidney glomeruli. Am J Physiol Renal Physiol. 2004 Apr;286(4):F653-9
    
    [29] Wang X, Shaw S, Amiri F, et al. Inhibition of the Jak/STAT signaling pathway prevents the high glucose-induced increase in tgf-beta and fibronectin synthesis in mesangial cells. Diabetes. 2002 Dec;51(12):3505-9
    [30] Takahashi T, Abe H, Arai H, et al. Activation of STAT3/Smad1 is a key signaling pathway for progression to glomerulosclerosis in experimental glomerulonephritis. J Biol Chem. 2005 Feb 25;280(8):7100-6
    [31] Zhang W, Chen X, Shi S, et al. Expression and activation of STAT3 in chronic proliferative immune complex glomerulonephritis and the effect of fosinopril. Nephrol Dial Transplant. 2005 May;20(5):892-901
    [32] Chen X, Liu W, Wang J, et al.STAT1 and STAT3 mediate thrombin-induced expression of TIMP-1 in human glomerular mesangial cells. Kidney Int. 2002 Apr;61 (4): 1377-82.
    [33] Chen X, Wang J, Zhou F, et al.STAT proteins mediate angiotensin Ⅱ-induced production of TIMP-1 in human proximal tubular epithelial cells. Kidney Int. 2003 Aug;64(2):459-67.
    [34] Yokota N, Burne-Taney M, Racusen L, et al. Contrasting roles for STAT4 and STAT6 signal transduction pathways in murine renal ischemia-reperfusion injury. Am J Physiol Renal Physiol. 2003 Aug;285(2):F319-25.
    [35] Yukawa K, Kishino M, Goda M, et al. STAT6 deficiency inhibits tubulointerstitial fibrosis in obstructive nephropathy. Int J Mol Med. 2005 Feb;15(2):225-30.
    [36] Daemen MA, van't Veer C, Denecker G, et al. Inhibition of apoptosis induced by ischemia-reperfusion prevents inflammation. J Clin Invest. 1999 Sep; 104(5):541-9
    [37] Kelly KJ, Sutton TA, Weathered N, et al. Minocycline inhibits apoptosis and inflammation in a rat model of ischemic renal injury. Am J Physiol Renal Physiol. 2004 Oct;287(4):F760-6
    [38] Lee HT, Gallos G, Nasr SH, et al. Al adenosine receptor activation inhibits inflammation, necrosis, and apoptosis after renal ischemia-reperfusion injury in mice. J Am Soc Nephrol. 2004 Jan; 15(1): 102-11
    [39] Basnakian AG, Ueda N, Kaushal GP, et al. DNase Ⅰ-like endonuclease in rat kidney cortex that is activated during ischemia/reperfusion injury. J Am Soc Nephrol. 2002 Apr;13(4):1000-7
    [40] Sharples EJ, Patel N, Brown P, et al.Erythropoietin protects the kidney against the injury and dysfunction caused by ischemia-reperfusion. J Am Soc Nephrol. 2004 Aug;15(8):2115-24.
    [41] Tanaka T, Nangaku M, Miyata T, et al. Blockade of calcium influx through L-type calcium channels attenuates mitochondrial injury and apoptosis in hypoxic renal tubular cells. J Am Soc Nephrol. 2004 Sep;15(9):2320-33
    
    [42]Wang J, Wei Q, Wang CY, et al. Minocycline up-regulates Bcl-2 and protects against cell death in mitochondria. J Biol Chem. 2004 May 7;279(19):19948-54
    
    [43] Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998 Aug 28;281(5381):1305-8.
    
    [44] Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest. 2005 Oct;115(10):2648-55
    
    [45] Padanilam BJ. Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol. 2003 Apr;284(4):F608-27
    
    [46] Negoro S, Kunisada K, Fujio Y, et al. Activation of signal transducer and activator of transcription 3 protects cardiomyocytes from hypoxia / reoxygenation-induced oxidative stress through the upregulation of manganese superoxide dismutase. Circulation. 2001 Aug 28;104(9):979-811
    
    [47] Haga S, Terui K, Zhang HQ, et al. Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. J Clin Invest. 2003;112(7):989-98
    
    [48] Shen Y, Devgan G, Darnell JE Jr, et al. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Statl. Proc Natl Acad Sci U S A. 2001 Feb 13;98(4):1543-8
    
    [50] Chin YE, Kitagawa M, Kuida K, et al. Activation of the STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol Cell Biol. 1997 Sep;17(9):5328-37
    
    [51] Janjua S, Stephanou A, Latchman DS. The C-terminal activation domain of the STAT-1 transcription factor is necessary and sufficient for stress-induced apoptosis. Cell Death Differ. 2002 Oct;9(10):1140-6
    
    [52] Stephanou A, Scarabelli TM, Townsend PA, et al. The carboxyl-terminal activation domain of the STAT-1 transcription factor enhances ischemia / reperfusion induced apoptosis in cardiac myocytes. FASEB J. 2002 Nov;16(13):1841-3
    
    [53] Lieberthal W, Nigam SK, Molitoris BA, et al. Acute renal failure.II. Experimental models of acute renal failure: imperfect but indispensable. Am J Physiol Renal Physiol 278: F1-F12, 2000.
    
    [54] Hallett MA, Dagher PC, Atkinson SJ. Rho GTPases show differential sensitivity to nucleotide triphosphate depletion in a model of ischemic cell injury. Am J Physiol Cell Physiol. 2003 Jul;285(1):C129-38
    [55] Cruthirds DL, Saba H, MacMillan-Crow LA. Overexpression of manganese superoxide dismutase protects against ATP depletion-mediated cell death of proximal tubule cells. Arch Biochem Biophys. 2005 May 1;437(1):96-105
    [56] Qiao X, Chen X, Wu D, et al. Mitochondrial pathway is responsible for aging-related increase of tubular cell apoptosis in renal ischemia/reperfusion injury. J Gerontol A Biol Sci Med Sci. 2005 Jul;60(7):830-9.
    [57] Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J. 2001 Dec 3;20(23):6877-88
    [58] Konnikova L, Kotecki M, Kruger MM, et al. Knockdown of STAT3 expression by RNAi induces apoptosis in astrocytoma cells.BMC Cancer. 2003 Sep 17;3:23
    [59] Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature. 1996 Feb 15;379(6566):645-8
    [60] Dai C, Yang J, Liu Y. Transforming growth factor-betal potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling. J Biol Chem. 2003 Apr 4;278(14):12537-45
    [61] Stephanou A, Latchman DS. Opposing actions of STAT-1 and STAT-3.Growth Factors. 2005 Sep;23(3): 177-82
    [62] Yoshino J, Monkawa T, Tsuji M, et al. Leukemia inhibitory factor is involved in tubular regeneration after experimental acute renal failure. J Am Soc Nephrol. 2003 Dec;14(12):3090-101
    [63] Zager RA, Johnson AC, Hanson SY. Proximal tubular cytochrome c effiux: determinant, and potential marker, of mitochondrial injury. Kidney Int. 2004 Jun;65(6):2123-34
    [64] Lee YJ, Han HJ. Effect of adenosine triphosphate in renal ischemic injury: involvement of NF-kappaB. J Cell Physiol. 2005 Sep;204(3):792-9
    [65] Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physiol. 2005 Aug;289(2):F410-9
    [66] Zager RA, Johnson AC, Hanson SY. Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 2005 Jan;67(1): 111-21
    [67] Atkinson SJ, Hosford MA, Molitoris BA. Mechanism of actin polymerization in cellular ATP depletion.J Biol Chem. 2004 Feb 13;279(7):5194-9
    [68] Wei Q, Alam MM, Wang MH, et al. Bid activation in kidney cells following ATP depletion in vitro and ischemia in vivo.Am J Physiol Renal Physiol. 2004 Apr;286(4):F803-9
    [69] Terui K, Haga S, Enosawa S, et al. Hypoxia/re-oxygenation-induced, redox-dependent activation of STAT1 (signal transducer and activator of transcription 1) confers resistance to apoptotic cell death via hsp70 induction. Biochem J. 2004 May 15;380(Pt 1):203-9.
    [70] Tacchini L, Fusar-Poli D, Sironi M, et al. Activation of signal transducer and activator of transcription 3 in rat liver after heat shock and reperfusion stress. Int J Biochem Cell Biol. 2003 Mar;35(3):316-23.
    [71] Takagi Y, Harada J, Chiarugi A, et al. STAT1 is activated in neurons after ischemia and contributes to ischemic brain injury. J Cereb Blood Flow Metab. 2002 Nov;22(11): 1311-8.
    [72] West DA, Valentim LM, Lythgoe MF, et al. MR image-guided investigation of regional signal transducers and activators of transcription-1 activation in a rat model of focal cerebral ischemia.Neuroscience. 2004;127(2):333-9.
    [73] Choi JS, Kim SY, Cha JH, et al. Upregulation of gp130 and STAT3 activation in the rat hippocampus following transient forebrain ischemia. Glia. 2003 Feb;41 (3):237-46
    [74] Yang XP, Irani K, Mattagajasingh S, et al. Signal transducer and activator of transcription 3alpha and specificity protein 1 interact to upregulate intercellular adhesion molecule-1 in ischemic-reperfused myocardium and vascular endothelium. Arterioscler Thromb Vase Biol. 2005 Jul;25(7): 1395-400.
    [75] White BC, Sullivan JM, DeGracia DJ, et al. Brain ischemia and reperfusion: molecular mechanisms of neuronal injury.J Neurol Sci. 2000 Oct 1; 179(S 1-2): 1-33.
    [76] Paschen W, Olah L, Mies G. Effect of transient focal ischemia of mouse brain on energy state and NAD levels: no evidence that NAD depletion plays a major role in secondary disturbances of energy metabolism.J Neurochem. 2000 Oct;75(4): 1675-80.
    [77] Jassem W, Heaton ND. The role ofmitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int. 2004 Aug;66(2):514-7
    [78] Chien CT, Lee PH, Chen CF, et al. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion.J Am Soc Nephrol. 2001 May; 12(5):973-82.
    [79] Dudley AC, Thomas D, Best J, et al. The STATs in cell stress-type responses. Cell Commun Signal. 2004 Aug 6;2(1):8
    
    [80] Kielar ML, John R, Bennett M, et al. Maladaptive role of IL-6 in ischemic acute renal failure. J Am Soc Nephrol. 2005 Nov;16(ll):3315-25
    
    [81] Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004 Aug;66(2):480-5
    
    [82] Wu CJ, Sheu JR, Chen HH, et al. Modulation of Monocyte-Derived Dendritic Cell Differentiation is Associated With Ischemic Acute Renal Failure.J Surg Res. 2005 Dec 2; [Epub ahead of print]
    
    [83] Burne MJ, Daniels F, El Ghandour A, et al. Identification of the CD4(+) T cell as a major pathogenic factor in ischemic acute renal failure. J Clin Invest. 2001 Nov;108(9):1283-90.
    
    [84] Kisseleva T, Bhattacharya S, Braunstein J, et al. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene. 2002 Feb 20;285(l-2):l-24
    
    [85] Wong WS, Leong KP. Tyrosine kinase inhibitors: a new approach for asthma. Biochim Biophys Acta. 2004 Mar 11;1697(1-2):53-69
    
    [86] Parganas E, Wang D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors.Cell. 1998 May l;93(3):385-95.
    
    [87] Simon AR, Rai U, Fanburg BL, et al. Activation of the JAK-STAT pathway by reactive oxygen species. Am J Physiol. 1998 Dec;275(6 Pt 1):C1640-52.
    
    [88] Frank GD, Mifune M, Inagami T, et al .Distinct mechanisms of receptor and nonreceptor tyrosine kinase activation by reactive oxygen species in vascular smooth muscle cells: role of metalloprotease and protein kinase C-delta. Mol Cell Biol. 2003 Mar;23(5):1581-9.
    
    [89] Negoro S, Kunisada K, Tone E, et al .Activation of JAK/STAT pathway transduces cytoprotective signal in rat acute myocardial infarction. Cardiovasc Res. 2000 Sep;47(4):797-805.
    
    [90] Yu HM, Zhi JL, Cui Y, et al. Role of the JAK-STAT pathway in protection of hydrogen peroxide preconditioning against apoptosis induced by oxidative stress in PC 12 cells. Apoptosis. 2006 Mar 14; [Epub ahead of print]
    
    [91] Sandberg EM, Sayeski PP. Jak2 tyrosine kinase mediates oxidative stress-induced apoptosis in vascular smooth muscle cells. J Biol Chem. 2004 Aug 13;279(33):34547-52
    [92] Battle TE, Frank DA. The role of STATs in apoptosis. Curt Mol Med. 2002 Jun;2(4):381-92.
    [93] Wen TC, Peng H, Hata R, et al. Induction of phosphorylated-Stat3 following focal cerebral ischemia in mice. Neurosci Lett. 2001 May 11;303(3): 153-6.
    [94] Terui K, Enosawa S, Haga S, et al. Stat3 confers resistance against hypoxia/reoxygenation-induced oxidative injury in hepatocytes through upregulation of Mn-SOD. J Hepatol. 2004 Dec;41(6):957-65.
    [95] Guaiquil VH, Golde DW, Beckles DL, et al.Vitamin C inhibits hypoxia-induced damage and apoptotic signaling pathways in cardiomyocytes and ischemie hearts. Free Radio Biol Med. 2004 Nov 1;37(9): 1419-29.
    [96] Sironi JJ, Ouchi T. STAT1-induced apoptosis is mediated by caspases 2, 3, and 7. J Biol Chem. 2004 Feb 6;279(6):4066-74.
    [97] Stephanou A, Scarabelli TM, Brar BK, et al. Induction of apoptosis and Fas receptor/Fas ligand expression by ischemia/reperfusion in cardiac myocytes requires serine 727 of the STAT-1 transcription factor but not tyrosine 701.J Biol Chem. 2001 Jul 27;276(30):28340-7. Epub 2001 Apr 17.
    [98] Townsend PA, Scarabelli TM, Davidson SM, et al. STAT-1 interacts with p53 to enhance DNA damage-induced apoptosis.J Biol Chem. 2004 Feb 13;279(7):5811-20.
    [99] Hamar P, Song E, Kokeny G, et al. Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury. Proc Natl Acad Sei U S A. 2004 Oct 12;101(41):14883-8
    [100] Grad JM, Zeng XR, Boise LH. Regulation of Bcl-xL: a little bit of this and a little bit of STAT. Curr Opin Oncol. 2000 Nov;12(6):543-9.
    [101] Bhattacharya S, Ray RM, Johnson LR. STAT3-mediated transcription of Bcl-2, Mcl-1 and c-IAP2 prevents apoptosis in polyamine-depleted cells. Biochem J. 2005 Dec 1;392(Pt 2):335-44.
    [102] Zhang X, Shan P, Alam J, et al.Carbon monoxide differentially modulates STAT1 and STAT3 and inhibits apoptosis via a phosphatidylinositol 3-kinase/Akt and p38 kinase-dependent STAT3 pathway during anoxia-reoxygenation injury. J Biol Chem. 2005 Mar 11;280(10):8714-21. Epub 2004 Dec 7.
    [103] Niu G, Wright KL, Ma Y, et al.Role of Stat3 in regulating p53 expression and function. Mol Call Biol. 2005 Sep;25(17):7432-40.
    [104] Chiang T, Tzu C, Ching Y, et al.Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant. 2005 Jun;5(6):1194-203
    
    [105] Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003 Nov;3(ll):900-11.
    
    [106] Kubo M, Hanada T, Yoshimura A. Suppressors of cytokine signaling and immunity. Nat Immunol. 2003 Dec;4(12):1169-76
    
    [107] Krebs DL, Hilton DJ. SOCS proteins: negative regulators of cytokine signaling. Stem Cells. 2001;19(5):378-87
    
    [108] Auernhammer CJ, Bousquet C, Melmed S. Autoregulation of pituitary corticotroph SOCS-3 expression: characterization of the murine SOCS-3 promoter. Proc Natl Acad Sci U S A. 1999 Jun 8;96(12):6964-9
    
    [109] Egan PJ, Lawlor KE, Alexander WS, et al. Suppressor of cytokine signaling-1 regulates acute inflammatory arthritis and T cell activation. J Clin Invest. 2003
    
    [110] Suzuki A, Hanada T, Mitsuyama K, et al. CIS3/SOCS3/SSI3 plays a negative regulatory role in STAT3 activation and intestinal inflammation. J Exp Med. 2001 Feb 19;193(4):471-81
    
    [111] Shouda T, Yoshida T, Hanada T, et al. Induction of the cytokine signal regulator SOCS3/CIS3 as a therapeutic strategy for treating inflammatory arthritis. J Clin Invest. 2001 Dec;108(12):1781-8
    
    [112]Hemandez-Vargas P, Lopez-Franco O, Sanjuan G, et al. Suppressors of cytokine signaling regulate angiotensin II-activated Janus kinase-signal transducers and activators of transcription pathway in renal cells. J Am Soc Nephrol. 2005 Jun; 16(6):1673-83
    
    [113]Gomez-Guerrero C, Lopez-Franco O, Sanjuan G, et al. Suppressors of cytokine signaling regulate Fc receptor signaling and cell activation during immune renal injury. J Immunol. 2004 Jun l;172(ll):6969-77
    
    [114] Le Provost F, Miyoshi K, Vilotte JL, et al. SOCS3 promotes apoptosis of mammary differentiated cells.Biochem Biophys Res Commun. 2005 Dec 30;338(4):1696-701
    
    [115] Jo D, Liu D, Yao S, et al. Intracellular protein therapy with SOCS3 inhibits inflammation and apoptosis.Nat Med. 2005 Aug;11(8):892-8
    
    [116] Alexander WS. Suppressors of cytokine signalling (SOCS) in the immune system. Nat Rev Immunol. 2002 Jun;2(6):410-6
    
    [117] Croker BA, Krebs DL, Zhang JG, et al. SOCS3 negatively regulates IL-6 signaling in vivo. Nat Immunol. 2003 Jun;4(6):540-5
    [118] Mori H, Hanada R, Hanada T, et al. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nat Med. 2004 Jul;10(7):739-43
    
    [119]Emanuelli B., Peraldi P., Filloux C, et al. SOCS-3 inhibits insulin signaling and is up-regulated in response to tumor necrosis factor-alpha in the adipose tissue of obese mice. JBiol Chem 2001; 276: 47944-47949.
    
    [120]Spangenburg, E. E. SOCS-3 induces myoblast differentiation. J Biol Chem 2005; 280: 10749-10758
    
    [121]Steppan C. M., Wang J., Whiteman E. L., et al. Activation of SOCS-3 by resistin. Mol Cell Biol 2005; 25,1569-1575.
    
    [122] Spangenburg EE, Brown DA, Johnson MS, et al.Exercise increases SOCS-3 expression in skeletal muscle: potential relationship to IL-6 expression. J Physiol. 2006 Feb 16; [Epub ahead of print]
    
    [123] Hong F, Jaruga B, Kim WH, et al.Opposing roles of STAT1 and STAT3 in T cell-mediated hepatitis: regulation by SOCS.J Clin Invest. 2002 Nov;110(10):1503-13
    
    [124] Raghavendra Rao VL, Bowen KK, Dhodda VK, et al.Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia.J Neurochem. 2002 Dec;83(5): 1072-86.
    
    [125]Leonard MO, Hannan K, Burne MJ, et al. 15-Epi-16- (para-fluorophenoxy)- lipoxin A(4)- methyl ester, a synthetic analogue of 15-epi-lipoxin A(4), is protective in experimental ischemic acute renal failure. J Am Soc Nephrol. 2002 Jun; 13(6): 1657-62.
    
    [126] Kamura T, Sato S, Haque D, et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev. 1998 Dec 15; 12(24):3 872-81
    
    [127] Bates S, Read SJ, Harrison DC, et al. Characterisation of gene expression changes following permanent MCAO in the rat using subtractive hybridisation.Brain Res Mol Brain Res. 2001 Sep 10;93(l):70-80
    
    [128] Emanuelli B, Peraldi P, Filloux C, et al.SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem. 2000 May 26;275(21):15985-91.
    
    [129] Bode JG, Ludwig S, Freitas CA, et al. The MKK6/p38 mitogen-activated protein kinase pathway is capable of inducing SOCS3 gene expression and inhibits IL-6-induced transcription. Biol Chem. 2001 Oct;382(10):1447-53.
    
    [130] Bode JG, Nimmesgern A, Schmitz J, et al. LPS and TNFalpha induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett. 1999 Dec 17;463(3):365-70.
    [131] Terstegen L, Gatsios P, Bode JG, et al. The inhibition of interleukin-6-dependent STAT activation by mitogen-activated protein kinases depends on tyrosine 759 in the cytoplasmic tail of glycoprotein 130. J Biol Chem. 2000 Jun 23;275(25): 18810-7.
    [132] Dalpke AH, Opper S, Zimmermann S, et al. Suppressors of cytokine signaling (SOCS)-1 and SOCS-3 are induced by CpG-DNA and modulate eytokine responses in APCs. J Immunol. 2001 Jun 15;166(12):7082-9.
    [133] Ehlting C, Haussinger D, Bode JG. Sp3 is involved in the regulation of SOCS3 gene expression. Biochem J. 2005 May 1;387(Pt 3):737-45
    [134] Gueler F, Rong S, Park JK, et al. Postischemic acute renal failure is reduced by short-term statin treatment in a rat model. J Am Soc Nephrol. 2002 Sep;13(9):2288-98.
    [135] Furuichi K, Wada T, Iwata Y, et al. Administration of FR167653, a new anti-inflammatory compound, prevents renal ischaemia/reperfusion injury in mice. Nephrol Dial Transplant. 2002 Mar;17(3):399-407.
    [136] Kamura T, Sato S, Haque D, et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyfin repeat families. Genes Dev. 1998 Dec 15;12(24):3872-81
    [137] Lang R, Pauleau AL, Parganas E, et al. SOCS3 regulates the plasticity of gp130 signaling. Nat Immunol. 2003 Jun;4(6):546-50
    [138] Hortner M, Nielsch U, Mayr LM, et al. Suppressor of cytokine signaling-3 is recruited to the activated granulocyte-colony stimulating factor receptor and modulates its signal transduction. J Immunol. 2002 Aug 1; 169(3): 1219-27
    [139] Kimura A, Kinjyo I, Matsumura Y, et al. SOCS3 is a physiological negative regulator for granulopoiesis and granulocyte colony-stimulating factor receptor signaling. J Biol Chem. 2004 Feb 20;279(8):6905-10
    [140] Weber A, Hengge UR, Bardenheuer W, et al. SOCS-3 is frequently methylated in head and neck squamous cell carcinoma and its precursor lesions and causes growth inhibition. Oncogene. 2005 Oct 6;24(44):6699-708.
    [141] Yasukawa H, Hoshijima M, Gu Y, et al. Suppressor of cytokine signaling-3 is a biomechanical stress-inducible gene that suppresses gp130-mediated cardiac myocyte hypertrophy and survival pathways. J Clin Invest. 2001 Nov;108(10):1459-67.
    [142] Kroemer G, Reed JC. Mitochondrial control of cell death. Nat Med. 2000 May;6(5):513-9
    
    [143] Von Ahsen O, Waterhouse NJ, Kuwana T, et al. The 'harmless' release of cytochrome c. Cell Death Differ. 2000 Dec;7(12):1192-9
    
    [144]Newmeyer DD, Ferguson-Miller S. Mitochondria: releasing power for life and unleashing the machineries of death. Cell. 2003 Feb 21;112(4):481-90.
    
    [145] Bromberg JF, Wrzeszczynska MH, Devgan G, et al. Stat3 as an oncogene. Cell. 1999 Aug 6;98(3):295-303.
    
    [146] Mathur A, Hong Y, Kemp BK, et al. Evaluation of fluorescent dyes for the detection of mitochondrial membrane potential changes in cultured cardiomyocytes. Cardiovasc Res. 2000 Apr;46(1):126-38
    
    [147]Wu D, Chen X, Guo D, et al. Knockdown of fibronectin induces mitochondria-dependent apoptosis in rat mesangial cells. J Am Soc Nephrol. 2005 Mar;16(3):646-57
    
    [148] Thorburn A. Death receptor-induced cell killing. Cell Signal. 2004 Feb; 16(2): 139-44
    
    [149] Barton BE, Murphy TF, Shu P, et al. Novel single-stranded oligonucleotides that inhibit signal transducer and activator of transcription 3 induce apoptosis in vitro and in vivo in prostate cancer cell lines. Mol Cancer Ther. 2004 Oct;3(10):1183-91
    
    [150] Korsmeyer SJ, Wei MC, Saito M, et al. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 2000 Dec;7(12): 1166-7
    
    [151] Kuwana T, Mackey MR, Perkins G, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane.Cell. 2002 Nov1;111(3):331-42
    
    [152] Nechushtan A, Smith CL, Lamensdorf I, et al. Bax and Bak coalesce into novel mitochondria-associated clusters during apoptosis. J Cell Biol. 2001 Jun 11;153(6):1265-76
    
    [153] Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J Clin Invest. 2005;l 15:2648-2655
    [1] Hugh Redmond Brady, Michael R. Clarkson, Wilfred Lieberthal. Acute Renal Failure. Brenner & Rector's The Kidney, 7th ed., 2004:1215
    [2] American Journal of Kidney Diseases, 45, (3), 2005:614-618
    [3] Naveen S, Shubhada N, Murray L. Levin, et al.Acute Renal Failure. JAMA. 2003;289:747-751
    [4] Obialo CI, Crowell AK, Okonofua EC, et al.Acute renal failure mortality in hospitalized African Americans: Age and gender considerations. J Natl Med Assoc 94: 127-134, 2002
    [5] Perrone RD, Madias NE, Levey AS, et al.Serum creatinine as an index of renal function: New insights into old concepts. Clin Chem 38:1933-1953, 1992
    [6] Kellum JA, Levin N, Bouman C, et al.Developing a consensus classification system for acute renal failure. Curr Opin Crit Care 2002; 8:509-14
    [7] Kellum JA, Ronco C, Mehta R, et al.Consensus development in acute renal failure: the Acute Dialysis Quality Initiative. Curr Opin Crit Care 2005; 11:527—532.
    [8] Mehta RL, Chertow GM. Acute renal failure definitions and classification: time for change? J Am Soc Nephrol 2003; 14:2178-87
    [9] Feest TG, Round A, Hamad S. Incidence of severe acute renal failure in adults: results of a community based study. BMJ 1993;306:481-83.
    [10] Khan IH, Catto GR, Edward N, et al.Acute renal failure: factors influencing nephrology referral and outcome. QJM 1997; 90:781-85
    [11] Stevens PE, Tamimi NA, Al Hasani MK, et al. Non-specialist management of acute renal failure. QJM 2001; 94:533-40
    [12] Metcalfe W, Simpson M, Khan IH, et al. Acute renal failure requiring renal replacement therapy: incidence and outcome.QJM 2002; 95:579-83
    [13] Hou SH, Bushinsky DA, Wish JB,et al: Hospital-acquiredrenalinsufficiency: A prospective study. Am J Med 74: 243-248, 1983
    [14] Nash K, Hafeez A, Hou S, et al.Hospital-acquired renal insufficiency. Am J Kidney Dis 39: 930-936, 2002
    [15] Brivet FG, Kieinknecht DJ, Loirat P, et al.Acute renal failure in intensive care units--causes, outcome, and prognostic factors of hospital mortality; a prospective, multicenter study. French Study Group on Acute Renal Failure. Crit Care Med. 1996 Feb;24(2):192-8
    [16] Koreny M, Karth GD, Geppert A, et al.Prognosis of patients who develop acute renal failure during the first 24 hours of cardiogenic shock after myocardial infarction. Am J Med. 2002 Feb 1;112(2):115-9
    [17] Jay L. Xue, Frank Daniels, Robert A. Star,, et al.Incidence and Mortality of Acute Renal Failure in Medicare Beneficiaries, 1992 to 2001. J Am Soc Nephrol published February 22, 2006 as doi: 10.1681/ASN.2005060668
    [18] Sushrut S. Waikar, Gary C. Curhan, Ron Wald, Ellen P.Declining Mortality in Patients with Acute Renal Failure, 1988 to 2002. J Am Soc Nephrol published February 22, 2006 as doi:10.1681/ASN.2005091017
    [19] Ympa YP, Sakr Y, Reinhart K, et al. Has mortality from acute renal failure decreased? A systematic review of the literature. Am J Med 118: 827-832, 2005
    [20] Mehta RL, Pascual MT, Soroko S, et al.Spectrum of acute renal failure in the intensive care unit: the PICARD experience. Kidney Int. 2004 Oct;66(4): 1613-21.
    [21] Uchino S, Kellum JA, Bellomo R,et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA. 2005 Aug 17;294(7): 813-8
    [22] Schiffl H. Renal recovery from acute tubular necrosis requiring renal replacement therapy: a prospective study in critically ill patients Nephrol Dial Transplant. 2006 Jan 31; [Epub ahead of print]
    [23] Askenazi DJ, Feig DI, Graham NM, et al.3-5 year longitudinal follow-up of pediatric patients after acute renal failure. Kidney Int. 2006 Jan;69(1):184-9.
    [24] Abosaif NY, Tolba YA, Heap M, et al.The outcome of acute renal failure in the intensive care unit according to RIFLE: model application, sensitivity, and predictability. Am J Kidney Dis. 2005 Dec;46(6): 1038-48.
    [25] Wang Y, Cui Z, Fan M. Epub 2005 Sep 20. Retrospective analysis on Chinese patients diagnosed with acute renal failure hospitalized during the last decade (1994-2003). Am J Nephrol. 2005 Sep-Oct;25(5):514-9.
    [26] Norbert Lameire, Wim Van Biesen, Raymond Vanholder. Acute renal failure. Lancet,365: 417-430,2005
    [27] Castaneda MP, Swiatecka-Urban A, Mitsnefes MM, et al. Activation of mitochondrial apoptotic pathways in human renal allografts after ischemiareperfusion injury. Transplantation 2003; 15:50-54
    [28] Kathleen D. Liu. Molecular mechanisms of recovery from acute renal failure. Crit Care Med 2003.31 (8): S572-S581
    [29] Molitoris BA. Actin cytoskeleton in ischemic acute renal failure. Kidney Int. 2004; 66:871-883
    [30] Wakino S, Kanda T, Hayashi K. Rho/Rho kinase as a potential target for the treatment of renal disease. Drug News Perspect. 2005 Dec;18(10):639-43
    [31] Horton MA. Arg-Gly-Asp (RGD) peptides and peptidomimetics as therapeutics: relevance for renal diseases. Exp Nephrol 1999; 7:178-184.
    [32] Molina A, Ubeda M, Escribese MM, et al.Renal ischemia/reperfusion injury: functional tissue preservation by anti-activated {beta} 1 integrin therapy. J Am Soc Nephrol. 2005 Feb;16(2):374-82.
    [33] Schrier RW, Wang W, Poole B, et al.Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 2004; 114:5-14.
    [34] Acker CG, Flick R, Shapiro R, et al. Thyroid hormone in the treatment of post-transplant acute tubular necrosis (ATN). Am J Transplant 2002; 2:57-61.
    [35] Kelly K.J., Plotkin Z, Dagher PC. Guanosine supplementation reduces apoptosis and protects renal function in the setting of ischemic injury. J. Clin. Invest. 108:1291-1298 (2001).
    [36] Jassem W, Heaton ND. The role of mitochondria in ischemia/reperfusion injury in organ transplantation. Kidney Int. 2004 Aug;66(2):514-7
    [37] Doi K, Suzuki Y, Nakao A, et al. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int 2004; 65:1714-1723.
    [38] de Vries B, Walter SJ, Bonsdorff LV, et al. Reduction of circulating redoxactive iron by apotransferrin protects against renal ischemia-reperfusion injury. Transplantation 2004; 77:669-675
    [39] Mishra J, Ma Q, Prada A, et al. Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol 2003; 14:2534-2543
    [40] Mishra J, Dent C, Tarabishi R, et al.Neutrophil gelatinase-associated lipocalin (NGAL) as a biomarker for acute renal injury after cardiac surgery. Lancet. 2005 Apr 2-8;365(9466): 1231-8
    [41] Mishra J, Moil K, Ma Q, et al. Amelioration of ischemic acute renal injury by neutrophilgelatinase-associatedlipocalin. J Am Soc Nephrol2004;15:3073-3082.
    [42] Kaushal GP, Basnakian AG, Shah SV. Apoptotic pathways in ischemic acute renal failure. Kidney Int 2004; 66:500-505.
    [43] Dagher PC. Apoptosis in ischemic renal injury: roles of GTP depletion and p53. Kidney Int 2004; 66:506-509.
    [44] Antunes N, Martinusso CA, Takiya CM, et al.Fructose-1,6 diphosphate as a protective agent for experimental ischemic acute renal failure. Kidney Int. 2006 Jan;69(1):68-72
    [45] Hauser P, Schwarz C, Mitterbauer C, et al. Genome-wide gene-expression patterns of donor kidney biopsies distinguish primary allograft function. Lab Invest 2004; 84:353-361
    [46] Alberto Ortiz, Pilar Justo, Ana Sanz, et al.Targeting apoptosis in acute tubular injury. Biochemical Pharmacology 66 (2003) 1589-1594.
    [47] Letai A. Pharmacological manipulation of Bcl-2 family members to control cell death. J. Clin. Invest. 115:2648-2655 (2005)
    [48] Bonegio R, Lieberthal W. Role of apoptosis in the pathogcnesis of acute renal failure. tubular cell apoptosis. Curr Opin Nephrol Hypertens 11:301-308 (2002)
    [49] Chatterjee PK, Todorovic Z, Sivarajah A, et al.Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia-reperfusion of the rat kidney. Eur J Pharmacol. 2004 Oct 25;503(1-3):173-83
    [50] Wei Q, Alam M, Wang M, et al.Bid activation in kidney cells following ATP depletion in vitro and ischemia in vivo. Am J Physiol Renal Physio1286: F803-F809, 2004
    [51] Wei Q, Yin XM, Wang MH, et al.Bid deficiency ameliorates ischemic renal failure and delays animal death in C57BL/6 mice.Am J Physiol Renal Physiol. 2006 Jan;290(1):F35-42
    [52] Brooks C, Ketsawatsomkron P, Sui Y, et al.Acidic pH inhibits ATP depletion-induced tubular cell apoptosis by blocking caspase-9 activation in apoptosome. Am J Physiol Renal Physio1289: F410-F419, 2005
    [53] Chiang T, Tzu C, Ching Y, et al.Adenovirus-mediated bcl-2 gene transfer inhibits renal ischemia/reperfusion induced tubular oxidative stress and apoptosis. Am J Transplant. 2005 Jun;5(6): 1194-203
    [54] Del Rio M, Imam A, DeLeon M, et al.The death domain of kidney ankyrin interacts with Fas and promotes Fas-mrdiatrd cell death in renal epithelia. J Am Soc Nephrol. 2004 Jan; 15(1):41-51.
    [55] Hamar P, Song E, Kokeny G, et al.Small interfering RNA targeting Fas protects mice against renal ischemia-reperfusion injury Proc Natl Acad Sci U S A. 2004 Oct 12;101(41):14883-8
    [56] Moll UM, Zaika A: Nuclear and mitochondrial apoptotie pathways of p53. FEBS Lett 493: 65-69, 2001
    [57] Bennett M, Macdonald K, Chan SW, et al.Cell surface trafficking of Fas: A rapid mechanism of p53-mediated apoptosis. Science 282: 290-293, 1998
    [58] Ryan KM, Ernst MK, Rice NR, et al. Role of NF- kappaB in p53-mediated programmed cell death. Nature 404: 892-89, 2000
    [59] Kelly A, Plotkin Z, Vulgamott S, et al. P53 Mediates the Apoptotic Response to GTP Depletion after Renal Ischemia-Reperfusion: Protective Role of a p53 Inhibitor. J Am Soc Nephrol 14: 128-138, 2003
    [60] Chien CT, Lee PH, Chen CF, et al. De novo demonstration and co-localization of free-radical production and apoptosis formation in rat kidney subjected to ischemia/reperfusion. J Am Soc Nephrol. 2001 May;12(5):973-82
    [61] Cruthirds DL, Saba H, MacMillan-Crow LA. Overexpression of manganese superoxide dismutase protects against ATP depletion-mediated cell death of proximal tubule cells. Arch Biochem Biophys. 2005 May 1;437(1):96-105
    [62] Kunduzova OR, Escourrou G, De La F, et al. Involvement of peripheral enzodiazepine receptor in the oxidative stress, death-signaling pathways, and renal injury induced by sehemia-reperfusion. J Am Soc Nephrol. 2004 Aug;15(8):2152-60
    [63] Aragno M, Cutrin JC, Mastrocola R, et al.Oxidative stress and kidney dysfunction due to ischemia/reperfusion in rat: attenuation by dehydroepiandrosterone. Kidney Int. 2003 Sep;64(3):836-43
    [64] Sugiura H, Yoshida T, Tsuchiya K, et al.Klotho reduces apoptosis in experimental ischaemic acute renal failure. Nephrol Dial Transplant. 2005 Dec;20(12):2636-45.
    [65] Bonventre JV, Weinberg JM. Recent advances in the pathophysiology of ischemic acute renal failure. J Am Soc Nephrol. 2003;14(8):2199-210
    [66] Bonventre JV. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J Am Soc Nephrol 2003; 14:855-861
    [67] Devarajan P, Mishra J, Supavekin S, et al. Gene expression in early ischemic renal injury: clues towards pathogenesis, biomarker discovery, and novel therapeutics. Mol Genet Metab 2003; 80:365-376.
    [68] Fujigaki Y, Goto T, Sakakima M, et al.Kinetics and characterization of initially regenerating proximal tubules in S3 segment in response to various degrees of acute tubular injury. Nephrol Dial Transplant. 2006 Jan;21(1):41-50
    [69] Togel F, Isaac J, Hu Z, et al.Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int. 2005 May;67(5):1772-84
    [70] Iwasaki M, Adachi Y, Minamino K, et al. Mobilization of bone marrow cells by G-CSF rescues mice from cisplatin-induced renal failure, and M-CSF enhances the effects of G-CSE J Am Soc Nephrol. 2005 Mar;16(3):658-66.
    [71] Stokman G, Leemans JC, Claessen N, et al. Hematopoietic stem cell mobilization therapy accelerates recovery of renal function independent of stem cell contribution. J Am Soc Nephrol. 2005 Jun; 16(6): 1684-92.
    [72] Haussler U, von Wichert G, Schmid RM, et al.Epidermal growth factor activates nuclear factor-kappaB in human proximal tubule cells. Am J Physiol Renal Physiol. 2005 Oct;289(4):F808-15.
    [73] Zhuang S, Yan Y, Han J, et al. p38 kinase-mediated transactivation of the epidermal growth factor receptor is required for dedifferentiation of renal epithelial cells after oxidant injury.J Biol Chem. 2005 Jun 3;280(22):21036-42.
    [74] Togel F, Hu Z, Weiss K, et al. Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.Am J Physiol Renal Physiol. 2005 Jul;289(1):F31-42.
    [75] Lange C, Togel F, Ittrich H, et al.Administered mesenchymal stem cells enhance recovery from ischemia/reperfusion-induced acute renal failure in rats. Kidney Int. 2005 Oct;68(4):1613-7.112
    [76] Lin F, Moran A, Igarashi P. Intrarenal cells, not bone marrow-derived cells, are the major source for regeneration in postischemie kidney. J. Clin. Invest. 115:1756-1764 (2005).
    [77] Broekema M, Harmsen MC, Koerts JA, et al.Determinants of tubular bone marrow-derived cell engraftment after renal ischemia/reperfusion in rats. Kidney Int. 2005 Dec;68(6):2572-81.
    [78] Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int 2004; 66:480-485
    [79] Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int 2004; 66:486-490
    [80] Brodsky SV, Yamamoto T, Tada T, et al. Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells. Am J Physiol Renal Physiol 2002; 282:F1140-F1149.
    [81] Kurata H, Takaoka M, Kubo Y, et al.Nitric Oxide Protects against Ischemic Acute Renal Failure through the Sup pression of Renal Endothelin-1 Overproduction. J Cardiovasc Pharmacol. 2004 Nov;44 Suppl 1:S455-8
    [82] Spurgeon KR, Donohoe DL, Basile DP.Transforming growth factor-beta in acute renal failure: receptor expression, effects on proliferation, cellularity, and vascularization after recovery from injury.Am J Physiol Renal Physiol. 2005 Mar;288(3):F568-77
    [83] Burne-Taney MJ, Yokota-Ikeda N, Rabb H. Effects of combined T- and B-cell deficiency on murine ischemia reperfusion injury.Am J Transplant. 2005 Jun;5(6): 1186-93
    [84] Savransky V, Molls RR, Burne-Taney M, et al. Role of the T-cell receptor in kidney ischemia-reperfusion injury. Kidney Int. 2006 Jan;69(2):233-8.
    [85] Rouschop KM, Roelofs JJ, Claessen N, Protection against Renal Ischemia Reperfusion Injury by CD44 Disruption.J Am Soc Nephrol. 2005 Jul;16(7):2034-43.
    [86] Sato W, Takei Y, Yuzawa Y, et al.Midkine antisense oligodeoxyribonucleotide inhibits renal damage induced by ischemic reperfusion.Kidney Int. 2005 Apr;67(4):1330-9.
    [87] Thurman JM, Lucia MS, Ljubanovic D, et al.Acute tubular necrosis is characterized by activation of the alternative pathway of complement.Kidney Int. 2005 Feb;67(2):524-30.
    [88] Farrar CA, Zhou W, Lin T, et al.Local extravascular pool of C3 is a determinant of postischemic acute renal failure. FASEB J. 2006 Feb;20(2):217-26.
    [89] Thurman JM, Royer PA, Ljubanovic D, et al.Treatment with an inhibitory monoclonal antibody to mouse factor B protects mice from induction of apoptosis and renal ischemia/reperfusion injury. J Am Soc Nephrol. 2006 Mar;17(3):707-15.
    [90] Kielar ML, John R, Bennett M, et al.Maladaptive role of IL-6 in ischemic acute renal failure.J Am Soc Nephrol. 2005 Nov;16(11):3315-25.
    [91] Roelofs JJ, Rouschop KM, Leemans JC, et al.Tissue-type plasminogen activator modulates inflammatory responses and renal function in ischemia reperfusion injury. J Am Soc Nephrol. 2006 Jan; 17(1): 131-40.
    [92] Simmons EM, Himmelfarb J, Tugrul Sezer M, et al. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int 2004; 65:1357-1365.
    [93] Molitoris BA. Transitioning to therapy in ischemic acute renal failure.J Am Soc Nephrol. 2003 Jan;14(1):265-7
    [94] Molitoris BA, Sutton TA. Endothelial injury and dysfunction: role in the extension phase of acute renal failure. Kidney Int 2004; 66:496-499.
    [95] Caron A, Desrosiers RR, Beliveau R. Ischemia injury alters endothelial cell properties of kidney cortex: stimulation of MMP-9. Exp Cell Res. 2005 Oct 15;310(1):105-16
    [96] Covington MD, Burghardt RC, Parrish AR. Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14).A m J Physiol Renal Physiol. 2006 Jan;290(1):F43-51.
    [97] Takeda R, Nishimatsu H, Suzuki E, et al.Ghrelin improves renal function in mice with ischemic acute renal failure. J Am Soc Nephrol. 2006 Jan; 17(1): 113-21
    [98] Mizuno S, Nakamura T. Prevention of neutrophil extravasation by hepatocyte growth factor leads to attenuations of tubular apoptosis and renal dysfunction in mouse ischemic kidneys. Am J Pathol. 2005 Jun; 166(6): 1895-905
    [99] Lin F. Stem Cells in Kidney Regeneration Following Acute Renal Injury.Pediatr Res. 2006 Mar 2; [Epub ahead of print]
    [100] Teehan, G.S., et al. 2003. Dialysis membrane and modality in acute renal failure: understanding discordant meta-analyses. Semin. Dial. 16:356-360.
    [101] D'Intini V, Ronco C, Bonello M, et al.Renal replacement therapy in acute renal failure. Best Pract Res Clin Anaesthesiol2004; 18:145-57.
    [102] Palevsky PM. Renal replacement therapy Ⅰ: indications and timing. Crit Care Clin. 2005 Apr;21(2):347-56.
    [103] Ricci Z, Ronco C. Renal replacement Ⅱ: dialysis dose. Crit Care Clin. 2005 Apr;21(2):357-66.
    [104] O'Reilly P, Tolwani A. Renal replacement therapy Ⅲ: IHD, CRRT, SLED.Crit Care Clin. 2005 Apr;21(2):367-78.
    [105] Schetz M. Should we use diuretics in acute renal failure?Best Pract Res Clin Anaesthesiol 2004; 18:75-89.
    [106] Mehta RL, Pascual MT, Soroko S, et al. Diuretics, mortality, and nonrecovery of renal function in acute renal failure. JAMA2002; 288:2547-53.
    [107] Uchino S, Doig GS, Bellomo R, et al. Diuretics and mortality in acute renal failure. Crit Care Med2004; 32:1669-77.
    [108] Cantarovich F, Rangoonwala B, Lorenz H, et al.High-dose furosemide for established ARF: a prospective, randomized, double-blind, placebo-controlled, multicenter trial. Am J Kidney Dis. 2004 Sep;44(3):402-9.
    [109] Vargas Hein O, Staegemann M, Wagner D, et al.Torsemide versus furosemide after continuous renal replacement therapy due to acute renal failure in cardiac surgery patients. Ren Fail. 2005;27(4):385-92.
    [110] Bellomo R, Chapman M, Finfer S, et al. Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Lancet2000; 356:2139-43.
    [111] Kellum JA, Decker M. Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med2001; 29:1526-31.
    [112] Friedrich JO, Adhikari N, Herridge MS, et al.Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med. 2005 Apr 5; 142(7):510-24.
    [113] Sward K, Valsson F, Odencrants P, et al.Recombinant human atrial natriuretic peptide in ischemic acute renal failure: a randomized placebo-controlled trial. Crit Care Med. 2004 Jun;32(6):1310-5.
    [114] Liu R, Nair D, Ix J, et al.N-acetylcysteine for the prevention of contrast-induced nephropathy. A systematic review and meta-analysis. J Gen Intern Med. 2005 Feb;20(2): 193-200.
    [115] Macedo E, Abdulkader R, Castro I, et al.Lack of protection of N-acetylcysteine (NAC) in the acute renal failure related to elective aortic aneurysm repair--a randomized controlled trial. Nephrol Dial Transplant. 2006 Mar 7; [Epub ahead of print]
    [116] Park J, Gage BF, Vijayan A. Use of EPO in critically ill patients with acute renal failure requidng renal replacement therapy. Am J Kidney Dis. 2005 Nov;46(5):791-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700