用户名: 密码: 验证码:
EB病毒潜伏膜蛋白LMP1通过转录因子EGFR和STAT3调控cyclin D1基因的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鼻咽癌(nasopharyngeal carcinoma, NPC)是一种具有地域特异性的恶性肿瘤,在中国南部居恶性肿瘤发病率的第三位,与EB病毒(Epstein-Barr virus, EBV)感染密切相关。LMP1是EBV编码的瘤蛋白,其生物学功能涉及细胞转化、凋亡、分化、细胞周期行进以及参与恶性肿瘤的侵袭和转移。以鼻咽癌为切入点,我们多年的研究工作一直致力于LMP1介导的信号转导通路的研究,系统地研究了LMP1介导的信号转导通路异常以及由此产生的一系列生物学效应。
     转录因子是参与调节靶基因转录的的反式作用因子,能直接或间接识别或结合在各顺式作用元件核心序列上,参与调控转录效率。转录因子是上游信号传导事件与下游功能基因表达改变的联系纽带,也是信号传导研究的重要核心。表皮生长因子受体(epidermal growth factor receptor, EGFR)是一个170kDa的跨膜糖蛋白,属于受体酪氨酸激酶(receptor tyrosine kinases, RTKs)家族成员。传统的受体学说认为,细胞膜受体作为第一信使,在细胞膜上与其配体结合发挥其生物学效应,但细胞膜受体不能进入核内而不能直接影响基因转录。但近年来,在许多肿瘤如皮肤癌、乳腺癌、宫颈癌、膀胱癌、卵巢癌等的细胞核内发现高水平的EGFR表达,其作为一种新型转录因子在核内独立或作为转录共活化子与其他转录因子相互作用于与细胞周期行进或细胞增殖密切相关的靶基因,促进肿瘤的发生发展。转录因子STAT3 (signal transducer and activation of transcription3, STAT3)是多种细胞因子和生长因子发挥作用的关键信号分子,其通过酪氨酸磷酸化的STAT之间形成同源二聚体或异源二聚体而活化,活化后移位至细胞核,激活多种相关下游靶基因的表达。STAT3蛋白能识别靶基因启动子区的保守序列成分并通过该序列激活靶基因转录。
     本室的前期研究首先发现在鼻咽癌细胞中LMP1通过其CTAR1 (carboxyterminal activating region 1,CTAR1)募集肿瘤坏死因子受体相关因子(Tumor Necrosis Factor Receptor Associated Factors, TRAFs)精细调控EGFR表达和上调EGFR磷酸化水平,进而促进细胞增殖,继首次发现LMP1可以调控EGFR核移位,并呈EGF配体非依赖性。据报道用EGF刺激细胞后应用激光共聚焦检查观察,10分钟即可细胞核内发现核EGFR的存在。同时,不少作者认为EGFR需与其他能直接结合于靶基因DNA的转录因子相互作用方能发挥促进细胞增殖的生物学作用。本室前期研究还发现在鼻咽癌细胞中存在LMP1激活的JAK/STAT信号通路,并且LMP1激活STAT途径的结构基础在于其CTAR2和CTAR3的协同作用。进一步发现LMP1通过JAK3促进STAT3酪氨酸705位磷酸化,磷酸化活化后的STAT3即核移位并核内积聚,并且LMP1调控磷酸化STAT3核移位呈705位酪氨酸磷酸化依赖性。我们推测LMP1有可能通过诱导转录因子EGFR和STAT3核移位调节其相互作用。为观察在LMP1调控下转录因子EGFR和STAT3在鼻咽癌细胞核内是否存在共定位,选择激光共聚焦扫描显微镜进行检测,以LMP1阴性表达的鼻咽癌细胞CNE1细胞为阴性对照,发现在LMP1阳性表达的鼻咽癌细胞CNE1-LMP1细胞内存在EGFR和STAT3蛋白的共定位;应用免疫共沉淀[Co-immunoprecipitation (CO-IP)-western blot(WB)]方法检测,显示LMP1可调控鼻咽癌细胞内转录因子EGFR和STAT3呈复合物结合;再分别用胞浆和核蛋白做免疫共沉淀及western-blot检测表明EGFR和STAT3复合物结合的主要亚细胞定位是细胞核。以上结果为LMP1调控转录因子EGFR和STAT3在鼻咽癌细胞核内的作用机制提供了重要的实验基础。
     肿瘤作为一类细胞周期病,G1/S检测点常在癌变多阶段,甚至在癌前阶段就已失调。细胞周期调节系统是肿瘤发生过程中常发生改变的调节网络,尤其是cyclin D,作为一种调节G1/S期行进的重要正性调节蛋白,是连接外界生长因子、信号转导与细胞周期调控机制的纽带,常成为肿瘤发生过程中的分子靶。Cyclin D1是肿瘤细胞的细胞周期中G1期向S期行进必不可少的蛋白质之一,cyclin D1基因已被证实是重要瘤基因,cyclinD1的主要功能是促进细胞的增殖,而其基因转录受多种因素的调节。本室的前期研究发现LMP1可以活化cyclinD1的表达,EGFR可直接结合于细胞周期G1/S期调节分子cyclinD1和cyclin E启动子区,并反式激活cyclinD1和cyclin E启动子活性,文献证实STAT3可以通过与cyclin D1启动子区结合位点结合并调节其转录功能。
     为探讨LMP1调控转录因子EGFR/STAT3作用的靶基因是否是cyclin D1基因,以LMP1表达阴性的鼻咽癌细胞CNE1和LMP1阳性表达的CNE1-LMP1细胞为模型,采用脂质体瞬时转染方法将cyclin D1报道基因质粒转染至CNE1、CNE1-LMP1细胞系后,进行荧光素酶报告基因分析。同时利用特异性靶向LMP1的脱氧核酶DZ1阻断LMP1的表达后,进行报告基因分析,发现CNE1-LMP1细胞的cyclin D启动子活性明显高于CNE1,转染了特异性靶向LMP1的脱氧核酶DZ1的CNE1-LMP1细胞系的报告基因活性显著低于未经DZ1转染的细胞。结果提示了LMP1能够有效地分别调节转录因子EGFR和STAT3反式激活cyclinD1的活性。进一步通过小干扰RNA(small interfering RNA, siRNA)沉寂靶基因RNA策略,将EGFRsiRNA,STAT3siRNA分别和共同与cyclinD1报道质粒及转染试剂转染CNE1-LMP1细胞后,进行报告基因检测,并与加入非特异性siRNA的对照组比较,发现前组各自的cyclinD1报道基因活性都明显降低,T'检验,P值<0.05,差异有显著性意义;共转染EGFRsiRNA和STAT3siRNA组的cyclinD1报道基因活性比各单独转染组更降低。提示不论独立或同时沉寂cyclinD1启动子区EGFR和STAT3mRNA均可降低LMP1调控的cyclinD1启动子活性,从另一方面证明LMP1通过转录因子EGFR和STAT3调节cyclin D1启动子活性。为探讨LMP1是否可经调控转录因子EGFR/STAT3而调节cyclin D1 mRNA的转录水平,通过GeneBank和Primer3引物设计软件搜索和设计合成人Cyclin D1的cDNA引物序列进行了real-time PCR检测,经分别转染EGFRsiRNA和STAT3siRNA与非特异性对照siRNA于CNE1-LMP1细胞,提取其mRNA进行real-time PCR实验,显示LMP1可通过转录因子EGFR. STAT3对CyclinD1 mRNA表达水平进行不同程度的调节;但是同时沉寂EGFR、STAT3转录因子并未显示其抑制作用强于两转录因子的分别沉寂的抑制作用,表现了CyclinD1 mRNA表达调控的复杂性。
     文献报道大量的细胞膜受体可以核移位,如EGFR, HER-2, FGFR(Fibroblast growth factor receptor, FGFR), HER-3。膜受体核移位后如何作用于靶基因的分子机制至今尚未完全明了。据报道EGFR核移位后能识别并结合至cyclinDl启动子区富含AT的保守序列(AT-rich consensus sequence, ATRS)并反式激活cyclinDl基因的表达,但并未研究清楚EGFR是否能直接结合于cyclinD1启动子ATRS;另有作者认为EGFR缺乏DNA结合域,需与其他能直接结合于DNA的转录因子相互作用方能发挥促进细胞增殖的生物学作用。激活后的STAT3即可核移位,通过识别靶基因上STAT3特异性的DNA结合成分而与其结合,并激活靶基因的转录。有作者发现STAT3蛋白的转录活性需要募集共活化子共同作用,如需与EGFR共同靶向iNOS启动子才能最大程度地促进iNOS基因表达。鼻咽癌细胞cyclin D1启动子区是否存在EGFR与STAT3共结合DNA序列,LMP1通过转录因子EGFR和STAT3调控cyclin D1转录的作用机制是通过对cyclinD1启动子区EGFR、STAT3各自独立结合位点或EGFR/STAT3共结合位点而发挥生物调控作用?首先分析LMP1通过诱导EGFR、STAT3分别与cyclinD1基因启动子区各自的结合位点结合并反式激活作用,通过电泳迁移率变动分析(electrophoretic mobility shift assay, EMSA),并且基于已证实的某些小分子抑制剂可阻断LMP1诱导EGFR/STAT3的主要磷酸化位点激活,而抑制其核移位的实验基础,采用小分子阻断策略观察抑制EGFR/STAT3核移位后对其与CyclinD1启动子区结合能力的影响。结果显示LMP1阳性细胞核蛋白与生物素标记野生型EGFR形成的结合带明显强于LMP1阴性表达细胞,提示LMP1能够调控EGFR与CyclinD1启动子区EGFR结合位点DNA的结合。利用酪氨酸激酶小分子抑制剂AG1478阻断EGFR磷酸化途径后,其与CyclinD1启动子区DNA结合能力降低,表明酪氨酸激酶抑制剂AG1478能够降低LMP1调控的EGFR与CyclinD1启动子区DNA结合的能力,这从另一方面证实LMP1可调控EGFR与CyclinD1启动子区结合。同时发现LMP1能够调控STAT3与CyclinD1启动子区STAT3结合位点的结合能力,利用小分子阻断剂WHI-p131, PD98059,阻断STAT3磷酸化后,可以降低STAT3与CyclinD1启动子DNA结合能力,证实LMP1可调控STAT3与CyclinD1启动子区的结合能力。进一步通过报告基因检测发现LMP1通过EGFR和STAT3诱导上调的cylinD1启动子活性能被EGFRTry1173位磷酸化,STAT3酪氨酸705位磷酸化和STAT3丝氨酸727位磷酸化的小分子阻断剂分别不同程度地抑制。这些结果从正反两方面证明了LMP1可通过调控转录因子EGFR和STAT3结合于cyclinD1启动子区各自的结合位点而调节cyclin D1启动子活性的作用机制。
     根据分子生物学信息技术及参考文献,我们推测在cyclin D1启动子区存在EGFR和STAT3共结合(consensus)潜在的位点,分析其序列为TTCTATGAA.经分析在CYCLIND1启动子区只有一个EGFR和STAT3潜在的共结合位点TTCTATGAA。根据该序列设计PCR引物,采用CHIP(Chromatin immunoprecipitation, CHIP、PCR及琼脂糖凝胶电泳分析,显示CNE1-LMP1活体细胞内Cyclin D1启动子区存在EGFR、STAT3结合的共结合序列;不能忽略的是CNE1细胞内CyclinD1启动子区也存在与EGFR、STAT3结合的共序列,这个共序列的存在也可能是鼻咽癌细胞的共同生物结构特征;通过设计并合成包含EGFR/STAT3共结合序列的生物素标记探针,采用EMSA分析发现CNE1-LMP1细胞核蛋白与生物素标记野生型探针结合能力显著高于CNE1细胞,提示LMP1可以调控转录因子STAT3和EGFR与cyclinD1基因启动子区结合位点共序列的结合能力。运用点突变原则将cyclin D1启动子报道基因质粒推测的EGFR和STAT3共序列的部分关键核苷酸进行点突变,使转录因子EGFR和STAT3不能与cyclinD 1启动子区的共结合序列结合,从而不能反式激活cyclinD1,再转染CNE1和CNE1-LMP1细胞进行报告基因检测,结果发现点突变后LMP1细胞cylin D1启动子转录活性明显降低,约1倍,t'检验,P<0.05,差异有显著性意义;而CNE1细胞点突变前后无明显改变。这些结果表明LMP1可以通过调控转录因子EGFR和STAT3结合至cyclinD1启动子区的其结合位点共序列,并通过该位点协同反式激活cyclinD1启动子的活性。
     综上所述,本研究发现了在LMP1阳性表达的鼻咽癌细胞核存在转录因子EGFR和STAT3的核移位和共定位,及LMP1可诱导EGFR/STAT3相互呈复合物结合并且其结合的主要部位为胞核;LMP1调控EGFR和STAT3作用的主要靶基因是cyclin D1;LMP1既可以通过调控EGFR、STAT3结合于cyclin D1启动子区各自的结合位点调节cyclin D1启动子活性,又可通过调控EGFR、STAT3结合于cyclin D1启动子区EGFR/STAT3共结合序列而激活cyclin D1启动子。
     本项目首次观察到LMP1可调控转录因子EGFR和STAT3共定位于鼻咽癌细胞核,为LMP1激活的转录因子EGFR和STAT3两条不同的信号通路的整合提供了结构基础的依据;也同样首次发现鼻咽癌细胞cyclin D1启动子区存在EGFR/STAT3共结合位点序列,LMP1可调控EGFR/STAT3与该共结合位点的结合能力,并通过EGFR/STAT3与其结合位点的结合而激活cyclin D1启动子。这一新发现从蛋白质间相互作用的新视野阐明了EGFR和STAT3参与细胞周期异常演进的新机制,对EBV重要瘤蛋白LMP1的功能进行了拓展,也为鼻咽癌分子靶向治疗研发新的靶点提供了实验依据。
Nasopharyngeal carcinoma (NPC) is a malignant tumor with remarkably distinctive geographic distribution and thirdly high morbility in south china. One of the unique features of NPC is its strong association with infection of Epstein-Barr Virus (EBV). Latent membrane protein 1 (LMP1) is the only one with oncogenic properties among EBV encoded proteins and its biological functions has involved in cell transformation, apoptosis, cell cycle locomotion and participating in invasion and metastasis of carcinomas. Our previous studies have been focused on signaling transduction pathways mediated by LMP1, we elucidated that LMP1 was involved in abnormal signaling pathway and by which multiple tumor biological functions brought about.
     Transcription factor (TF) is important core of signaling transduction research. Epidermal growth factor receptor (EGFR) is a 170 kDa transmembrane protein and belongs to receptor tyrosine kinases (RTKs). Recently, studies on nuclear translocation of the EGFR family (erbB-1/EGFR, erbB-3, and erbB-4) have greatly improved the knowledge of the biological function of cell surface receptors. It is reported that high level EGFR have been detected in the nucleus of many cancer cells, including those of skin, breast, cervix, bladder, and ovaries, and EGFR acting as a new transcriptional factor or co-activator affect on the target genes which closely related to cell cycle progressing or cell proliferation, and promote tumorigenesis and development. Signal transducer and activation of transcription 3 (STAT3) is a key molecule through which receptors of multiple cytokines and growth factors perform their function. After its activation with the phosphorylation of tyrosine 705(tyr 705), STAT3 forms dimmers with itself or with STAT1, translocates to nuclei and binds to specific DNA sequences, then, starts the transcription of multiple related downstream genes.
     Our previous research first found that LMP1 can finely regulated EGFR expression and increased phosphorylation of EGFR by recruiting tumor necrosis factor receptor associated factors (TRAFs) through its carboxterminal activating region 1(CTAR1) in NPC cells; then, discovered that LMP1 could regulate nuclear translocation of EGFR. It is reported that after epidermal growth factor (EGF) stimulate 10 minutes, EGFR could be found in nucleus with laser cofocal microscopy (LCFM). Meanwhile, some authors consider that EGFR educe its promoting proliferation needing to interact with other transcription factors which can directly bind to DNA. It has been previously reported that LMP1 can promote STAT3 705 phosphorylation then to be activated, and activated STAT3 translocate to nuclear immediately and accumulate in nuclear. Therefore, we presume LMP1 may regulate TF EGFR and STAT3 interaction through inducing them nuclear translocation. We chose LCFM to observe whether TF EGFR and STAT3 co-localization exists in NPC cells nuclear controlled under LMP1. The results showed EGFR and STAT3 co-localization was discovered in LMP1 positive expression cells CNE1-LMP1; and by co-immunoprecipitation (COIP)-western blot (WB) assay, it displayed that LMP1 can facilitate the complex combination of EGFR and STAT3; We performed COIP-WB again to part with kytoplasm and nuclear protein, and found that the main subcellular localization of EGFR and STAT3 complex combination together was in nuclei. The results above provided important experiment foundation for understanding the mechanism how LMP1 regulate NF EGFR and STAT3 in NPC cells.
     Regulatory system of cell cycle is the network in which changes often occur in tumorigenesis, especially for cyclin D1 which always become one of the commonest molecular targets. Cyclin D1 is one of the most important proteins during cell cycle from G1 to S phase in cancer cells. Currently, there is conclusive evidence that cyclin D1 is oncogene which can promote cell proliferation, but its gene transcription was regulated by many factors. Our previous studies showed that LMP1 can activate cyclin D1 expression, and found that EGFR could bind to directly cyclin D1 and cyclin E promoters and trans-activate the transcription of cyclin D1 and cyclin E.
     In order to investigate whether the target gene is cyclin D1 which LMP1 effect on by modulation of EGFR and STAT3, we used the CNE1 and CNE1-LMP1 NPC cells with LMP1 negative and positive expression as model, transferred cyclin D1 reporter plasmids to CNE1 and CNE1-LMP1 cells with liposome transient transfection methods, and luciferase reporter assays were carried out. Meanwhile, we also performed another reporter assays after transfering DZ1 which is deoxyribozyme /DNAzyme specificity for LMP1 to block LMP1 expression. It was exhibited that cyclin D1 promoter activity in CNE1-LMP1 was obviously higher than in CNE1 cells; the luciferase reporter activity transfected with DZ1 significantly lower than without transfection in CNE1-LMP1 cells. The results revealed that LMP1 could effectively control TF EGFR and STAT3 to trans-activate cyclin D1. Further reporter analysis showed that each group of reporter activity was markedly lower after transfection with EGFR siRNA and STAT3 siRNA into CNE1-LMP1 cells, compared with controlled group, P value<0.05. To explore whether LMP1 can regulate the transcription of cyclinD1 mRNA via modulating EGFR/STAT3, we designed and synthetized the cDNA primers of cyclin D1 and real-time PCR were carried out. The results suggested that LMP1 can impact the expression of cyclin Dl mRNA via EGFR and STAT3.
     Emerging evidences indicated that many membrane receptors can nuclear translocation, such as EGFR, HER-2, Fibroblast growth factor receptor (FGFR), HER-3. The mechanisms of how membrane receptors affect on gene targets have not been fully elucidate. Recent advances and our research let us think about:Is there the existence of EGFR and STAT3 consensus sequence in cyclin D1 promoter in NPC cells? What are the mechanisms in which LMP1 regulate cyclin D1 transcription through inducing EGFR and STAT3 bind to their respective binding site or consensus binding site in cyclin D1 promoter? We first analyzed the role that EGFR、STAT3 bind to each binding site of the promoter region in cyclin D1 and trans-activation of cyclin D1 modulated by LMP1. We found that LMP1 can enhance the EGFR and DNA binding activity of the promoter region of cyclin D1 only in CNE1-LMP1 cells detected by electrophoretic mobility shift assay(EMSA); Because previous works have confirmed that some small molecular inhibitors can block the activation of main location of phosphorylation of EGFR and STAT3, and nuclear translocation modulated by LMP1, we used small molecular inhibitors to aim directly at RTK AG1478 to obstruct EGFR phophorylation pathway and to restrict EGFR nuclear translocation, and the data showed that EGFR-DNA binding activity of the promoter region of cyclin Dl attenuated after being treated with AG1478 with EMS A in same cells. Likewise, we identified that STAT3-DNA binding activity of the promoter region of cyclin D1 was increased regulated by LMP1, and decreased after being treated with small molecular inhibitors aimed to STAT3, WHI-P131 and PD98059, to inhibit its phophorylation with EMS A in CNE1-LMP1 cells. Then, further reporter tests displayed that the cyclinDl promoter activity induced by LMP1 via EGFR and STAT3 could be inhibited differently degree by small molecular inhibitors which repressed the phophorylation of EGFR Tyr 1173, STAT3 Tyr 705 and Ser 727. These finding from right and reverse sides indicated the mechanism that LMP1 can enhance EGFR/STAT3 binding activity to their respective DNA site in the region of cyclin D1 promoter, and increase cycin D1 transcription.
     According to molecular biology and information technology, and referring to literatures, we presume that there is a putative consensus DNA sequence of EGFR/STAT3 in the region of cyclin D1 promoter. We conjectured that the nucleotides, TTCTATGAA was the putative consensus sequence and only found one such nucleotides sequence after checking promoter region of cyclin D1. PCR primers were designed according to the nucleotides sequence and Chromatin immunoprecipitation (CHIP), PCR, agarose gel electrophoresis assays were performed. The data suggested that the consensus DNA sequence of EGFR/STAT3 existed in the promoter region of cyclin D1 in CNE1-LMP1 and CNE1 cells in vivo. This consensus sequences may be the common feature of biological structure in NPC cells. To further understanding the LMP1 effect on the EGFR/STAT3 binding with consensus DNA sequences in cyclin D1 promoter region, we designed and synthesized biotin labeled probes containing consensus sequences with EGFR/STAT3 binding in cyclin D1 promoter region. Results showed that the binding activity of neucleoprotein with wild biotin labeled probes in CNE1-LMP1 cells was markedly higher than in CNE1 cells, and it revealed that LMP1 can regulate EGFR/STAT3 binding ability with consensus DNA in cyclin D1 promoter region through inducing EGFR cooperation with STAT3. To further confirm the role of consensus DNA in cyclin D1 promoter region, applying reporter test and point mutation technique in which we mutated the key nucleotides in the consensus sequence of EGFR/STAT3 in the region of cyclin D1 promoter to lead to TF EGFR/STAT3 could not bind with, the reporter results displayed that transcription activity of cyclin D1 promoter after point mutation obviously decreased about 1 fold compared with point mutation before, P value<0.05. The data suggested that LMP1 can induce the synergism of EGFR and STAT3 to trans-activate the activation of cyclin D1 promoter.
     In conclusion, the present study demonstrate that the co-localization of EGFR and STAT3 in the LMP1 positive expression NPC cells; it mainly occurred in nuclei of NPC cells in which the association of complex combination between EGFR and STAT3 was modulated by EBV-encoded oncoprotein LMP1; The main target gene that LMP1 effects on by regulating EGFR and STAT3 is cyclin D1; and LMP1 can activate the promoter activity of cyclinDl through mediating EGFR,STAT3 to bind to their consensus sequence DNA site, as well as to bind to their respective sites in promoter region of cyclin D1.
     This project for the first time observed that LMP1 can induce TF EGFR and STAT3 co-localization in the nuclei of NPC cells, and provides structure foundation for the integration of EGFR and STAT3 which are two different pathways activated by LMP1; it for also the firs time discovered that there is a consensus sequences binding site of EGFR/STAT3 in cyclin D1 promoter region in NPC cells, by which LMP1 can enhance EFGR/STAT3 binding ability with this binding site and trans-activating promoter activity of cyclin D1. These new discoveries elucidate the new mechanisms of EGFR and STAT3 participating in the abnormal progression of cell cycle from a new field of view of proteins interaction, hence, it also provides experimental evidences for understanding the function of EBV important oncoprotein LMP1, and for finding new treating targets of molecular treatment of NPC.
引文
[1]Robin H. The Oncogene Factsbook. San Diego:Acadenic Press.1996,80-84.
    [2]Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network:receptor heterodimerization in development and cancer. EMBO J,2000,19,3159-3167.
    [3]Duchek P, Rorth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis. Science,2001,291,131-133.
    [4]Gutacker C, Klock G, Diel P, et al. Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC 12 cells. Biochem J,1999,339, 759-766.
    [5]Xiao ZQ, Majumdar AP. Induction of transcriptional activity of AP-1 and NF-kappaB in the gastric mucosa during aging. Am J Physiol Gastrointest Liver Physiol,2000,278, G855-G865.
    [6]Lo HW and Hung MC. Nuclear EGFR signalling network in cancers:linking EGFR pathway. British Journal of Cancer,2006; 94,:184-188.
    [7]Xia W, Wei Y, Du Y, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog,2009; 48:610-617.
    [8]Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol.2001; 3:802-808.
    [9]Dittmann K, Mayer C, Fehrenbacher B, et al. Radiation-induced epidermal growth factor receptor nuclear import is linked to activation of DNA dependent protein kinase. J Biol Chem.2005a; 280:31182-31189.
    [10]Cordero JB, Cozzolino M, Lu Y, et al.1,25-Dihydroxyvitamin D downregulates cell membrane growth-and nuclear growth-promoting signals by the epidermal growth factor receptor. J Biol Chem.2002; 277:38965-38971.
    [11]Dittmann K, Mayer C, Rodemann HP. Inhibition of radiation induce EGFR nuclear import by C225 (Cetuximab) suppresses DNA-PK activity. Radiother Oncol.2005b; 76:157-161.
    [12]Liu NS, Loo LS, Loh E. et al. Participation of Tom1L1 in EGF-stimulated endocytosis of EGF receptor. EMBO Journal.2009; 28,3485-3499.
    [13]Lo HW, Ali-Seyed M, Wu YD, et al. Nuclear-Cytoplasmic Transport of EGFR Involves Receptor Endocytosis, Importin b1 and CRM. Journal of Cellular Biochemistry.2006 98:1570-1583.
    [14]Carpenter G. Nuclear localization and possible functions of receptor tyrosine kinases. Current Opinion in Cell Biology 2003,15:143-148
    [15]Tao YG, Song X, Cao Y, et al. Nuclear translocation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr virus encoded oncoprotein Latent membrane protein 1. Exp Cell Res.2005; 303(2):240-51.
    [16]Liao HJ, Carpenter G. Role of the Sec61 Translocon in EGF Receptor Trafficking to the nucleus and gene expression. Mol Biol Cell.2007; 18 (3) 1604-1672.
    [17]Hanada N, Lo HW, Day CP, et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog.2006,45(1):10-17.
    [18]Wang SC, Nakajima, Yu YL, et al. Tyrosine phosphorylation controls PCNA function through protein stability. Nat Cell Biol.2006; 8(12):1359-68.
    [19]Hung LY, Tseng JT, Lee YC. et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucl Acids Res.2008;36 (3):4337-4351.
    [20]Lo HW, Xia W, Wei Y, et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res.2005;65 (1) 338-348.
    [21]Psyrri A, Yu Z, Weinberger PM, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis. Clin Cancer Res 2005; 11:5856-5862.
    [22]Yuan YL, Zhou XH, Song J, et al. Dual silencing of type 1 insulin-like growth factor and epidermal growth factor receptors to induce apoptosis of nasopharyngeal cancer cells. J. Laryngology & Otology (2008),122,952-960.
    [23]Zhou X, Yuan Y, Song J, et al. Dual silencing of epidermal growth factor and insulin-like growth factor 1 receptors significantly limits growth of nasopharyngeal carcinoma in nude mice. J Laryngology & Otology.2009; 123, 208-222.
    [24]Willmore E, Elliott SL, Mainou-Fowler T,et al.DNA-dependent protein kinase is a therapeutic target and an indicator of poor prognosis in B-cell chronic lymphocytic leukemia. Clin Cancer Res 2008; 14:3984-3992.
    [25]Hsu SC, Miller SA, Wang Y,et al. Nuclear EGFR is required for cisplatin resistance and DNA repair. Am J Transl Res 2009;1(3):249-258
    [26]Dittmann KH, Mayer C, Rodemann HP,et al. Role of Nuclear EGFR During Cellular Radiation Response. Acta Med. Nagasaki.2009; 53:55 - 59.
    [27]Zhang XZ, Chang A. Molecular Predictors of EGFR-TKI Sensitivity in Advanced Non-small Cell Lung Cancer. Int. J. Med. Sci.2008,5(4):209-217.
    [28]Amin DN, Hida K, Bielenberg DR, et al. Tumor Endothelial Cells Express Epidermal Growth Factor Receptor (EGFR) but not ErbB3 and Are Responsive to EGF and to EGFR Kinase Inhibitors. Cancer Res 2006; 66(4):2173-2180.
    [29]Imai K; Takaoka A. Comparing Antibody and Small-Molecule Therapies for Cancer. Nat. Rev. Cancer.2006; 6(9):714-727.
    [30]Mandica R, Rodgarkia-Darab CJ, Zhu L.et al. Treatment of HNSCC cell lines with the EGFR-specific inhibitor cetuximab (Erbitux) results in paradox phosphorylation of tyrosine 1173 in the receptor. FEBS Letters 2006;580 4793-4800.
    [31]Chai RL, Grandis JR. Advances in Molecular Diagnostics and Therapeutics in Head and Neck Cancer. Current Treatment Options in Oncology 2006,7:3-11.
    [32]Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity.1999 Jan; 10(1):105-115.
    [33]Lord JD, McIntosh BC, Greenberg PD, et al. The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol.2000 Mar 1; 164(5): 2533-41.
    [34]Bowman T, Broome MA, Sinibaldi D, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A.2001 Jun 19; 98(13):7319-24.
    [35]Barre B, Avril S, Coqueret O. Opposite regulation of myc and p21wafl transcription by STAT3 proteins. J Biol Chem.2003 Jan 31; 278(5):2990-2996.
    [36]Torbenson M, Yang SQ, Liu HZ, et al. STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am J Pathol. 2002 Jul;161(1):155-161.
    [37]Sinibaldi D, Wharton W, Turkson J, et al. Induction of p21WAF1/CIP1 and cyclin D1 expression by the Src oncoprotein in mouse fibroblasts:role of activated STAT3 signaling. Oncogene.2000 Nov 16; 19(48):5419-5427.
    [38]Mees C, Nemunaitis J,N Senzer. Transcription factors:their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Ther.2009; 16(2):103-112.
    [39]Tsareva SA, Morigglz R, Corvinus FM, et al. Signal ansducer and Activator of Transcription 3 Activation Promotes Invasive Growth of Colon Carcinomas through Matrix Metalloproteinase Induction. Neoplasia 2007,9(4), pp.279-291
    [40]Chan KS, Sano S, Kiguchi K, et al. Disruption of Stat3 reveals a critical role in both the initiation and promotion stages of epithelial carcinogenesis. J Clin Invest.2004,114(5):720-728.
    [41]Turkson J, Zhang S, Palmer J, et al. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent anti-tumor activity. Mol Cancer Ther,2004; 3:1533-1542.
    [42]Blaskovich MA, Sun J, Cantor A, et al. Discovery of JSI-124 (cucurbitacin I), a selective Janus kinase/signal transducer and activator of transcription 3 signaling pathway inhibitor with potent antitumor activity against human and murine cancer cells in mice. Cancer Res 2003;63:1270-1279.
    [43]Wang T, Niu G, Kortylewski M, et al. regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10:48-54.
    [44]Kortylewski M, Kujawski M, Wang T, et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 2005;11:1314-1321.
    [45]Kamath S, Buolamwini JK. Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev 2006;26:569-594.
    [46]Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity 1999; 10:105-115.
    [47]Turkson J, Kim JS, Zhang S, et al. Novel peptidomimetic inhibitors of signal transducer and activator of transcription 3 dimerization and biological activity. Mol.Cancer Ther,2004;3:261-269.
    [48]Siddiquee K, Zhang S, Guida WC, et al. Selective chemical probe inhibitor of Stat3, identified through structure-based virtual screening, induces antitumor activity. Proc Natl Acad Sci U S A 2007; 104:7391-7396.
    [49]Turkson J, Zhang S, Mora LB, et al. A novel platinum compound inhibits constitutive Stat3 signaling and induces cell cycle arrest and apoptosis of malignant cells. J Biol Chem 2005; 280:32979-32988.
    [50]Turkson J, Zhang S, Palmer J, et al. Inhibition of constitutive signal transducer and activator of transcription 3 activation by novel platinum complexes with potent anti-tumor activity. Mol Cancer Ther 2004; 3:1533-1542.
    [51]Shuai K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene 2000;21:2638-2644.
    [52]Shuai K, Liu B. Regulation of gene-activation pathways by PIAS proteins in the immune system.Nat Rev Immunol 2005; 5:593-605.
    [53]Yasukawa H, Sasaki A, Yoshimura A. Negative regulation of cytokine signaling pathways. Annu Rev Immunol 2000; 18:143-164.
    [54]Owa T, Yoshino H, Yoshimatsu K et al. Cell cycle regulation in the G1 phase:apromising target for the development of new chemotherapeutic anticancer agents. Curr M ed Chem,2001,8(12):1487-1503.
    [55]Pardee AB. G1 events and regulation of cell proliferation. Science,1989, 246(4930):603-608.
    [56]Arnold A, Papanikolaou A. Cyclin d1 in breast cancer pathogenesis. J Clin Oncol 2005; 23:4215-24.
    [57]Fu M, Wang C, Li Z, et al. Minireview:Cyclin D1:Normal and abnormal functions. Endocrinology 2004; 145:5439-5447.
    [58]Van Diest PJ, Michalides RJ, Jannink L, et al Cyclin D1 expression in invasive breast cancer, Correlations and prognostic value. Am J Pathol 1997; 150:705-11.
    [59]Klein EA and Richard K. Transcriptional regulation of the cyclinDl gene at a glance. Journal of Cell Science,2008; 121,3853-3857.
    [60]Kondo E, Maecker B, Weihrauch MR,et al. Cyclin D1 Specific Cytotoxic T Lymphocytes Are Present in the Repertoire of Cancer Patients:Implications for Cancer Immunotherapy. Clin Cancer Res.2008; 14(20),2008 6574-6579
    [61]Yip-Schneider MT, Wu HB, Ralstin M, et al. Suppression of pancreatic tumor growth by combination chemotherapy with sulindac and LC-1 is associated with cyclin Dl inhibition in vivo. Mol Cancer Ther.2007;6(6).1736-1744.
    [62]Malumbres M, Pevarello P, Barbacid M, et al. CDK inhibitors in cancer therapy: what is next? Trends in Pharmacological Sciences 2007;29 (1):16-21.
    [63]Lapenna S and Giordano A. Cell cycle kinases as therapeutic targets for cancer.Nature reviews/drug disc.2009;8:547-566
    [64]Johansson M and Persson JL. Cancer Therapy:Targeting Cell Cycle Regulators. Anti-Cancer Agents in Medicinal Chemistry,2008,8,723-731.
    [65]Shapiro GI. Cyclin-Dependent Kinase Pathways As Targets for Cancer Treatment. J Clin Oncol.2006; 24:1770-1783.
    [66]Parkin DM, Bray F, Ferlay J, Pisani P et al. Global cancer statistics,2002. CA. Cancer J Clin 2005;55:74-108.
    [67]Tao q and Chan ATC. Nasopharyngeal carcinoma:molecular pathogenesis and therapeutic developments.Expert Rev Mol Med.2007;9(12):1-24
    [68]Niedobitek G, Meru N and Delecluse HJ. Epstein-Barr virus infection and human malignancies. Int J Exp Pathol,2001; 82(3):149-170.
    [69]Tao Q, Young LS, Woodman CBJ,et al. Epstein-Barr virus (EBV) and its associated human cancers-Genetics, epigenetics, pathobiology and novel therapeutics. Frontiers in Bioscience.2006; 11:2672-2713
    [70]Izumi KM and Kieff ED. The Epstein-Barr virus oncogene product latent membrane protein 1 engages the tumor necrosis factor receptor-associated death domain protein to mediate B lymphocyte growth transformation and activate NF-kappaB. Proc Natl Acad Sci USA,1997;94:12592-12597.
    [71]Fahraeus R, Fu HL, Ernberg I et al. Expression of Epstein-Barr virus-encoded proteins in nasopharyngeal carcinoma. Int J Cancer,1988,42(3):329-338.
    [72]Lu ZX, Ye M, Yan GR et al. Effect of EBV LMP1 targeted DNAzymes on cell proliferation and apoptosis. Cancer Gene Ther,2005,12(7):647-54.
    [73]Zheng H, Li LL, Cao Y, et al. Role of Epstein-Barr Virus Encoded Latent Membrane Protein 1 in the Carcinogenesis of Nasopharyngeal Carcinoma Cell Mol Immunol.2007 Jun;4(3):185-196.
    [74]王承兴,李晓艳,曹亚,等EB病毒LMP1在鼻咽癌细胞系中上调EGFR表达。中华肿瘤杂志,2001,23(4):209-212.
    [75]陶永光,邓锡云,曹亚,等EB病毒潜伏膜蛋白1在鼻咽癌细胞中调节表皮生长因子受体磷酸化的研究。中华肿瘤杂志,2002,24(3):226-229
    [76]陶永光,宋鑫,曹亚,等。EB病毒潜伏膜蛋白1调节EGF受体核移位。中国科学,2003,33(6):539-546.
    [77]Tao YG, Song X, Cao Y, et al. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Ebstein-Barr-encoded oncoprotein latent membrane protein 1. Exp cell Res.2005 Feb303(2):240-251.
    [78]谭运年,陶永光,曹亚,等。JAK3蛋白在鼻咽癌细胞中参与STAT活化并受EB病毒潜伏膜蛋白1调控。生物化学与生物物理进展,2003,30(4):560-565.
    [79]谭运年,陶永光,曹亚,等。EB病毒LMP1在鼻咽癌细胞中通过STAT3促进VEGF的表达。生物化学与生物物理进展,2004,31(5):427-431。
    [1]Lo KW, Huang DP. Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol,2002,12(6):451-462.
    [2]Hislop AD, Taylor GS, Sauce D, et al. Cellular responses to viral infection in humans:lessons from epstein-barr virus. Annu Rev Immunol.2007,25:587-617.
    [3]Pattle SB, Farrell PJ. The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther,2006,6(11):1193-205.
    [4]廖伟,唐敏,邓锡云,等.EB病毒LMP1在鼻咽癌细胞中调控转录因子KB活性研究.病毒学报,2000,16(3):198-202.
    [5]王承兴,李晓艳,顾焕华,等.EB病毒潜伏膜蛋白1通过结合TRAFs调控NFκB.生物化学与生物物理进展,2001,28(2):240-245.
    [6]Yin LQ, Liao W, Deng X, et al. LMP1 activates NFκB via degration of IκBα in nasopharyngeal carcinoma cells. Chinese Medical J (Eng),2001,114,718-722.
    [7]罗非君,胡智,邓锡云,等.EB病毒LMP1在鼻咽癌细胞中通过JNK介导AP-1活化.中国生物化学与分子生物学报,2001,17(3):81-385.
    [8]胡智,曾亮,陶永光,等.EB病毒潜伏膜蛋白1通过TRAF/TRADD激活JNK信号途径.生物化学与生物物理进展,2002,29(4):562-566.
    [9]罗非君,胡智,曾亮,等.EB病毒编码的潜伏膜蛋白1参与鼻咽癌恶性演进的转录调控实验研究.生物化学与生物物理进展,2002,29(4):567-571.
    [10]Hu Z, Tao YG, Cao Y, et al. Effect of JIP on the proliferation and apoptosis of nasopharyngeal carcinoma cells through interaction with JNK mediated pathway. Progress in Biochemistry and Biophysics,2003,30(4):579-585.
    [11]王承兴,李晓艳,曹亚,等EB病毒LMP1在鼻咽癌细胞系中上调EGFR表达。中华肿瘤杂志,2001,23(4):209-212.
    [12]陶永光,邓锡云,曹亚,等EB病毒潜伏膜蛋白1在鼻咽癌细胞中调节表皮生长因子受体磷酸化的研究。中华肿瘤杂志,2002,24(3):226-229
    [13]陶永光,宋鑫,曹亚,等。EB病毒潜伏膜蛋白1调节EGF受体核移位。中国科学,2003,33(6):539-546.
    [14]Hsu SC and Hung MC. Characterization of a Novel Tripartite Nuclear Localization Sequence in the EGFR Family. J Biol Chem.2007; 282 (14):10432-10440.
    [15]Hanada N, Lo HW, Day CP, et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog.2006,45(1):10-17.
    [16]Lo HW, Hsu SC, Ali-Seyed M, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell; (2005); 7:575-589.
    [17]Hung LY, Tseng T, Lee YC. et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucl Acids Res,2008;36(3): 4337-4351.
    [18]谭运年,陶永光,曹亚,等。JAK3蛋白在鼻咽癌细胞中参与STAT活化并受EB病毒潜伏膜蛋白1调控。生物化学与生物物理进展,2003,30(4):560-565.
    [19]谭运年,陶永光,曹亚,等。EB病毒LMP1在鼻咽癌细胞中通过STAT3促进VEGF的表达。生物化学与生物物理进展,2004,31(5):427-431。
    [20]Tao YG, Song X, Cao Y, et al. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Ebstein-Barr-encoded oncoprotein latent membrane protein 1. Exp cell Res.2005; 303(2):240-251.
    [21]Lo HW and Hung MC. Nuclear EGFR signalling network in cancers:linking EGFR pathway. British Journal of Cancer.2006; 94,184-188.
    [22]Xia W, Wei Y, Du Y, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog.2009; 48:610-617.
    [23]Lo HW, Xia W, Wei Y, et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer. Cancer Res,2005;65 (1) 338-348.
    [24]Hoshino M, Fukui H, Ono Y, et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiolog.2007; 74:15-21.
    [25]Li C, Iida M, Dunn EF, et al. Nuclear EGFR contributes to acquired resistance to cetuximab. Oncogene,2009; 28,3801-3813.
    [26]Wheeler DL, Huang S, Kruser TJ, et al. Mechanisms of acquired resistance to cetuximab:role of HER (ErbB) family members. Oncogene,2008; 27:3944-3956.
    [27]Catlett-Falcone R, Landowski TH, Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity.1999; 10(1):105-115.
    [28]Lord JD, McIntosh BC, Greenberg PD, et al. The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5. J Immunol.2000 Mar 1; 164(5): 2533-41.
    [29]Bowman T, Broome MA, Sinibaldi D, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A.2001; 98(13):7319-24.
    [30]Barre B, Avril S, Coqueret O. Opposite regulation of myc and p21wafl transcription by STAT3 proteins. J Biol Chem.2003 Jan 31; 278(5):2990-2996.
    [31]Torbenson M, Yang SQ, Liu HZ, et al. STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am J Pathol. 2002; 161(1):155-61.
    [32]Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol,2001; 3:802-808.
    [33]段朝军,陈主初,赵明伦,等.EB病毒LMP与EGF自分泌在鼻咽癌细胞生长中的作用及其相互关系.湖南医科大学学报,1997,22:483-486.
    [1]Hanahan D, Weinberg RA. The hallmarks of cancer. Cell,2000; 100:57-70.
    [2]Mees C, Nemunaitis J and Senzer N. Transcription factors:their potential as targets for an individualized therapeutic approach to cancer. Cancer Gene Therapy,2009; 16:103-112
    [3]宋鑫,曹亚。G1/S检测点调控与癌变多阶段的关系。国外医学分子生物学分册,2002,24(2):73-76
    [4]Arnold A, Papanikolaou A. Cyclin dl in breast cancer pathogenesis. J Clin Oncol 2005; 23:4215-24.
    [5]Fu M, Wang C, Li Z, et al. Minireview:Cyclin D1:Normal and abnormal functions. Endocrinology 2004; 145:5439-47.
    [6]van Diest PJ, Michalides RJ, Jannink L, et al. Cyclin D1 expression in invasive breast cancer. Correlations and prognostic value. Am J Pathol 1997; 150:705-11.
    [7]Yu Q, Geng Y, Sicinski P. Specific protection against breast cancers by cyclin D1 ablation. Nature 2001; 411:1.017-21.
    [8]Rowlands TM, Pechenkina IV, Hatsell SJ, et al. Dissecting the roles of beta-catenin and cyclin D1 during mammary development and neoplasia. Proc Natl Acad Sci 2003; 100:11400-5
    [9]Owa T, Yoshino H, Yoshimatsu K et al. Cell cycle regulation in the G1 phase:apromising target for the development of new chemotherapeutic anticancer agents. Curr M ed Chem,2001,8(12):1487-1503.
    [10]Pardee AB. G1 events and regulation of cell proliferation. Science,1989, 246(4930):603-608.
    [11]Klein EA and Richard K. Transcriptional regulation of the cyclinD1 gene at a glance. Journal of Cell Science,2008; 121:3853-3857.
    [1.2]Hulit J, Wang C, Li Z, et al. Cyclin D1 genetic heterozygosity regulates colonic epithelial cell differentiation and tumor number in ApcMin mice. Mol Cell Biol 2004; 24:7598-611.
    [13]Wang C, Li Z, Lu Y, et al. Cyclin D1 repression of nuclear respiratory factor 1 integrates nuclear DNA synthesis and mitochondrial function. Proc Natl Acad Sci USA.2006; 103:11567-72.
    [14]Sakamaki T, Casimiro MC, Ju X, et al. Cyclin D1 determines mitochondrial function in vivo. Mol Cell Biol.2006; 26:5449-69.
    [15]Wang C, Pattabiraman N, Zhou JN, et al. Cyclin D1 repression of peroxisome proliferator-activated receptor gamma expression and transactivation. Mol Cell Biol.2003; 23:6159-6173.
    [16]Yasui M, Yamamoto H, Ngan CY, et al. Antisense to cyclin D1 inhibits vascular endothelial growth factor-stimulated growth of vascular endothelial cells: Implication of tumor vascularization. Clin Cancer Res.2006; 12:4720-9.
    [17]Bowman T, Broome MA, Sinibaldi D, et al. Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A.2001; 98(13):7319-7324.
    [18]Barre B, Avril S, Coqueret O. Opposite regulation of myc and p21wafl transcription by STAT3 proteins. J Biol Chem.2003; 278(5):2990-2996.
    [19]Torbenson M, Yang SQ, Liu HZ, et al. STAT-3 overexpression and p21 up-regulation accompany impaired regeneration of fatty livers. Am J Pathol. 2002;161(1):155-161.
    [20]Leslie K, Lang C, Devgan G, et al. Cyclin Dl Is Transcriptionally Regulated by and Required for Transformation by Activated Signal Transducer and Activator of Transcription 3. Cancer Res.2006; 66(5):2544-2552
    [21]Gu J, Li G, Sun T, et al.. Blockage of the STAT3 signaling pathway with a decoy oligonucleotide suppresses growth of human malignant glioma cells. J.Neurooncol.2008;89(1):9-17.
    [22]Wang D, Liu Z, Li Q, et al. An essential role for gp130 in neointima formation following arterial injury. Circ. Res.2007,100,807-816
    [23]Kanda N, Seno H, Konda Y, et al. STAT3 is constitutively activated and supports cell survival in association with survivin expression in gastric cancer cells. Oncogene 2004;23:4921-4929.
    [24]Xia W, Wei Y, Du Y, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer. Mol Carcinog.2009; 48:610-617.
    [25]Kawa k. Epstein-Barr virus-associated diseases in humans. Int J Hematol. 2000,71(2):108-17.
    [26]Tao Q, Young LS, Woodman CBJ, et al. Epstein-Barr virus (EBV) and its associated human cancers-Genetics, epigenetics, pathobiology and novel therapeutics. Frontiers in Bioscience,2006; 11:2672-2713.
    [27]赵晓荣 曹亚等;鼻咽癌细胞中EB病毒编码的潜伏膜蛋白1活化cyclinD1的表达 生物化学与生物物理进展 2001;28(5):704-710
    [28]宋鑫 赵晓荣 曹亚等;用组织微阵列高通量技术分析鼻咽癌变多阶段组织cyclinD1过表达 生物化学与生物物理进展 2002:29(3)385-389
    [29]陶永光,宋鑫,曹亚,等。EB病毒潜伏膜蛋白1调节EGF受体核移位。中国科学,2003,33(6):539-546.
    [30]Tao YG, Song X, Cao Y, et al. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Ebstein-Barr-encoded oncoprotein latent membrane protein 1. Exp cell Res.2005; 303(2):240-251.
    [31]谭运年,陶永光,曹亚,等。JAK3蛋白在鼻咽癌细胞中参与STAT活化并受EB病毒潜伏膜蛋白1调控。生物化学与生物物理进展,2003,30(4):560-565.
    [32]Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol,2001,3:802-808.
    [33]Sun LQ, Cairns MJ, Saravolac EG et al. Catalytic nucleic acids:from lab to applications. Pharmacol Rev,2000,52(3):325-347.
    [34]Baum DA and Silverman SK. Deoxyribozymes:useful DNA catalysts in vitro and in vivo. Cell Mol Life Sci,2008,65(14):2156-2174.
    [35]Lu ZX, Ye M, Yan GR et al. Effect of EBV LMP1 targeted DNAzymes on cell proliferation and apoptosis. Cancer Gene Ther,2005,12(7):647-654.
    [36]Lu ZX, Ma XQ, Cao Y, DNAzymes targeted to EBV-encoded latent membrane protein-1 induce apoptosis and enhance radiosensitivity in nasopharyngeal carcinoma, Cancer letters,2008, Jul 8;265(2):226-238.
    [37]Li ZP, Wang CG, Prendergast GC, et al. cyclin D1 function in cell migration, 2006;cell cycle 5(21):2440-2442.
    [38]Saxena NK, Vertino PM, Anania FA, et al. Leptin-induced Growth Stimulation of Breast Cancer Cells Involves Recruitment of Histone Acetyltransferases and Mediator Complex to CYCLIN D1 Promoter via Activation of Stat3. J Biol Chem,2007;282, (18):pp.13316-13325.
    [1]Wang SC., Lien HC., Xia W., et al. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell,2004; 6: 251-261.
    [2]Xie Y. and Hung M.C. Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem. Biophy. Res. Commun.,1994;203:1589-1598.
    [3]Reilly JF. and Maher PA. Importin beta-mediated nuclear import of fibroblast growth factor receptor:role in cell proliferation. J. Cell Biol.,2001; 152, 1307-1312.
    [4]Offterdinger M., Schofer C., Weipoltshammer K. et al. c-erbB-3:a nuclear protein in mammary epithelial cells. J. Cell Biol.,2002; 157:929-939.
    [5]Chan YS., Chen LW, Lai CH, et al. Receptors of glutamate and neurotrophin in vestibular neuronal functions. J. Biomed. Sci.2003; 10,577-587.
    [6]Raabe TD., Deadwyler G., Varga JW, et al. Localization of neuregulin isoforms and erbB receptors in myelinating glial cells. Glia,2004;45:197-207.
    [7]Podlecki DA., Smith RM., Kao M., et al. Nuclear translocation of the insulin receptor. A possible mediator of insulin's long term effects. J Biol. Chem..1987; 262:3362-3368.
    [8]Zwaagstra JC., Guimond A., O'Connor-McCourt. Predominant intracellular localization of the type I transforming growth factor beta receptor and increased nuclear accumulation after growth arrest. Exp. Cell Res.2000; 258:121-134.
    [9]Curtis BM., Widmer MB., deRoos P., et al. IL-1 and its receptor are translocated to the nucleus. J. Immunol.1990; 144:1295-1303.
    [10]Jans DA., Briggs LJ., Gustin SE, et al.. The cytokine interleukin-5 (IL-5) effects cotransport of its receptor subunits to the nucleus in vitro. FEBS Lett.1997; 410: 368-372.
    [11]Bader T., Weitzerbin J. Nuclear accumulation of interferon apogamma. Proc. Natl. Acad. Sci. USA.1994; 91,11831-11835.
    [12]Larkin J., Johnson HM., Subramaniam PS. Differential nuclear localization of the IFNGR-1 and IFNGR-2 subunits of the IFN-gamma receptor complex following activation by IFN-gamma. J. Interferon Cytokine Res.2000; 20:565-576.
    [13]Lin SY, Makino K, Xia W, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol.2001; 3:802-808.
    [14]Hanada N, Lo HW, Day CP, et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor. Mol Carcinog.2006,45(1):10-17.
    [15]Lo HW, Hsu SC. Ali-Seyed M, et al. Nuclear interaction of EGFR and STAT3 in the activation of the iNOS/NO pathway. Cancer Cell.2005; 7:575-589.
    [16]Hung LY, Tseng JT, Lee YC. et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression. Nucl Acids Res,2008;36(3): 4337-4351.
    [17]Saxena NK, Vertino PM, Anania FA, et al. Leptin-induced Growth Stimulation of Breast Cancer Cells Involves Recruitment of Histone Acetyltransferases and Mediator Complex to CYCLIN D1 Promoter via Activation of Stat3. J Biol Chem,2007;282, (18), pp.13316-13325.
    [18]Nakashima K, Yanaqisawa M, Arakawa H, et al. Synergistic signaling in fetal brain bySTAT3-Smadl complex bridged by p300. Science 1999; 284:pp. 479-482
    [19]Liu NS, Loo LS, Loh E,. et al. Participation of Tom1L1 in EGF-stimulated endocytosis of EGF receptor. EMBO Journal.2009; 28:3485-3499.
    [20]Lo HW, Ali-Seyed M, Wu Y, et al. Nuclear-Cytoplasmic Transport of EGFR Involves Receptor Endocytosis, Importin b1 and CRM1. Journal of Cellular Biochemistry.2006; 98:1570-1583.
    [21]Graham Carpenter. Nuclear localization and possible functions of receptor tyrosine kinases. Current Opinion in Cell Biology.2003,15:143-148
    [22]Tao YG, Song X, Cao Y, et al. Nuclear translocation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr virus encoded oncoprotein Latent membrane protein 1. Exp Cell Res.2005 Feb 15; 303(2):240-51.
    [23]Liao HJ, Carpenter G. Role of the Sec61 Translocon in EGF Receptor Trafficking to the nucleus and gene expression. Mol Biol Cell.2007; 18 (3):1604-1672.
    [24]Hoshino M, Fukui H, Ono Y, et al. Nuclear expression of phos-Phorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma. Pathobiolog.2007; 74:15-21.
    [25]Levitzki A, et al. Tyrosine kinase inhibition:an approach to drug development. Science.,1995-267(5205):1782-1788
    [26]陶永光,宋鑫,曹亚,等。EB病毒潜伏膜蛋白1调节EGF受体核移位。中国科学,2003,33(6):539-546.
    [27]Tao YG, Song X, Cao Y, et al. Nuclear accumulation of epidermal growth factor receptor and acceleration of G1/S stage by Ebstein-Barr-encoded oncoprotein latent membrane protein 1. Exp cell Res.2005 Feb303(2):240-251.
    [28]谭运年,陶永光,曹亚,等。JAK3蛋白在鼻咽癌细胞中参与STAT活化并受EB病毒潜伏膜蛋白1调控。生物化学与生物物理进展,2003,30(4):560-565.
    [29]谭运年,陶永光,曹亚,等。EB病毒LMP1在鼻咽癌细胞中通过STAT3促进VEGF的表达。生物化学与生物物理进展,2004,31(5):427-431。
    [30]Klein EA, Richard K. Transcriptional regulation of the cyclinD1 gene at a glance. Journal of Cell Science.2008; 121,3853-3857.
    [31]Uckun FM., Ek O, Liu XP, et al., In vivo toxicity and pharmacokinetic features of the janus kinase 3 inhibitor WHI-P 131 [4-(4'hydroxyphenyl)-amino-6,7-dimethoxyquinazoline. Clin Cancer Res,1999.5(10):p.2954-2962.
    [32]Sudbeck EA, Liu XP, Narla RK, et al. Structure-based design of specific inhibitors of Janus kinase 3 as apoptosis-inducing antileukemic agents. Clin Cancer Res,1999.5(6):p.1569-1582.
    [33]Alessi DR., Cuenda A, Cohen P, et al., PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem,1995.270(46):p.27489-27494.
    [34]王祯莲硕士论文 EB病毒LMP1通过JAK和MAPK通路介导STAT3调控VEGF的分子机制研究
    [35]Normanno N, Luca AD, Biancob C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene,2006; 366:2-16.
    [36]Abd El-Rehim, D.M., et al.,. Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br. J. Cancer,2004; 91,1532-1542.
    [37]Lo HW and Hung MC. Nuclear EGFR signalling network in cancers:linking EGFR pathway. British Journal of Cancer,2006; 94,184-188.
    [38]Peggy J. Farnham. Insights from genomic profiling of transcription factors NATURE Reviews, Genetics,2009; 10:605-616.
    [39]Giusti RM, Shastri KA, Cohen MH, et al. FDA Drug Approval Summary: Panitumumab (VectibixTM). The Oncologist,2007; 12:577-583.
    [40]Spector NL, Xia W, Burris H, et al. Study of biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases on tumor growth and survival pathways in patients with advanced malignancies. J Clin. Oncol.2005; 23 (11); 2502-2512.
    [41]Harari PM, Deric L, Wheeler, et al. Molecular Target Approaches in Head and Neck Cancer:Epidermal Growth Factor Receptor and Beyond. Semin Radiat Oncol 2009; 19:63-68
    [42]Mendelsohn J. Baselga J:Epidermal growth factor receptor targeting in cancer. Semin Oncol 2006; 33:369-385.
    [43]Bonner JA. Harari PM, Giralt J, et al. Radiotherapy plus cetuximab for squamous cell carcinoma of the head and neck. N Engl J Med 2006;354:567-578.
    [44]Raben D, Helfrich B, Chan DC,et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer. Clin Cancer Res.2005; 11:795-805.
    [45]Sok JC, Coppelli FM, Thomas SM, et AL. Mutant epidermal growth factor receptor (EGFRvⅢ) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res 2006; 12:5064-5073.
    [46]Riely GJ, Politi KA. Miller VA, et al. Update on epidermal growth factor receptor mutations in non-small cell lung cancer. Clin Cancer Res 2006, 12:7232-7241.
    [1]Cohen S. Isolation of a mouse submaxillary gland protein accelerating incisor eruption and eyelid opening in the new-born animal [J]. J Biol Chem 1962,237(5):1555-1562.
    [2]Cohen S, Carpenter G, King L J. Epidermal growth factorreceptor-protein kinase interactions. Co-purification of receptor and epidermal growth factor-enhanced phosphorylation activity [J]. J Biol Chem,1980,255(10):4834-4842.
    [3]Abe Y, Odaka M, Inagaki F, et al. Disulfide bond structure of human epidermal growth factor receptor[J]. J Biol Chem,1998,273(18):11150-11157.
    [4]Olayioye MA, Neve RM, Lane HA, et al. The ErbB signaling network:receptor heterodimerization in development and cancer[J]. EMBO J,2000,19(13): 3159-3167.
    [5]Duchek P, Rorth P. Guidance of cell migration by EGF receptor signaling during Drosophila oogenesis[J]. Science,2001,291(5501):131-133.
    [6]Xiao ZQ, Majumdar AP. Induction of transcriptional activity of AP-1 and NF-kappa B in the gastric mucosa during aging[J]. Am J Physiol Gastrointest Liver Physiol,2000,278(6):G855-G865.
    [7]Xia W, Wei Y, Du Y, et al. Nuclear expression of epidermal growth factor receptor is a novel prognostic value in patients with ovarian cancer[J]. Mol Carcinog,2009,48(7):610-617.
    [8]Lin SY, Makino K, Xia WY, et al. Nuclear localization of EGF receptor and its potential new role as a transcription factor[J]. Nat Cell Biol,2001,3(9): 802-808.
    [9]Liu NS, Loo NS, Loh E, et al. Participation of Tom1L1 in EGF-stimulated endocytosis of EGF receptor[J]. EMBO,2009,28(22):3485-3499.
    [10]Lo HW, Mohamed AS, Wu YD, et al. Nuclear-cytoplasmic transport of EGFR involves receptor endocytosis, importin b1 and CRM1[J]. Cell Biochem, 2006,98(6):1570-1583.
    [11]Carpenter G. Nuclear localization and possible functions of receptor tyrosine kinases[J]. Curr Opin Cell Biol,2003,15(2):143-148.
    [12]Liao HJ, Carpenter G. Role of the Sec61 translocon in EGF receptor trafficking to the nucleus and gene expression[J]. Mol Biol Cell,2007,18(3):1604-1672.
    [13]Kim J, Wan JJ, Vizio DD, et al. The phosphoinositide kinase PIKfyve mediates epidermal growth factor receptor trafficking to the nucleus [J]. Cancer Res.,2007, 67(19):9229-9237.
    [14]Tao YG, Song X, Cao Y, et al. Nuclear translocation of epidermal growth factor receptor and acceleration of G1/S stage by Epstein-Barr virus encoded oncoprotein latent membrane protein 1[J]. Exp Cell Res,2005,303 (2):240-51.
    [15]Hanada N, Lo HW, Day CP, et al. Co-regulation of B-Myb expression by E2F1 and EGF receptor[J]. Mol Carcinog,2006,45(1):10-17.
    [16]Lo HW, Hsu SC. Mohamed AS, et al. Nuclear interaction of EGFR and S TAT3 in the activation of the iNOS/NO pathway[J]. Cancer Cell,2005,7(6):575-589.
    [17]Hung LY, Tseng JT, Lee YC. et al. Nuclear epidermal growth factor receptor (EGFR) interacts with signal transducer and activator of transcription 5 (STAT5) in activating Aurora-A gene expression[J]. Nucl Acids Res,2008,36(3): 4337-4351.
    [18]Hoshino M, Fukui H, Ono Y, et al. Nuclear expression of phosphorylated EGFR is associated with poor prognosis of patients with esophageal squamous cell carcinoma[J]. Pathobiolog,2007,74(l):15-21.
    [19]Yuan. YL, Zhou XH, Song J, et al. Dual silencing of type 1 insulin-like growth factor and epidermal growth factor receptors to induce apoptosis of nasopharyngeal cancer cells[J]. J Laryngol Otol,2008; 122(9):952-960.
    [20]Zhou X, Yuan Y, Song J, et al. Dual silencing of epidermal growth factor and insulin-like growth factor 1 receptors significantly limits growth of naso-pharyngeal carcinoma in nude mice[J]. J Laryngol Otol,2009,123(2):208-222.
    [21]Lo HW, Xia W, Wei Y, et al. Novel prognostic value of nuclear epidermal growth factor receptor in breast cancer[J]. Cancer Res,2005,65 (1):338-348.
    [22]Psyrri A, Yu Z, Weinberger PM, et al. Quantitative determination of nuclear and cytoplasmic epidermal growth factor receptor expression in oropharyngeal squamous cell cancer by using automated quantitative analysis[J]. Clin Cancer Res,2005,11(16):5856-5862.
    [23]Wang SC, Nakajima Y, Yu YL, et al. Tyrosine phosphorylation controls PCNA function through protein stability[J]. Nat Cell Biol,2006,8(12):1359-1368.
    [24]Willmore E, Elliott SL, Mainou-Fowler T, et al. DNA-dependent protein kinase is a therapeutic target and an indicator of poor prognosis in B-cell chronic lymphocytic leukemia[J]. Clin Cancer Res,2008,14(12):3984 3992.
    [25]Hsu SC, Miller SA, Wang Y, et al. Nuclear EGFR is required for cisplatin resistance and DNA repair[J]. Am J Transl Res,2009,1 (3):249-258.
    [26]Dittmann KH, Mayer C, Rodemann HP,et al. Role of nuclear EGFR during cellular radiation response[J]. Acta Med Nagasaki,2008,53 (1):55-59.
    [27]Spector NL, Xia W, Burris H, et al. Study of biologic effects of lapatinib, a reversible inhibitor of ErbB1 and ErbB2 tyrosine kinases on tumor growth and survival pathways in patients with advanced malignancies[J]. J Clin Oncol,2005, 23(11):2502-2512.
    [28]Giusti RM, Shastri KA, Cohen MH,et al. FDA Drug Approval Summary: Panitumumab (Vectibix)[J]. Oncologist,2007,12(5):577-583.
    [29]Harari PM, Wheeler DL, Grandis JR. Molecular target approaches in head and neck cancer:epidermal growth factor receptor and beyond[J]. Semin Radiat Oncol,2009,19(1):63-68.
    [30]Imai K, Takaoka A. Comparing antibody and small-molecule therapies for cancer[J]. Nat Rev Cancer,2006,6(9):714-727.
    [31]Zhang XZ, Chang A. Molecular predictors of EGFR-TKI sensitivity in advanced non-small cell lung cancer [J] Int J Med Sci,2008,5(4):209-217.
    [32]Chung, KY, Shia J, Kemeny NE,et al. Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immuno-histochemistry[J]. J Clin Oncol,2005,23(9):1803-1810.
    [33]Raben D, Helfrich B, Chan DC, et al. The effects of cetuximab alone and in combination with radiation and/or chemotherapy in lung cancer[J]. Clin Cancer Res,2005,11(2Pt 1):795-805.
    [34]Riely GJ, Politi KA, Miller VA, et al.Update on epidermal growth factor receptor mutations in non-small cell lung cancer[J]. Clin Cancer Res,2006, 12(24):7232-7241.
    [35]Li C, Iida M, Dunn EF, et al. Nuclear EGFR contributes to acquired resistance to cetuximab [J]. Oncogene,2009,28(43):3801-3813.
    [36]Minna JD, Peyton MJ, Gazdar AF. Gefitinib versus cetuximab in lung cancer: round one[J]. J Natl Cancer Inst,2005,97(16):1168-1169.
    [37]Zhang J, Grindley JC, Yin T, et al. PTEN maintains haematopoietic stem cells and acts in lineage choice and leukaemia prevention[J]. Nature,2006,441(7092): 518-522.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700