用户名: 密码: 验证码:
鼻咽癌临床进展过程中转录因子活性谱动态变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[研究背景]
     鼻咽癌是一种多步骤进展的多基因遗传性恶性肿瘤。目前,已发现鼻咽癌中越来越多的遗传学和表观遗传学分子改变,并且癌基因过表达或活性过高以及抑癌基因的表达缺失或失活可发生在不同临床/病理进展阶段。我们实验室经过多年的研究,发现数个候选抑瘤/易感基因参与多个细胞信号通路,并与鼻咽癌细胞增殖、侵袭和转移相关基因的表达有关。重要的是,这些基因表达缺失或失活同样也发生在鼻咽癌发生发展的不同阶段。上述研究表明,许多参与信号通路的遗传分子(尤其是组织特异性)相继激活或失活导致转录因子的活性以及所调控的靶基因表达异常,从而促进了鼻咽癌发生和发展。因此,基因异常表达谱与异常的转录调控模式密切相关。
     转录因子是基因调控网络中的重要分子。它接受上游信号通路异常信号,引起基因的表达紊乱,与肿瘤的发生发展密切相关。了解转录因子活性在肿瘤进展中的动态变化规律有利于阐明基因调控和表达异常的分子机制。尽管已有文献报道了某些转录因子在鼻咽癌组织或细胞中存在异常表达或活性改变,但是系统阐述转录因子活性在鼻咽癌不同临床进展阶段动态变化规律的研究尚无人问津。从而,本研究采用转录因子芯片分别检测和分析鼻咽癌不同临床进展阶段转录因子活性动态变化规律以及鼻咽癌细胞系与正常鼻咽上皮细胞系活性差异转录因子。
     [鼻咽癌不同临床进展阶段动态变化的转录因子活性谱的构建]
     对鼻咽癌不同临床进展阶段的组织样本进行检测,分析转录因子活性在临床进展中的动态变化。组织样本分为两组:1.独立样本组(12例),每例样本单独提取核蛋白,分别进行芯片检测;2.混合样本组(13例),同一临床阶段的样本混合,提取核蛋白后进行芯片检测。抽提临床Ⅰ-Ⅳ期组织核蛋白后,用Combo Protein/DNA芯片(含有345个检测位点)检测转录因子活性。采用One-way ANOVA和studentt检验方法获得55个差异转录因子。通过聚类分析发现26个转录因子在独立样本组和混合样本组中的活性变化趋势基本一致。这些转录因子在鼻咽癌临床进展阶段中活性增高并且呈动态性的变化。
     [AP2和ATF家族分子在鼻咽癌不同临床进展阶段的表达分析]
     通过线性回归分析,发现在26个活性增高的转录因子中,16个转录因子与鼻咽癌临床进展呈正相关性。这些转录因子分别是GAS/ISRE, CdxA/NKX2, HOXD8, PPUR, NFκB, AP2, Fra-1/JUN, AP3, PTF1, GKLF, ATF/CREB, RFX, C/EBP, Snail, PRDI-BFc和Stat5b。许多文献提示,AP2和ATF家族分子与多种肿瘤的发生有关。因此,我们选择这两个转录因子进行验证和分析。首先用EMSA证实了转录因子AP2和ATF的活性变化规律,进而扩大样本进一步对这两个转录因子家族的主要分子AP2α、AP2β、AP2γ、ATF1和ATF2以及靶基因EGFR和MMP-2进行免疫组化分析。采用Spearman's rank test和Fisher's exact test分析转录因子表达与鼻咽癌临床进展阶段和靶基因表达的相关性。结果显示,AP2α、AP2β、AP2γ、ATF1和ATF2在肿瘤组织中的表达明显高于正常鼻咽上皮,且与临床进展相关。AP2a与靶基因EGFR、ATF1和ATF2与靶基因MMP-2之间的表达具有相关性。Western blot和RT-PCR进一步验证了以上结果。
     [鼻咽癌细胞系活性差异转录因子分析]
     采用博奥生物技术有限公司的转录因子芯片(含有270个检测位点、)检测正常鼻咽上皮细胞系(NP69)、非转移性(6-10B)和转移性(5-8F)鼻咽癌细胞系中的转录因子活性。通过比较信号值,获得差异转录因子。鼻咽癌细胞中有10个转录因子上调,8个转录因子下调。值得注意的是,在上调的10个转录因子中,AP2,ATF/CREB, C/EBP和RFX与鼻咽癌组织的分析结果一致。与正常鼻咽上皮比较,它们在鼻咽癌组织中表达上调且与临床阶段的进展相关。与NP69相比,AP2, ATF/CREB和Spl的活性在两株鼻咽癌细胞中明显升高,EMSA分析进一步证实了芯片结果。RT-PCR和Western blot分析结果表明,AP2α、AP2β、AP2γ、ATF1、ATF2、Sp1和Sp3 mRNA表达水平在鼻咽癌细胞明显上调,其中AP2a、AP2γ、ATF1、ATF2、Sp1和Sp3蛋白水平在5-8F细胞高于6-10B细胞。此外,我们发现Spl、Sp3以及Spl靶基因VEGF和MMP-9在鼻咽癌组织高表达。
     [Spl对5-8F细胞侵袭能力的影响]
     为了明确Spl对5-8F细胞侵袭能力的影响,使用Sp1 siRNA转染细胞以干预Spl的表达。Sp1 siRNA能显著下调5-8F细胞中Spl的蛋白水平以及VEGF表达和MMP-9分泌。同时,用光辉霉素(一种Spl特异性的抑制剂)处理5-8F细胞后,发现光辉霉素能够呈剂量依赖性地抑制Sp1、VEGF和MMP-9的表达,同时5-8F细胞迁移和侵袭能力降低。这表明Spl表达和活性增高而引起MMP-9和VEGF的过表达,可能是5-8F细胞侵袭和转移能力增强的重要原因之一。
     综上所述,鼻咽癌不同临床阶段进展过程中转录因子活性动态变化规律的研究为我们进一步探索鼻咽癌相关基因转录调控机制提供了有价值的理论和实验基础。尽管目前我们得到了一些与临床进展相关的转录因子及其活性变化模式,但这并不代表我们揭示了所有与鼻咽癌发生发展密切相关的转录因子。本实验通过高通量的Protein/DNA芯片分析的确揭示了部分差异转录因子的活性变化规律,而这些转录因子在鼻咽癌进展过程中的动态变化规律可能与异常的基因表达谱密切相关。随着系统生物学和整合组学研究的进展,通过将不同临床进展阶段动态变化的转录因子差异活性谱与基因差异表达谱进行整合,将有利于阐明这些临床进展相关的差异转录因子对基因转录的调控机制,为鼻咽癌的诊断、预后提供检测分子标记以及临床治疗靶点。
[Background]
     Nasopharyngeal carcinoma is characterized as a multiple-step, polygene-involved malignancy. More and more genetic and epigenetic changes have been verified. Overexpression or overactivation of oncogenes, and loss of expression or inactivation of tumor suppressor genes occur in different clinical progression stages. Based on the studies of NPC for many years, we previously have revealed that several tumor suppressor candidate genes inactivated in NPC played important roles in signaling pathways regulating gene expresson associated with proliferation, invasion and metastasis of NPC cells. More importantly, we have demonstrated that these molecular events (loss of expression or function) seem happen in different stages of NPC. These evidences described above suggested that many molecules involved in signaling pathways, especially tissue-specific, that were overactivated or inactivated successively may cause abnormal TF activation and gene expression, promoting the development and progression of NPC. The different gene expression profiles were highly associated with abnormal gene regulaion mechanism in NPC.
     TFs, which execute abnormal signal instructions from upstream molecules, are crucial modulators in gene regulation network, and act as critical roles in carcinogenesis. Understanding more knowledge about the laws of dynamic changes of TFs in tumor progression may facilitate to elucidate the underlying molecular mechanisms of gene regulation and explain aberrant gene expression modes from context. To date, some TFs overexpressed or overactivated in NPC tissue and cell lines have been reported, but there still lacks systematic data revealing activity change patterns of TFs in the process of this tumor. In this study, we profiled TFs activated in tissues from different clinical stages of NPC and in non-metastatic and metastatic cell lines by Protein/DNA arrays, and revealed differentially activated TFs showing kinetic changes in concert with the progression of this neoplasm.
     [The activity profile analysis of TFs in clinical stages]
     In this study, we attempted to obtain TF activity profiles and observe dynamic changes of TFs activated during the progression of NPC. The experiemental samples were divided into two sets, pooled set of 13 cases of which belongs to same clinical staging were pooled for array detection, and independent set of 12 cases, each of which was individually applied for array detection. Nuclear proteins extracted from clinical biopsy samples of stage I-IV patients were subjected to activity detection of TFs by Combo Protein/DNA arrays, which contained 345 DNA promoter binding sequences of TFs. We screened and selected 55 TFs showing differential activities between clinical stages in the independent set by one-way ANOVA and student t test. Comparative analysis between the two experiment sets revealed 26 TFs with similar change patterns by using clustering analysis, of which activities showed increase and dynamic alteration in the clinical progresssion.
     [The expression analysis of AP2 and ATF family TFs in NPC progression]
     Of the 26 TFs, we found 16 were up-regulated in association with clinical stages by a genealized linear model-based regression analysis. These TFs were GAS/ISRE, CdxA/NKX2, HOXD8, PPUR, NFκB, AP2, Fra-1/JUN, AP3, PTF1, GKLF, ATF/CREB, RFX, C/EBP, Snail, PRDI-Bfc and Stat5b. More and more evidences demonstrated have demonstrated that overacticated AP2 and ATF familys of TFs were implicated in carcinogenesis of diverse tumors. Thus, we selected AP2 and ATF for further identification in the follwing experiments. EMS A assays confirmed the results form analysis of Protein/DNA arrays. In the immunohistochemical analysis using extended clinical samples, we detected the expression of the main members of AP2 and ATF familys. Correlations between clinical stages and expression of TFs, and correlations of the expression of TFs with their target genes were analyzed using Fisher's exact test and Spearman's rank test. The results showed that AP2α, AP2β, AP2γ, ATF1 and ATF2 expression in nucleus increased in tumor tissues, and was associated with NPC progression. Moreover, AP2a, ATF1 and ATF2 expression was correlated with EGFR and MMP-2 expression, respectively. These results were further confirmed by Western blot and RT-PCR.
     [Transcription factors activated differentially in NPC cell lines]
     Another kind of Protein/DNA array containing 270 binding sites of TFs were employed to screen TFs showing differential activities between normal human nasopharyngeal epithelial cell line (NP69) and non-metastatic cell line (6-1 OB) and metastatic cell line (5-8F). By comparing the ratio of each spot in the arrays,10 upregulated TFs and 8 down-regulated TFs were identified in the two NPC cell lines. Of the up-regulated TFs, It was notable that AP2, ATF/CREB, C/EBP and RFX also showed increased activities in NPC tissues and association with clinical progression. Among the up-regulated TFs, AP2, ATF/CREB and Sp1 families displayed significantly differential activities in NPC cells compared with NP69 cells. The increased binding activities of AP2, ATF/CREB and Sp1 family were confirmed by EMS A. So, we explored the expression patterns of the main members of the three families of TFs in NPC cell lines by RT-PCR and Western blot. The specific primers of these genes were designed by using primer 3.0 software, sequences of primers and complying with BLAST procedure of NCBI online. The mRNA levels of AP2 proteins, ATF1, ATF2, Sp1 and Sp3 were markedly up-regulated in NPC cells. Notably, AP2a, AP2y, ATF1, ATF2, Sp1 and Sp3 protein expression in 5-8F was significantly higher than in 6-10B cells. In addition, Sp1, Sp3 and Sp1 target genes, VEGF and MMP-9 were overexpressed in NPC tissues.
     [Effect of Sp1 on invasive potential in 5-8F cells]
     To further determine whether Sp1 was involved in invasion and metastasis of 5-8F cells via up-regulating VEGF and MMP-9 expression, Sp1 siRNA was transfected into 5-8F cells. Sp1 siRNA significantly decreased Spl protein levels, VEGF expression and MMP-9 secretion. Then, a specific Sp1 inhibitor, mithramycin was applied to examine whether this agent have similar effects on 5-8F cells. The results showed that mithramycin effectively inhibited Sp1 expression in a dose-dependent manner, concomitant with decreased VEGF and MMP-9 expression in 5-8F cells. Moreover, reduced migrant and invasive potentialities were also observed in 5-8F cells. These data therefore indicate that high expression and activity of Sp1 may, at least in part, be important in promoting the potentiality of invasion and metastasis through up-regulating expression of MMP-9 and VEGF in 5-8F cells.
     In summary, the studies on the laws of dynamic activity changes of TF during NPC clinical progression provides a valuable platform for further researches on the mechanism of gene regulation. Although the features of the selected TFs that are characteristic of tumor progression could not uncover the activity state of all TFs that may be activated in this malignancy, In deed, the high-throughput Protein/DNA array analysis revealed the laws of kinetic activity changes of TFs that may cause aberrant gene expression profiles during this tumor progression. With the increase of information about systems biology and integromics, the integration of dynamic differential activity profiles of TFs with gene differential expression profiles, may facilitate to elucidate the mechanism of gene regulation by these TFs that correlated with clinic staging, thus providing potential diagnostic and prognostic tools, as well as therapeutic targets for NPC.
引文
[1]Lu QL, Elia G, Lucas S, et al. Bcl-2 proto-oncogene expression in Epstein-Barr-virus-associated nasopharyngeal carcinoma. Int J Cancer,1993,53(1):29-35.
    [2]Lai JP, Tong CL, Hong C, et al. Association between high initial tissue levels of cyclin D1 and recurrence of nasopharyngeal carcinoma. Laryngoscope,2002,112(2):402-408.
    [3]Porter MJ, Field JK, Leung SF, et al. The detection of the c-myc and ras oncogenes in nasopharyngeal carcinoma by immunohistochemistry. Acta Otolaryngol,1994,114(1): 105-109.
    [4]Qian CN, Guo X, Cao B, et al. Met protein expression level correlates with survival in patients with late-stage nasopharyngeal carcinoma. Cancer Res.,2002,62(2):589-596.
    [5]Hui AB, Lo KW, Teo PM, et al. Genome wide detection of oncogene amplifications in nasopharyngeal carcinoma by array based comparative genomic hybridization. Int J Oncol, 2002,20(3):467-473.
    [6]Fujii M, Yamashita T, Ishiguro R, et al. Significance of epidermal growth factor receptor and tumor associated tissue eosinophilia in the prognosis of patients with nasopharyngeal carcinoma. Auris Nasus Larynx,2002,29(2):175-181.
    [7]Kwong J, Lo KW, To KF, et al. Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin. Cancer Res,2002,8(1):131-137.
    [8]Chan ATC, Teo PML and Johnson PJ. Nasopharyngeal carcinoma. Ann. Onc.,2002,13(7): 1007-1015.
    [9]Tamoto E, Tada M, Murakawa K, et al. Gene-expression profile changes correlated with tumor progression and lymph node metastasis in esophageal cancer. Clin. Cancer Res.,2004, 10(11):3629-3638.
    [10]Sriuranpong V, Mutirangura A, Gillespie JW, et al. Global gene expression profile of nasopharyngeal carcinoma by laser capture microdissection and complementary DNA microarrays. Clin. Cancer Res.,2004,10(15):4944-4958.
    [11]Zhou J, Ma J, Zhang BC, et al. BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol,2004,200(1):89-98.
    [12]Wang L, Ma J, Li J, et al. NGX6 gene inhibits cell proliferation and plays a negative role in EGFR pathway in nasopharyngeal carcinoma cells. J Cell Biochem,2005,95(1):64-73.
    [13]Ma J, Zhou J, Fan SQ, et al. Role of a novel EGF-like domain-containing gene NGX6 in cell adhesion modulation in nasopharyngeal carcinoma cells. Carcinogenesis,2005,26(2): 281-291.
    [14]Li GY, Liu HY, Zhou M, et al. The molecular mechanism involved in the development of nasopharyngeal carcinoma. Progress in Biochemistry and Biophysics,2006,30(10): 922-931.
    [15]Zheng H, Li LL, Hu DS, et al. Role of Epstein-Barr virus encoded latent membrane protein 1 in the carcinogenesis of nasopharyngeal carcinoma. Cell Mol Immunol,2007,4(3): 185-196.
    [16]Crook T, Nicholls JM, Brooks L, et al. High level expression of deltaN-p63:a mechanism for the inactivation of p53 in undifferentiated nasopharyngeal carcinoma (NPC)? Oncogene, 2000,19(30):3439-3444.
    [17]Thornburg NJ, Pathmanathan R and Traub NR. Activation of nuclear factor-KB p50 homodimer/Bcl-3 complexes in nasopharyngeal carcinoma. Cancer Res., 2003,63:8293-8301.
    [18]Kondo S, Yoshizaki T, Wakisaka N, et al. MUC1 induced by Epstein-Barr virus latent membrane protein 1 causes dissociation of the cell-matrix interaction and cellular invasiveness via STAT signaling. J. Virol.,2007,81(4):1554-1562.
    [19]Hui EP, Chan ATC, Pezzella F, et al. Coexpression of hypoxia-inducible factors 1 and 2, carbonic anhydrase IX, and vascular endothelial growth factor in nasopharyngeal carcinoma and relationship to Survival. Clin. Cancer Res.,2002,8(8):2595-2604.
    [20]O'Neil JD, Owen TJ, Wood VHJ, et al. Epstein-Barr virus-encoded EBNA1 modulates the AP-1 transcription factor pathway in nasopharyngeal carcinoma cells and enhances angiogenesis in vitro. J Gen Virol,2008,89(11):2833-2842.
    [21]Tsai CL, Li HP, Lu YJ, et al. Activation of DNA methyltransferase 1 by EBV LMP1 involves c-Jun NH2-Terminal kinase signaling. Cancer Res.,2006, 66(24):11668-11676.
    [22]Huang J, Liao GL, Chen HL, et al. Contribution of C/EBP proteins to Epstein-Barr virus lytic gene expression and replication in epithelial Cells. J. Virol.,2006,80(3):1098-1109.
    [23]Chen HL, Lee JM, Zong YS, et al. Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J. Virol.,2001; 75(6):2929-2937.
    [24]Hsiao JR., Jin YT, Tsai ST, et al. Constitutive activation of STAT3 and STAT5 is present in the majority of nasopharyngeal carcinoma and correlates with better prognosis. Br J Cancer, 2003,89(2):344-349.
    [25]Rayet B and Gelinas C. Aberrant rel/nfkb genes and activity in human cancer. Oncogene,1999,18(49):6938-6947.
    [26]宋立兵,汪慧民,曾木圣,等。鼻咽癌细胞株SUNE-1异质性研究.癌症,1998,17(5):324-327。
    [27]宋立兵,鄢践,汪慧民,等。鼻咽癌细胞亚株不同成瘤与转移潜能的分子机制.癌症,2002,21(2):158-162。
    [28]Tsao SW, Wang X, Liu Y, et al. Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes. Biochim Biophys Acta,2002,1590(1-3):150-158.
    [29]Carson A and Khan SA. Characterization of transcription factor binding to human papillomavirus type 16 DNA during cellular differentiation. J Virol,2006,80(9): 4356-4362.
    [30]Durbin B and Rocke DM. Estimation of transformation parameters for microarray data. Bioinformatics,2003,19(11):1360-1367.
    [31]Higgins KJ, Abdelrahim M, Liu S, et al. Regulation of vascular endothelial growth factor receptor-2 expression in pancreatic cancer cells by Sp proteins. Biochem Biophys Res Commun,2006,345(1):292-301.
    [32]Takemura H, Rao VA, Sordet O, et al. Defective mre 11-dependent activation of chk2 by ataxia telangiectasia mutated in colorectal carcinoma cells in response to replication-dependent DNA double strand breaks. J Biol Chem,2006,281(41): 30814-30823.
    [33]Li H, Liang J, Castrillon DH, et al. FoxO4 regulates tumor necrosis factor alpha-directed smooth muscle cell migration by activating matrix metalloproteinase 9 gene transcription. Mol Cell Biol,2007,27(7):2676-2786.
    [34]Kwak HJ, Park MJ, Cho H, et al. Transforming growth factor-β1 induces tissue inhibitor of metalloproteinase-1 expression via activation of extracellular signal-regulated kinase and Spl in human fibrosarcoma cells. Mol Cancer Res, 2006,4(3):209-220.
    [35]Eversheim HK, Moser M, Schorle H, et al. Regulatory roles of AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. Gene,2000,260(1-2):1-12.
    [36]Eckert D, Buhl S, Weber S, et al. The AP-2 family of transcription factors. Genome Biol,2005,6(13):246.
    [37]Wang X, Bolotin D, Chu DH, et al. AP-2a:a regulator of EGF receptor signaling and proliferation in skin epidermis. J. Cell Biol,2006,172(3): 409-421.
    [38]Heimberger AB, McGary EC, Suki D, et al. Loss of the AP-2a transcription factor is associated with the grade of human gliomas. Clin. Cancer Res.,2005, 11(1):267-272.
    [39]Schwartz B, Melnikova VO, Tellez C, et al. Loss of AP-2alpha results in deregulation of E-cadherin and MMP-9 and an increase in tumorigenicity of colon cancer cells in vivo. Oncogene,2007,26(28):4049-58
    [40]Li Q and Dashwood RH. Activator protein 2 alpha associates with adenomatous polyposis coli/beta-catenin and inhibits beta catenin/T-cell factor transcriptional activity in colorectal cancer cells. J Biol Chem 2004,279(44):45669-45675.
    [41]Pellikainen J, Kataja V, Ropponen K, et al. Reduced nuclear expression of transcription factor AP-2 associates with aggressive breast cancer. Clin. Cancer Res.,2002,8(11):3487-3495.
    [42]Li HL, Watts G, Oshiro M, et al. AP-2alpha and AP-2gamma are transcriptional targets of p53 in human breast carcinoma cells. Oncogene,2006,25(39): 5405-5415.
    [43]Pellikainen JM, Ropponen KM, Kataja VV, et al. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in breast cancer with a special reference to activator protein-2, HER2, and prognosis. Clin. Cancer Res.,2004, 10(22):7621-7628.
    [44]Paonessa F, Foti D, Costa V, et al. Activator protein-2 overexpression accounts for increased insulin receptor expression in human breast cancer. Cancer Res., 2006,66(10):5085-5093.
    [45]Allouche A, Nolens G, Tancredi A, et al. The combined immunodetection of AP-2 alpha and YY1 transcription factors is associated with ERBB2 gene overexpression in primary breast tumours. Breast Cancer Res,2008,10(1):R9.
    [46]Pellikainen J, Naukkarinen A, Ropponen K, et al. Expression of HER2 and its association with AP-2 in breast cancer. Eur J Cancer,2004,40(10):1485-1495.
    [47]Park MJ, Kwak HJ, Lee HC, et al. Nerve growth factor induces endothelial cell invasion and cord formation by promoting matrix metalloproteinase-2 expression through the Phosphatidylinositol 3-Kinase/Akt signaling pathway and AP-2 transcription Factor J. Biol. Chem.,2007,282(42):30485-30496.
    [48]Beger M, Butz K, Denk C, et al. Expression pattern of AP-2 transcription factors in cervical cancer cells and analysis of their influence on human papillomavirus oncogene transcription. J Mol Med,2001,79(5-6):314-320.
    [49]Pauls K, Jager R, Weber S, et al. Transcription factor AP-2gamma, a novel marker of gonocytes and seminomatous germ cell tumors. Int J Cancer,2005, 115(3):470-477.
    [50]Hoei-Hansen CE, Nielsen JE, Almstrup K, et al. Transcription factor AP-2gamma is a developmentally regulated marker of testicular carcinoma in situ and germ cell tumors. Clin Cancer Res,2004,10(24):8521-8530.
    [51]Oyama N, Takahashi H, Tojo M, et al. Different properties of three isoforms (alpha, beta, and gamma) of transcription factor AP-2 in the expression of human keratinocyte genes. Arch Dermatol Res,2002,294(6):273-280.
    [52]Popa C, Dahler AL, Serewko-Auret MM, et al. AP-2 transcription factor family member expression, activity, and regulation in human epidermal keratinocytes in vitro. Differentiation,2004,72(5):185-197.
    [53]Deng WG, Jayachandran G, Wu G, et al. Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2beta in human lung cancer cells. J Biol Chem.,2007, 282(36):26460-26470.
    [54]Jager R, Werling U, Rimpf S, et al. Transcription Factor AP-2y Stimulates Proliferation and Apoptosis and Impairs Differentiation in a Transgenic Model. Mol Cancer Res,2003,1(12):921-929.
    [55]Jager R, Friedrichs N, Heim I, Buttner R, Schorle H. Dual role of AP-2gamma in ErbB-2-induced mammary tumorigenesis. Breast Cancer Res Treat,2005, 90(3):273-280.
    [56]Persengiev SP and Green MR. The role of ATF/CREB family members in cell growth, survival and apoptosis. Apoptosis,2003,8(3):225-228.
    [57]Dam H and Castellazzi M. Distinct roles of Jun:Fos and Jun:ATF dimers in oncogenesis. Oncogene,2001; 20(19):2453-2464.
    [58]Jean D, Tellez C, Huang S, et al. Inhibition of tumor growth and metastasis of human melanoma by intracellular anti-ATF-1 single chain Fv fragment. Oncogene,2000,19(22):2721-30.
    [59]Melnikova VO, Zeidan AAM, Lev DC, et al. Platelet-activating factor mediates MMP-2 Expression and activation via phosphorylation of cAMP-response element-binding protein and contributes to melanoma metastasis. J. Biol. Chem., 2006,281(5):2911-2922.
    [60]Zheng D, Cho YY, Lau ATY, et al. Cyclin-dependent kinase 3-mediated activating transcription factor 1 phosphorylation enhances cell Transformation. Cancer Res.,2008,68(18):7650-7660.
    [61]Dong Y, Asch HL, Ying A, et al. Molecular mechanism of transcriptional repression of gelsolin in human breast cancer cells. Exp Cell Res,2002,276(2): 328-336.
    [62]Ghoneim C, Soula-Rothhut M, Blanchevoye C, et al. Activating transcription factor-1-mediated hepatocyte growth factor-induced down-regulation of thrombospondin-1 expression leads to thyroid cancer cell invasion. J. Biol. Chem.,2007,282(21):15490-15497.
    [63]Bhoumik A and Ronai Z. ATF2:a transcription factor that elicits oncogenic or tumor suppressor activities. Cell Cycle,2008,7(15):2341-2345.
    [64]Song H, Ki SH, Kim SG, et al. Activating transcription factor 2 mediates matrix metalloproteinase-2 transcriptional activation via p38 singal pathway in breast epithelial cells. Cancer Res.,2006,66(21):10487-10496.
    [65]Kim ES, Sohn YW and Moon A. TGF-beta-induced transcriptional activation of MMP-2 is mediated by activating transcription factor (ATF)2 in human breast epithelial cells. Cancer Lett,2007,252(1):147-156.
    [66]Berger AJ, Kluger HM, Li N, et al. Subcellular Localization of Activating Transcription Factor 2 in Melanoma Specimens Predicts Patient Survival. Cancer Res.,2003,63(23):8103-8107.
    [67]Bhoumik A, Jones N and Ronai Z. Transcriptional switch by activating transcription factor 2-derived peptide sensitizes melanoma cells to apoptosis and inhibits their tumorigenicity. PNAS,2004,101(12):4222-4227.
    [68]Huang Y, Minigh J, Miles S, et al. Retinoic acid decreases ATF-2 phosphorylation and sensitizes melanoma cells to taxol-mediated growth inhibition. J Mol Signal,2008,3:3.
    [69]Papassava P, Gorgoulis VG, Papaevangeliou D, et al. Overexpression of activating transcription factor-2 is required for tumor growth and progression in mouse skin tumors. Cancer Res.,2004,64(23):8573-8584.
    [70]Bhoumik A, Fichtman B, DeRossi C, et al. Suppressor role of activating transcription factor 2 (ATF2) in skin cancer. PNAS,2008,105(5):1674-1679.
    [71]Maekawa T, Shinagawa T, Sano Y, et al. Reduced levels of ATF-2 predispose mice to mammary tumors. Mol. Cell. Biol.,2007,27(5):1730-1744.
    [72][72] Maekawa T, Sano Y, Shinagawa T, et al. ATF-2 controls transcription of Maspin and GADD45 alpha genes independently from p53 to suppress mammary tumors. Oncogene,2008,27(8):1045-1054.
    [73]Buettner R, Mora LB and Jove R. Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res, 2002,8(4):945-954.
    [74]Khodarev NN, Beckett M, Labay E, et al. STAT1 is overexpressed in tumors selected for radioresistance and confers protection from radiation in transduced sensitive cells. PNAS,2004,101(6):1714-1719.
    [75]Xu Y, Sengupta PK, Seto E, et al. Regulatory factor for X-box family proteins differentially interact with histone deacetylases to repress collagen a2(I) gene (COL1A2) expression. J. Biol. Chem,2006,281(14):9260-9270.
    [76]Maijgren S, Sur I, Nilsson M, et al. Involvement of RFX proteins in transcriptional activation from a Ras-responsive enhancer element. Arch Dermatol Res,2004,295(11):482-489.
    [77]Sengupta PK, Fargo J and Smith BD. The RFX family interacts at the collagen (COL1A2) start site and represses transcription. J. Biol. Chem.,2002,277(28): 24926-24937.
    [78]Barrallo-Gimeno A and Nieto MA. The Snail genes as inducers of cell movement and survival:implications in development and cancer. Development, 2005,132(14):3151-3161.
    [79]Sun L, Diamond ME, Ottaviano AJ, et al. Transforming growth factor-β1 promotes matrix metalloproteinase-9-mediated oral cancer invasion through Snail Expression. Mol. Cancer Res.,2008,6(1):10-20.
    [80]Wu Y, Deng J, Rychahou PG, et al. Stabilization of snail by NF-kappaB is required for inflammation-induced cell migration and invasion. Cancer Cell, 2009,15(5):416-428.
    [81]Song LB, Li J, Liao WT, et al. The polycomb group protein Bmi-1 represses the tumor suppressor PTEN and induces epithelial-mesenchymal transition in human nasopharyngeal epithelial cells. J Clin Invest,2009,119(12):3626-3636.
    [82]Ameri K and Harris AL. Activating transcription factor 4. Int J Biochem Cell Biol,2008,40(1):14-21.
    [83]Suske G. The Sp-family of transcription factors. Gene, Oct 1999; 238(2): 291-300.
    [84]Safe S and Abdelrahim M. Sp transcription factor family and its role in cancer. Eur J Cancer,2005,41(16):2438-2448.
    [85]Abdelrahim M, Smith R, Burghardt R, et al. Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res.,2004,64(18):6740-6749.
    [86]Abdelrahim M, Baker CH, Abbruzzese JL, et al. Regulation of vascular endothelial growth factor receptor-1 expression by specificity proteins 1,3, and 4 in pancreatic cancer cells. Cancer Res.,2007,67(7):3286-3294.
    [87]Jungert K, Buck A, Buchholz M, et al. Smad-Sβ1 complexes mediate TGF-β induced early transcription of oncogenic Smad7 in pancreatic cancer cells. Carcinogenesis,2006,27(12):2392-2401.
    [88]Jiang NY, Woda BA, Banner BF, et al. Spl, a new biomarker that identifies a subset of aggressive pancreatic ductal adenocarcinoma. Cancer Epidemiol. Biomarkers Prev.,2008,17(7):1648-1652.
    [89]Nie D, Krishnamoorthy S, Jin R, et al. Mechanisms regulating tumor angiogenesis by 12-Lipoxygenase in prostate cancer cells. J. Biol. Chem.,2006, 281(27):18601-18609.
    [90]Wu JB, Brandt S and Hyder MS. Ligand-and cell-specific effects of signal transduction pathway inhibitors on progestin-induced vascular endothelial growth factor levels in human breast vancer cells. Mol. Endocrinol.,2005,19(2): 312-326.
    [91]Mertens-Talcott SU, Chintharlapalli S, Li XG, et al. The oncogenic microRNA-27a targets genes that regulate specificity protein transcription factors and the G2-M checkpoint in MDA-MB-231 breast cancer cells. Cancer Res.,2007,67(22):11001-11011.
    [92]Chadalapaka G, Jutooru I, Chintharlapalli S, et al. Curcumin decreases specificity protein expression in bladder cancer cells. Cancer Res.,2008,68(13): 5345-5354.
    [93]Ohkura S, Kondoh N, Hada A, et al. Complex formations involving both SP-1 and SP-3 at the transcriptional regulatory sequence correlate with the activation of the Keratin 14 gene in human oral squamous cell carcinoma cells. Oncol Rep, 2005,14(6):1577-1581.
    [94]Kanai M, Wei D, Li Q, et al. Loss of kriippel-like factor 4 expression contributes to Spl overexpression and human gastric cancer development and progression. Clin. Cancer Res.,2006,12(21):6395-6402.
    [95]Bae IH, Park MJ, Yoon SH, et al. Bcl-w promotes gastric cancer cell invasion by inducing matrix metalloproteinase-2 expression via phosphoinositide 3-kinase, Akt, and Sp1. Cancer Res.,2006,66(10):4991-4995.
    [96]Pan MR and Hung WC. Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Spl-mediated transcription. J. Biol. Chem.,2002,277(36):32775-32780
    [97]Qin HW, Sun Y and Benveniste EN. The transcription factors Spl, Sp3, and AP-2 are required for constitutive matrix metalloproteinase-2 gene expression in astroglioma cells. J. Biol. Chem.,1999,274(41):29130.
    [98]Wang CH, Chang HC and Hung WC. p16 inhibits matrix metalloproteinase-2 expression via suppression of Spl-mediated gene transcription. J Cell Physiol, 2006,208(1):246-252.
    [99]Hsu MC, Chang HC and Hung WCh. HER-2/neu represses the metastasis suppressor RECK via ERK and Sp transcription factors to promote cell invasion. J. Biol. Chem.,2006,281(8):4718-4725.
    [100]Takami Y, Russell MB, Gao C, Mi Z, et al. Spl regulates osteopontin expression in SW480 human colon adenocarcinoma cells. Surgery,2007,142(2):163-169.
    [101]KM Xu and Shu HKG. EGFR activation results in enhanced cyclooxygenase 2 expression through p38 mitogen-activated protein kinase-dependent activation of the Spl/Sp3 transcription factors in human gliomas. Cancer Res.,2007, 67(13):6121-6129.
    [102]Mottet D, Pirotte S, Lamour V, et al. HDAC4 represses p21(WAF1/Cip1) expression in human cancer cells through a Spl-dependent, p53-independent mechanism. Oncogene,2009,28(2):243-256.
    [103]Faraldo ML, Rodrigo I, Behrens J, et al. Analysis of the E-cadherin and P-cadherin promoters in murine keratinocyte cell lines from different stages of mouse skin carcinogenesis. Mol Carcinog,1997,20(1):33-47.
    [104]Mitchell DC, Abdelrahim M, Weng JS, et al. Regulation of KiSS-1 metastasis suppressor gene expression in breast cancer cells by direct interaction of transcription factors activator protein-2 and specificity protein-1. J. Biol. Chem., 2006,281(1):51-58.
    [105]Xu J, Zhou JY, Wei WZ, et al. Spl-mediated TRAIL induction in chemosensitization. Cancer Res.,2008,68(16):6718-6726.
    [106]Leupold JH, Yang HS, Colburn NH, et al. Tumor suppressor Pdcd4 inhibits invasion/intravasation and regulates urokinase receptor (u-PAR) gene expression via Sp-transcription factors. Oncogene,2007,26(31):4550-4562.
    [107]Chuang JY, Wu CH, Lai MD, et al. Overexpression of Spl leads to p53-dependent apoptosis in cancer cells. Int J Cancer,2009; 125(9):2066-2076.
    [108]Sato H and Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene, 1993,8(2):395-405.
    [109]Jia ZL, Zhang J, Wei DY, et al. Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res,2007,67(10): 4878-4885.
    [110]Liu LT, Peng JP, Chang HC, et al. RECK is a target of Epstein-Barr virus latent membrane protein 1. Oncogene,2003,22(51):8263-8270.
    [111]Liu HY, Zhang LM, Niu Z, et al. Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer,2008,8: 253-265.
    [112]Richter E, Masuda K, Cook C, et al. A role for DNA methylation in regulating the growth suppressor PMEPA1 gene in prostate cancer. Epigenetics,2007,2(2): 100-1099.
    [1]Chen X, Chueng ST, So S, et al. Gene expression patterns in human liver cancers. Mol. Biol. Cell,2002,13(6),1929-1939.
    [2]Perou CM, Sorlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature,2000,406(6797),747-752.
    [3]Rosenwald A, Wright G,Chan WC, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-Bcell lymphoma. N. Engl. J. Med.,2002,346(25),1937-1947.
    [4]Brivanlou, AH and Darnell JEJ. Signal transduction and the control of gene expression. Science,2002,295(5556):813-818.
    [5]Vogt PK. Jun, the oncoprotein. Oncogene,2001,20(19):2365-2377.
    [6]Futreal PA,Kasprzyk A,Birney E, et al. Cancer and genomics. Nature, 2001;409(6822):850-852.
    [7]Gibbs JB. Mechanism-based target identification and drug discovery in cancer. Science,2000,287(5460):1969-1973.
    [8]McCormick F. Cancer gene therapy:fringe or cutting edge? Nature Rev. Cancer,2001,1(2):130-141.
    [9]Hanahan D and Weinberg RA. The hallmarks of cancer. Cell,2000,100(1): 57-70.
    [10]Garrett MD and Workman P. Discovering novel chemotherapeutic drugs for the third millennium. Eur. J. Cancer,1999,35(14):2010-2030.
    [11]Emery J G, Ohlstein EH and Jaye M. Therapeutic modulation of transcription factor activity. Trends Pharmacol. Sci.,2001,22(5):233-240.
    [12]Latchman DS. How can we use our growing understanding of gene transcription to discover effective new medicines? Curr. Opin. Biotechnol., 1997,8(6):713-717.
    [13]Papavassiliou AG. Transcription factors. N. Engl. J. Med.,1995,332:45-47.
    [14]Papavassiliou AG. Transcription factors:structure, function and implication in malignant growth. Anticancer Res.,1995,15:891-894.
    [15]Chariot A, Gielen J, Merville MP, et al. The homeodomain-containing proteins: an update on their interacting partners. Biochem. Pharmacol.,1999,58(12): 1851-1857.
    [16]Dilworth, FJ, and Chambon P. Nuclear receptors coordinate the activities of chromatin remodeling complexes and coactivators to facilitate initiation of transcription. Oncogene,2001,20(24):3047-3054.
    [17]Chinenov Y, and Kerppola TK. Close encounters of many kinds:Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene,2001, 20(19):2438-2452.
    [18]McManus KJ, and Hendzel MJ. CBP, a transcriptional coactivator and acetyltransferase. Biochem. Cell Biol.,2001,79(3):253-266.
    [19]Brehm A, Miska EA, McCance DJ, et al. Retinoblastoma protein recruits histone deacetylase to repress transcription. Nature,1998,391(6667): 597-601.
    [20]Cottone E, Orso F, Biglia N, et al. Role of coactivators and corepressors in steroid and nuclear receptor signaling:potential markers of tumor growth and drug sensitivity. Int. J. Biol.,2001, Markers,16(3):151-166.
    [21]Gottlicher M, Heck S and Herrlich P. Transcriptional cross-talk, the second mode of steroid hormone receptor action. J. Mol. Med.,1998,76 (7):480-489.
    [22]Gallo MA, and Kaufman D. Antagonistic and agonistic effects of tamoxifen: significance in human cancer. Semin. Oncol.,1997,24(1):71-80.
    [23]O'Regan RM and Jordan VC. Tamoxifen to raloxifene and beyond. Semin. Oncol.,2001,28(3):260-273.
    [24]Webb P, Nguyen P, Valentine C, et al. The estrogen receptor enhances AP-1 activity by two distinct mechanisms with different requirements for receptor transactivation functions. Mol. Endocrinol.,1999,13(10):1672-1685.
    [25]Groner B,Fritsche M,Stocklin E, et al. Regulation of the trans-activation potential of STAT5 through its DNA-binding activity and interactions with heterologous transcription factors. Growth Horm. IGF Res.,2000,10 (Suppl.
    B), S15-S20.
    [26]Aittomaki S,Pesu M,Groner B, et al. Cooperation among Statl, glucocorticoid receptor, and PU.1 in transcriptional activation of the highaffinity Fc gamma receptor I in monocytes. J. Immunol.,2000,164(11),5689-5697.
    [27]Look DC, Pelletier MR, Tidwell RM, et al. Statl depends on transcriptional synergy with Spl. J. Biol. Chem.,1995,270:(51)30264-30267.
    [28]Zhang X, Wrzeszczynaska MH, Horvath CM, et al. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell. Biol.,1999,19(10):7138-7146.
    [29]Starr R and Hilton DJ. Negative regulation of the JAK/STAT pathway. Bioassays,1999,21(1),47-52.
    [30]Aoki N and Matsuda T. A nuclear protein tyrosine phosphatase TC-PTP is a potential negative regulator of the PRL-mediated signaling pathway: dephosphorylation and deactivation of signal transducer and activator of transcription 5a and 5b by TC-PTP in nucleus. Mol. Endocrinol.,2002,16(1): 58-69.
    [31]Shuai K. Modulation of STAT signaling by STAT-interacting proteins. Oncogene,2000,19:(21):2638-2644.
    [32]Bowman T, Garcia R, Turkson J, et al. STATs in oncogenesis. Oncogene,2000, 19(21):2474-2488.
    [33]Bromberg, J. F. et al. Stat3 as an oncogene. Cell,1999,98:295-303.
    [34]Shen Y, Devgan G, Darnell JE, et al. Constitutively activated Stat3 protects fibroblasts from serum withdrawal and UV-induced apoptosis and antagonizes the proapoptotic effects of activated Statl.Proc. Natl Acad. Sci.,2001,98(4):1543-1548.
    [35]Song JI and Grandis JR. STAT signaling in head and neck cancer. Oncogene, 2000,19(21):2489-2495.
    [36]Catlett-Falcone R,Landowski TH,Oshiro MM, et al. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells. Immunity,1999,10:(1)105-115.
    [37]Yoshikawa H,Matsubara K,Qian GS, et al. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nature Genet.,2001,28(1):29-35.
    [38]Zhang Q, Raghunath PN, Xue L, et al. Multilevel dysregulation of STAT3 activation in anaplastic lymphoma kinase-positive T/null-cell lymphoma. J. Immun.,2002,168:(1)466-474.
    [39]Lacronique V,Boureux A,Monni R, et al. Transforming properties of chimeric TEL-JAK proteins in Ba/F3 cells. Blood,2000,95:(6)2076-2083.
    [40]Song HY, Rothe M, and Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-κB activation. Proc. Natl Acad. Sci.,1996,93:(13) 6721-6725.
    [41]Thanos D and Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell,1995,83(7):1091-1101.
    [42]Rayet B and Gelinas C. Aberrant REL/NF-κB genes and activity in human cancer. Oncogene,1999,18(49):6938-6947.
    [43]Ni H, Ergin M, Huang Q, et al. Analysis of expression of nuclear factor B (NF-κB) in multiple myeloma:downregulation of NF-κB induces apoptosis. Br. J. Haematol,2001,115(2):279-286.
    [44]Izban KF, Ergin M, Huang Q, et al. Characterization of NF-κB expression in Hodgkin's disease:inhibition of constitutively expressed NF-κB results in spontaneous caspase-independent apoptosis in Hodgkin and Reed-Sternberg cells. Mod.Pathol.,2001,14:(4)297-310.
    [45]Kim DW, Sovak MA, Zanieski G, et al. Activation of NF-κB/REL occurs early during neoplastic transformation of mammary cells. Carcinogenesis,2000, 21(5):871-879.
    [46]Tai DI, Tsai SL, Chang YH, et al. Constitutive activation of nuclear factor kappaB in hepatocellular carcinoma. Cancer,2000,89(11):2274-2281.
    [47]Bosher J.M., Williams T. and Hurst H.C. The developmentallyregulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human
    mammary carcinoma. Proc. Natl. Acad. Sci.,1995,92(3):744-747.
    [48]Taipale J and Beachy PA. The Hedgehog and Wnt signalling pathways in cancer. Nature,2001,411:349-354.
    [49]Kolligs FT, Kolligs B, Hajra KM, et al. Gamma-catenin is regulated by the APC tumor suppressor and its oncogenic activity is distinct from that of beta-catenin. Genes Dev,2000,14(11):1319-1331.
    [50]Wetering V, Cavallo R, Dooijes D, et al. Armadillo coactivates transcription driven by the product of the Drosophila segment polarity gene dTCF. Cell, 1997,88(6):789-799.
    [51]Kramps T., Peter 0, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell,2002,109(1):47-60.
    [52]Barker N. and Clevers H. Catenins, Wnt signaling and cancer. Bioessays,2000 22,961-965.
    [53]Hovanes, K. et al. Beta-catenin-sensitive isoforms of lymphoid enhancer factor-1 are selectively expressed in colon cancer. Nature Genet,2001, 28():53-57.
    [54]Wong CM., Fan, ST. and Ng, IOL. Beta-catenin mutation and overexpression in hepatocellular carcinoma:clinicopathologic and prognostic significance. Cancer,2001,92(1):136-145.
    [55]Weinmaster G. Notch signal transduction:a real Rip and more. Curr.Opin.Genet.Dev.,2000,10(4):363-369.
    [56]Gille H., Strahl T. and Shaw P.E. Activation of ternary complex factor Elk-1 by stress-activated protein kinases. Curr.Biol.,1995,5(10):1191-1200.
    [57]Vandel L., Montreau N, Vial E, et al. Stepwise transformation of rat embryo fibroblasts:c-Jun, JunB, or JunD can cooperate with Ras for focus formation, but a c-Jun-containing heterodimer is required for immortalization. Mol.Cell.Biol.,1996,16(5):1881-1888.
    [58]Davidson B., Reich R, Goldberg I,et al. Ets-1 messenger RNA expression is a novel marker of poor survival in ovarian carcinoma. Clin.Cancer Res., 2001,7(3):551-557.
    [59]Shaywitz, A.J. and Greenberg M.E. CREB:a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu.Rev.Biochem.,1999,68:821-861.
    [60]Fambrough D., McClure K., Kazlauskas A. and Lander E. S. Diverse signaling pathways activated by growth factor receptors induce broadly overlapping, rather than independent, sets of genes. Cell,1999,97(6):727-741.
    [61]Gilliland D.G. The diverse role of the ETS family of transcription factors in cancer. Clin. Cancer Res.,2001,7(3):451-453.
    [62]Yordy J. S., and Muise-Helmericks R. C. Signal transduction and the Ets family of transcription factors. Oncogene,2000,19:6503-6513.
    [63]Gabrielsen, O. S., Sentenac, A., and Fromageot, P. Specific DNA binding by c-Myb:evidence for a double helix-turn-helix-related motif. Science,1991, 253(5024):1140-1143.
    [64]Nesbit C. E., Tersak, J.M. and Prochownik, E.V. MYC oncogenes and human neoplastic disease. Oncogene,1999,18(19):3004-3016.
    [65]Seeger R. C., Brodeur G. M., Sather H., et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N. Engl. J. Med.,1985,313(18):1111-1116.
    [66]Johnson, B. E., Ihde D. C., Makuch R. W., et al. myc family oncogene amplification in tumor cell lines established from small cell lung cancer patients and its relationship to clinical status and course. J. Clin. Investig., 1987,79(6):1629-1634.
    [67]Eisenman R. N. Deconstructing Myc. Genes Dev.,2001,15:2023-2030.
    [68]Amati B., Brooks M. W., Levy N., et al. Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell,1993,72(2):233-245.
    [69]Wu L., Maiti B, Saavedra HI, et al. The E2F1-3transcription factors are essential for cellular proliferation. Nature,2001,414(6862):457-462.
    [70]Eymin B., Gazzeri S., Brambilla C. and Brambilla E. Distinct pattern of E2F1 expression in human lung tumours:E2F1 is upregulated in small-cell-lung carcinoma. Oncogene,2001,20(14):1678-1687.
    [71]Rabbitts, T. H. Translocations, master genes, and differences between the origins of acute and chronic leukemia. Cell,1991,67:641-644.
    [72]Crans H. N., and Sakamoto K. M. Transcription factors and translocations in lymphoid and myeloid leukemia. Leukemia,2001,15(3):313-331.
    [73]Borrow J., Stanton VP., Andresen J. M., et al. The translocation t(8;16) (p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet.,1996,14(1):33-41.
    [74]Carapeti M., Aguiar R.C., Goldman J. M., et al. A novel fusion between MOZ and the nuclear receptor coactivator TIF2 in acute myeloid leukemia. Blood, 1998,9.1(9):3127-3133.
    [75]Pestell R. G., Albanese C., Reutens A. T., et al. The cyclins and cyclin dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr. Rev.,1999,20:501-534.
    [76]Watanabe G., Albanese C., Lee,R. J., et al. Inhibition of cyclin D1 kinase activity is associated with E2F-mediated inhibition of cyclin D1 promoter activity through E2F and Sp1. Mol. Cell. Biol.,1998,18(6):3212-3222.
    [77]Albanese C., Johnson J., Watanabe G., et al. Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J. Biol. Chem.,1995,270(40):23589-23597.
    [78]Brooks A. R., Shiffman D., Chan C. S., et al. Functional analysis of the human cyclin D2 and cyclin D3 promoters. J. Biol. Chem.,1996,271(15): 9090-9099.
    [79]Macleod K. Tumor suppressor genes. Curr. Opin. Genet. Dev.,2000,10:81-93.
    [80]Weintraub S. J., Prater C. A., and Dean D. C. Retinoblastoma protein switches the E2F site from positive to negative element. Nature,1992,358(6383): 259-261.
    [81]Gu W., Bhatia K., Magrath I. T., et al. Binding and suppression of the Myc transcriptional activation domain by p107. Science,1994,264(5158): 251-254.
    [82]Drummond I. A., Madden S. L., Rohwer-Nutter P., et al. Repression of the insulin-like growth factor Ⅱ gene by the Wilms tumor suppressor WT1. Science,1992,257(5070):674-678.
    [83]Blagosklonny M.V. p53 from complexity to simplicity:mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J.,2000, 14(13):1901-1907.
    [84]Ashcroft M., and Vousden K. H. Regulation of p53 stability. Oncogene, 1999,18:7637-7643.
    [85]Lohranr M., and Vousden K. Regulation and function of the p53-related proteins:same family, different rules. Trends Cell Biol.,2000,10(5): 197-202.
    [86]Gronemeyer H., and Miturski R. Molecular mechanisms of retinoid action. Cell Mol. Biol. Lett.,2001,6:3-52.
    [87]Hansen, L. A., Sigman, C. C., Andreola, F., Ross, S. A., Kelloff, G. J., and De Luca, L. M. Retinoids in chemoprevention and differentiation therapy. Carcinogenesis,2000,21(7):1271-1279.
    [88]Sommer K.M., Chen L I., Treuting P.M., et al. Elevated retinoic acid receptor β(4) protein in human breast tumor cells with nuclear and cytoplasmic localization. Proc. Natl. Acad. Sci.,1999,96(15):8651-8656.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700