用户名: 密码: 验证码:
常规核型分析联合多重荧光原位杂交确定急性白血病复杂核型异常
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的](1)建立多重荧光原位杂交(M-FISH)技术平台。(2)探讨联合常规核型分析、位点特异性的荧光原位杂交及多重荧光原位杂交技术在确定急性白血病(AL)患者复杂核型异常(CCA)和标记染色体中的应用价值。(3)结合文献复习及数据库检索以发现未报道过和少见的异常,并探讨这些异常可能的预后意义。
     [方法](1)收集患者骨髓标本,采用R显带的方法行常规染色体核型分析。(2)对11例常规R显带显示具有CCA和/或标记染色体的AL患者标本应用M-FISH技术确定复杂染色体重排和标记染色体的组成,识别并确定微小易位和隐匿易位。(3)对M-FISH显示或怀疑有涉及某些特定基因如MLL扩增或P53基因缺失的患者进一步用位点特异性的荧光原位杂交技术进行进一步确证或排除。
     [结果](1)成功建立M-FISH技术平台。(2)常规细胞遗传学(CC)技术检测发现11例AL患者具有CCA或未识别的结构异常。11例AL患者中,应用CC共检出27种染色体数目异常和41种结构异常,包括17种标记染色体,其组成及来源不明。(3)M-FISH分析明确CC未识别结构异常的来源与性质:M-FISH检测确定了CC未能明确的异常。CC检出的3种染色体增加和9种染色体丢失以及12种结构异常与M-FISH分析结果一致;CC技术检出的15种染色体丢失,经M-FISH证实为衍生染色体;M-FISH还检出3种CC未发现的染色体数目增加。CC所检出的其余29种结构异常包括17种标记染色体的性质被M-FISH进一步明确。对部分患者进行的位点特异性FISH检测进一步验证了M-FISH的结果。(4)文献复习及数据库检索结果:M-FISH共检出33种结构重排,有6种异常未见文献报道,分别是t(5q-;16)(?q14;q24),der(9)(Y::9::Y::9)>der(7)(7::8::9)、ins(20;21)、der(11)(11::21::20)和der(3)t(3p-;13)(3p-;q21),这些复杂染色体重排主要由染色体不平衡易位所致。另有一些异常比较罕见,目前报道不超过百例,分别是:der(15)t(Y;15)、dic (16; 17)、der(12)t(8;12)、t(2;4)、der(10)t(10;17)、der(14)t(14;15)、der(12)t(6;12)、der(1)t(1;5)、der(15)t(1;15)、der(17)t(5;17)、der(3)t(3p-;13)、t(9;15)以及der(13)t(10;13)。(5)分析CCA在AL中所涉及的染色体种类:CCA几乎涉及所有染色体,在AML患者以涉及17号、5号、7号、15号和11号染色体的异常较为常见;在ALL患者则以涉及8号、9号、14号和22号染色体的异常较为多见。
     [结论]M-FISH不仅可以证实CC已明确的异常,还可确定CC所不能辨认的复杂核型异常以及标记染色体的来源和组成,二者联合应用在部分患者可进一步明确断裂位点,可以提高核型分析的分辨率,且有助于发现未报道过的异常以及少见异常,对伴复杂核型和标记染色体的AL具有一定的临床应用价值。
Objective:(1) To set up the technical system of multiplex fluorescence in situ hybridization (M-FISH) technique. (2) To explore the value of combination of conventional cytogenetics, locus specific FISH and M-FISH in the detection of the complex chromosomal aberrations (CCAs) and marker chromosomes in acute leukemia (AL). (3) To find out unreported or very rare abnormalities by reviewing literature and checking the Mitelman database of Chromosome Aberrations in Cancer and to discuss the possible prognostic relevance of these abnormalities.
     Methods:(1) Bone marrow specimens of patients with acute leukemia were collected, cultured, prepared and R-banded for conventional cytogenetic analysis. (2) M-FISH was performed on specimens of the 11 AL cases whose conventional cytogenetic analysis showed CCAs or marker chromosomes in order to define the unrecognized chromosomal aberrations and the constitution of marker chromosomes, and to identify small and cryptic translocations. (3) Locus specific FISH with specific probes was performed on specimens whose M-FISH results showed or suspected involvement of specific genes, such as MLL amplification or P53 deletion, for verification or exclusion.
     Results:(1) The M-FISH technical system was successfully established, with all of the 11 M-FISH experiments being successful and with good images. (2) Conventional cytogenetics (CC) showed CCAs and/or marker chromosomes in the 11 AL cases studied. Altogether CC detected 27 numerical and 41 structural chromosomal abnormalities, including 17 marker chromosomes, whose constitution and resources were undetermined. (3) M-FISH analysis determined the resources and chatacteristics of the structural abnormalities undetermined by CC. Among the 27 numerical and 41 structural chromosomal abnormalities detected by CC,3 chromosome gains and 9 chromosome losses as well as 12 structural abnormalities were confirmed by M-FISH. The other 15 chromosome losses detected by CC were revised by M-FISH as derivative chromosomes. M-FISH also detected 3 chromosome gains that were undetected by CC. The other 29 structural abnormalities including 17 marker chromosomes were characterized by M-FISH. The locus specific FISH performed on certain patients further verified the M-FISH results. (4) Results of literature reviewing and database searching:A total of 33 structural abnormalities were detected by M-FISH, among which 6 have never been reported before, i.e. t(5q-;16)(?ql4;q24), der(9)(Y::9::Y::9), der(7) (7::8::9), ins(20;21), der(11) (11::21::20) and der(3)t(3p-;13)(3p-;q21) and most of them resulted from unbalanced translocations. Some of the abnormalities are very rare, with no more than 100 cases reported world wide up to now, including der(15)t(Y;15), dic(16;17), der(12)t(8;12), t(2;4), der(10)t(10;17), der(14)t(14;15), der(12)t(6;12), der(1)t(1;5), der(15)t(1;15), der(17)t(5;17), der(3)t(3p-;13), t(9;15) and der(13)t(10;13). (5) Analyzing the distribution of chromosomes involved in CCA of AL:Almost all chromosomes were involved in CCAs, the more common ones were chromosome 17,5,7,15,11 in AML and 8,9,14,22 in ALL.
     Conclusion:Not only can M-FISH verify the abnormalities determined by CC, but the technique can also determine the complex chromosomal abnormalities and recognize the resources and constitution of marker chromosomes undetermined by CC. Combination of these two kinds of technique can also help further determine the breakpoint in some patients, raise resolution of karyotyping, and help discover unreported abnormalities and very rare abnormalities, which justifies its clinical application for the detection of CCAs and marker chromosomes in AL.
引文
[1]Nowell PC, Hungerford DA. A minute chromosome,in human chronic granulocytic leukemia. Science,1960,132(3438):1497-1497. Abstract.
    [2]Third International Workshop on Chromosomes in Leukemia. Clinical significance of chromosomal abnormalities in acute lymphoblastic leukemia. Cancer Genet Cytogenet, 1981,4(2):111-137.
    [3]Bloomfield CD, Goldman A, Hossfeld D, de la Chapelle A. Fourth International Workshop on Chromosomes in Leukemia,1982:clinical significance of chromosomal abnormalities in acute nonlymphoblastic leukemia. Cancer Genet Cytogenet,1984,11(3): 332-350.
    [4]Schrock E, du Manoir S, Veldman T, et al. Multicolor spectral karyotyping of human chromosomes. Science,1996,273(5274):494-497.
    [5]Speicher MR, Ballard SG, Ward DC. Karyotyping human chromosomes by combinatorial multi-fluor FISH. Nat Genet,1996,12(4):368-375.
    [6]张之南,沈悌.血液病诊断及疗效标准.北京:科学出版社,2007:103-134.
    [7]Mitelman F. ISCN. An international system for human cytogenetic nomenclature. Basel:S. Karger,1995.
    [8]http://www.ncbi.nlm.nih.gov/PubMed,2009-11-30:
    [9]Mitelman F, Johansson B, Mertens F, editors. Mitelman database of chromosome aberrations in cancer. http://cgap.nci.nih.gov/Chromosomes/Mitelman,2009-11-30:
    [10]李建勇,马力,肖冰等.多色荧光原位杂交技术检测急性淋巴细胞白血病复杂核型异常.中国实验血液学杂志,2006,14(1):42-45.
    [11]马力,李建勇,潘金兰等.多重荧光原位杂交技术检测急性髓系白血病复杂核型异常的价值.中华血液学杂志,2006,27(5):318-322。
    [12]Mrozek K, Heinonen K, Theil KS, et al. Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q,11q, and 22q. Genes Chromosomes Cancer,2002, 34(2):137-153.
    [13]Lu XY, Harris CP, Cooley L, et al. The utility of spectral karyotyping in the' cytogenetic analysis of newly diagnosed pediatric acute lymphoblastic leukemia. Leukemia,2002,16(11):2222-2227.
    [14]Nordgren A, Heyman M, Sahlen S, et al. Spectral karyotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia:detailed analysis of 70 cases. Eur J Haematol,2002,68(1):31-41.
    [15]Van Limbergen H, Poppe B, Michaux L, et al. Identification of cytogenetic subclasses and recurring chromosomal aberrations in AML and MDS with complex karyotypes using M-FISH. Genes Chromosomes Cancer,2002,33(1):60-72.
    [16]Herry A, Douet-Guilbert N, Gueganic N, et al. Del(5q) and MLL amplification in homogeneously staining region in acute myeloblastic leukemia:a recurrent cytogenetic association. Ann Hematol,2006,85(4):244-249.
    [1]Mitelman F. ISCN. An international system for human cytogenetic nomenclature. Basel:S. Karger,1995.
    [2]Keating MJ, Smith TL, Kantarjian H, et al. Cytogenetic pattern in acute myelogenous leukemia:a major reproducible determinant of outcome. Leukemia,1988, 2(7):403-412.
    [3]Fenaux P, Preudhomme C, Lai JL, et al. Cytogenetics and their prognostic value in de novo acute myeloid leukaemia:a report on 283 cases. Br J Haematol,1989,73(1): 61-67.
    [4]Schiffer CA, Lee EJ, Tomiyasu T, et al. Prognostic impact of cytogenetic abnormalities in patients with de novo acute nonlymphocytic leukemia. Blood,1989, 73(1):263-270.
    [5]Stasi R, Del Poeta G, Masi M, et al. Incidence of chromosome abnormalities and clinical significance of karyotype in de novo acute myeloid leukemia. Cancer Genet Cytogenet,1993,67(1):28-34.
    [6]de Nully Brown P, Jurlander J, Pedersen-Bjergaard J, et al. The prognostic significance of chromosomal analysis and immunophenotyping in 117 patients with de novo acute myeloid leukemia. Leuk Res,1997,21(10):985-995.
    [7]Grimwade D, Walker H, Oliver F, et al. The importance of diagnostic cytogenetics on outcome in AML:analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood, 1998,92(7):2322-2333.
    [8]Slovak ML, Kopecky KJ, Cassileth PA, et al. Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia:a Southwest Oncology Group/Eastern Cooperative Oncology Group Study. Blood,2000,15;96(13): 4075-4083.
    [9]Byrd JC, Mrozek K, Dodge RK, et al. Cancer and Leukemia Group B (CALGB 8461). Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia:results from Cancer and Leukemia Group B (CALGB 8461). Blood, 2002,100(13):4325-4336.
    [10]秘营昌,薛艳萍,俞文娟等.HA为基础的三药方案治疗急性髓系白血病疗效分析及与染色体核型的关系.中华血液学杂志,2005,26(12):705-709.
    [11]Chen Z, Brand NJ, Chen A, et al. Fusion between a novel Kruppel-like zinc finger gene and the retinoic acid receptor-alpha locus due to a variant t(11;17) translocation associated with acute promyelocytic leukaemia. Embo J,1993,12(3):1161-1167.
    [12]Chen Z, Guidez F, Rousselot P, et al. PLZF-RAR alpha fusion proteins generated from the variant t(11;17)(q23;q21) translocation in acute promyelocytic leukemia inhibit ligand-dependent transactivation of wild-type retinoic acid receptors. Proc Natl Acad Sci USA,1994,91(3):1178-1182.
    [13]Corey SJ, Locker J, Oliveri DR, et al. A non-classical translocation involving 17q12 (retinoic acid receptor alpha) in acute promyelocytic leukemia with atypical features. Leukemia,1994,8(8):1350-1353.
    [14]Wells RA, Catzavelos C, Kamel-Reid S. Fusion of retinoic acid receptor alpha to NuMA, the nuclear mitotic apparatus protein, by a variant translocation in acute promyelocytic leukaemia. Nat Genet,1997,17(1):109-113.
    [15]Arnould C, Philippe C, Bourdon V, et al. The signal transducer and activator of transcription STAT5b gene is a new partner of retinoic acid receptor alpha in acute promyelocytic-like leukaemia. Hum Mol Genet,1999,8(9):1741-1749.
    [16]Bloomfield CD, Lawrence D, Byrd JC, et al. Frequency of prolonged remission duration after high-dose cytarabine intensification in acute myeloid leukemia varies by cytogenetic subtype. Cancer Res,1998,58(18):4173-4179.
    [17]Byrd JC, Dodge RK, Carroll A, et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol,1999,17(12):3767-3775.
    [18]Palmieri S, Sebastio L, Mele G, et al. High-dose cytarabine as consolidation treatment for patients with acute myeloid leukemia with t(8;21). Leuk Res,2002,26(6): 539-543.
    [19]Byrd JC, Ruppert AS, Mrozek K, et al. Repetitive cycles of high-dose cytarabine benefit patients with acute myeloid leukemia and inv(16)(pl3q22) or t(16;16)(p13;q22): results from CALGB 8461. J Clin Oncol,2004,22(6):1087-1094.
    [20]Schoch C, Haase D, Haferlach T, et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22):an additional deletion in 9q is an adverse prognostic factor. Leukemia,1996,10(8):1288-1295.
    [21]Nguyen S, Leblanc T, Fenaux P, et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML):a survey of 161 cases from the French AML Intergroup. Blood,2002,99(10):3517-3523.
    [22]Bloomfield CD, Goldman A, Hossfeld D, de la Chapelle A. Fourth International Workshop on Chromosomes in Leukemia,1982:clinical significance of chromosomal abnormalities in acute nonlymphoblastic leukemia. Cancer Genet Cytogenet,1984,11(3): 332-350.
    [23]Mrozek K, Prior TW, Edwards C, et al. Comparison of cytogenetic and molecular genetic detection of t(8;21) and inv(16) in a prospective series of adults with de novo acute myeloid leukemia:a Cancer and Leukemia Group B study. J Clin Oncol,2001, 19(9):2482-2492.
    [24]Larson RA, Williams SF, Le Beau MM, et al. Acute myelomonocytic leukemia with abnormal eosinophils and inv(16) or t(16;16) has a favorable prognosis. Blood,1986, 68(6):1242-1249.
    [25]Marlton P, Keating M, Kantarjian H, et al. Cytogenetic and clinical correlates in AML patients with abnormalities of chromosome 16. Leukemia,1995,9(6):965-971.
    [26]Dastugue N, Payen C, Lafage-Pochitaloff M, et al. Prognostic significance of karyotype in de novo adult acute myeloid leukemia. Leukemia,1995,9(9):1491-1498.
    [27]Caligiuri MA, Strout MP, Lawrence D, et al. Rearrangement of ALL 1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res,1998,58(1):55-59.
    [28]Schnittger S, Kinkelin U, Schoch C, et al. Screening for MLL tandem duplication in 387 unselected patients with AML identify a prognostically unfavorable subset of AML. Leukemia,2000,14(5):796-804.
    [29]Dohner K, Tobis K, Ulrich R, et al. Prognostic significance of partial tandem duplications of the MLL gene in adult patients 16 to 60 years old with acute myeloid leukemia and normal cytogenetics:a study of the Acute Myeloid Leukemia Study Group Ulm. J Clin Oncol,2002,20(15):3254-3261.
    [30]Munoz L, Nomdedeu JF, Villamor N, et al. Acute myeloid leukemia with MLL rearrangements:clinicobiological features, prognostic impact and value of flow cytometry in the detection of residual leukemic cells. Leukemia,2003,17(1):76-82.
    [31]Shiah HS, Kuo YY, Tang JL, et al. Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia,2002,16(2):196-202.
    [32]Kiyoi H, Naoe T, Nakano Y, et al. Prognostic implication of FLT3 and N-RAS gene mutations in acute myeloid leukemia. Blood,.1999,93(9):3074-3080.
    [33]Kottaridis PD, Gale RE, Langabeer SE, et al. Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood,2002,100(7):2393-2398.
    [34]Rombouts WJ, Blokland I, Lowenberg "B, Ploemacher RE. Biological characteristics and prognosis of adult acute myeloid leukemia with internal tandem duplications in the Flt3 gene. Leukemia,2000,14(4):675-683.
    [35]Schnittger S, Schoch C, Dugas M, et al. Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia:correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood,2002,100(1):59-66.
    [36]Thiede C, Steudel C, Mohr B, et al. Analysis of FLT3-activating mutations in 919 patients with acute myelogenous leukemia:association with FAB subtypes and identification of subgroups with poor prognosis. Blood,2002,99(12):4326-4335.
    [37]Meshinchi S, Woods WG, Stirewalt DL, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood,2001,97(1):89-94.
    [38]Arrigoni P, Beretta C, Silvestri D, et al. FLT3 internal tandem duplication in childhood acute myeloid leukaemia:association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol,2003,120(1):89-92.
    [39]Kang HJ, Hong SH, Kim IH, et al. Prognostic significance of FLT3 mutations in pediatric nonpromyelocytic acute myeloid leukemia. Leuk Res,2005,29(6):617-623.
    [40]Mead AJ, Linch DC, Hills RK, et al. FLT3 tyrosine kinase domain mutations are biologically distinct from and have a significantly more favorable prognosis than FLT3 internal tandem duplications in patients with acute myeloid leukemia. Blood,2007, 110(4):1262-1270.
    [41]Whitman SP, Ruppert AS, Radmacher MD, et al. FLT3 D835/I836 mutations are associated with poor disease-free survival and a distinct gene-expression signature among younger adults with de novo cytogenetically normal acute myeloid leukemia lacking FLT3 internal tandem duplications. Blood,2008,111(3):1552-1559.
    [42]Bacher U, Haferlach C, Kern W, et al. Prognostic relevance of FLT3-TKD mutations in AML:the combination matters--an analysis of 3082 patients. Blood,2008, 111(5):2527-2537.
    [43]Dufour A, Schneider F, Metzeler KH, et al. Acute myeloid leukemia with biallelic CEBPA gene mutations and normal karyotype represents a distinct genetic entity associated with a favorable clinical outcome. J Clin Oncol,2010,28(4):570-577.
    [44]Verhaak RG, Goudswaard CS, van Putten W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML):association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood,2005,106(12):3747-3754.
    [45]Seifert H, Mohr B, Thiede C, et al. The prognostic impact of 17p (p53) deletion in 2272 adults with acute myeloid leukemia. Leukemia,2009,23(4):656-663..
    [46]Mrozek K, Heinonen K, Bloomfield CD. Clinical importance of cytogenetics in acute myeloid leukaemia. Best Pract Res Clin Haematol,2001,14(1):19-47.
    [47]Schoch C, Haase D, Fonatsch C, et al. The significance of trisomy 8 in de novo acute myeloid leukaemia:the accompanying chromosome aberrations determine the prognosis. Br J Haematol,1997,99(3):605-611.
    [48]Elliott MA, Letendre L, Hanson CA, et al. The prognostic significance of trisomy 8 in patients with acute myeloid leukemia. Leuk Lymphoma,2002,43(3):583-586.
    [49]Wolman SR, Gundacker H, Appelbaum FR, Slovak ML. Impact of trisomy 8 (+8) on clinical presentation, treatment response, and survival in acute myeloid leukemia:a Southwest Oncology Group study. Blood,2002,100(1):29-35.
    [50]Farag SS, Archer KJ, Mrozek K, et al. Isolated trisomy of chromosomes 8,11,13 and 21 is an adverse prognostic factor in adults with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B 8461. Int J Oncol,2002,21(5):1041-1051.
    [51]Beyer V, Muhlematter D, Parlier V, et al. Polysomy 8 defines a clinico-cytogenetic entity representing a subset of myeloid hematologic malignancies associated with a poor prognosis:report on a cohort of 12 patients and review of 105 published cases. Cancer Genet Cytogenet,2005,160(2):97-119.
    [52]Streubel B, Sauerland C, Heil G, et al. Correlation of cytogenetic, molecular cytogenetic, and clinical findings in 59 patients with ANLL or MDS and abnormalities of the short arm of chromosome 12. Br J Haematol,1998,100(3):521-533.
    [53]Schoch C, Haferlach T, Haase D, et al. Patients with de novo acute myeloid leukaemia and complex karyotype aberrations show a poor prognosis despite intensive treatment:a study of 90 patients. Br J Haematol,2001,112(1):118-126.
    [54]Visani G, Bernasconi P, Boni M, et al. The prognostic value of cytogenetics is reinforced by the kind of induction/consolidation therapy in influencing the outcome of acute myeloid leukemia-analysis of 848 patients. Leukemia,2001,15(6):903-909.
    [55]Swansbury GJ, Lawler SD, Alimena G, et al. Long-term survival in acute myelogenous leukemia:a second follow-up of the Fourth International Workshop on Chromosomes in Leukemia. Cancer Genet Cytogenet,1994,73(1):1-7.
    [56]Mrozek K, Heinonen K, Lawrence D, et al. Adult patients with de novo acute myeloid leukemia and t(9;11)(p22;q23) have a superior outcome to patients with other translocations involving band 11q23:a Cancer and Leukemia Group B study. Blood, 1997,90(11):4532-4538.
    [57]Rubnitz JE, Raimondi SC, Tong X, et al. Favorable impact of the t(9;11) in childhood acute myeloid leukemia. J Clin Oncol,2002,20(9):2302-2309.
    [58]Zwaan CM, Kaspers GJL, Pieters R, et al. Cellular drug resistance in childhood acute myeloid leukemia is related to chromosomal abnormalities. Blood,2002,100(9): 3352-3360.
    [59]Wang Y, Xue Y, Chen S, et al. A clinical and laboratory study on acute myeloid leukemia with t(6;9)(p23;q34). Zhonghua Yi Xue Yi Chuan Xue Za Zhi.2010,27(1): 34-37.
    [60]Chi Y, Lindgren V, Quigley S, et al. Acute myelogenous leukemia with t(6;9)(p23;q34) and marrow basophilia:an overview. Arch Pathol Lab Med,2008, 132(11):1835-1837.
    [61]Slovak ML, Gundacker H, Bloomfield CD, et al. A retrospective study of 69 patients with t(6;9)(p23;q34) AML emphasizes the need for a prospective, multicenter initiative for rare'poor prognosis'myeloid malignancies. Leukemia,2006,20(7): 1295-1297.
    [62]Grim wade D, Hills RK, Moorman AV, et al. Refinement of cytogenetic classification in acute myeloid leukemia:determination of prognostic significance of rare recurring chromosomal abnormalities amongst 5,876 younger adult patients treated in the UK Medical Research Council trials. Blood,2010, [Epub ahead of print].
    [1]Nowell PC, Hungerford DA. A minute chromosome in human chronic granulocytic leukemia. Science,1960,132(3438):1497-1497. Abstract.
    [2]Caspersson T, Gahrton G, Lindsten J, Zech L. Identification of the Philadelphia chromosome as a number 22 by quinacrine mustard fluorescence analysis. Exp Cell Res, 1970,63(1):238-240.
    [3]Rowley JD. A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature,1973, 243(5405):290-293.
    [4]Kantarjian HM, Smith TL, O'Brien S, et al. Prolonged survival in chronic myelogenous leukemia after cytogenetic response to interferon-alpha therapy. The Leukemia Service. Ann Intern Med,1995,122(4):254-261.
    [5]Takahashi N, Miura I, Saitoh K, Miura AB. Lineage involvement of stem cells bearing the Philadelphia chromosome in chronic myeloid leukemia in the chronic phase as shown by a combination of fluorescence-activated cell sorting and fluorescence in situ hybridization. Blood,1998,92(12):4758-4763.
    [6]Ren R. Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer,2005,5(3):172-183.
    [7]Gribble SM, Sinclair PB, Grace C, et al. Comparative analysis of G-banding, chromosome painting, locus-specific fluorescence in situ hybridization, and comparative genomic hybridization in chronic myeloid leukemia blast crisis. Cancer Genet Cytogenet, 1999,111(1):7-17.
    [8]Lim TH, Tien SL, Lim P, Lim AS. The incidence and patterns of BCR/ABL rearrangements in chronic myeloid leukaemia (CML) using fluorescence in situ hybridisation (FISH). Ann Acad Med Singapore,2005,34(9):533-538.
    [9]Sinclair PB, Nacheva EP, Leversha M, et al. Large deletions at the t(9;22) breakpoint are common and may identify a poor-prognosis subgroup of patients with chronic myeloid leukemia. Blood,2000,95(3):738-743.
    [10]Kolomietz E, Al-Maghrabi J, Brennan S, et al. Primary chromosomal rearrangements of leukemia are frequently accompanied by extensive submicroscopic deletions and may lead to altered prognosis. Blood,2001,97(11):3581-3588.
    [11]Jacson MJ, Surh LC, O'Brien WE, Beaudet AL. Assignment of the structural gene for argininosuccinate synthase to proximal mouse chromosome 2. Genomics,1990, 6(3):545-547.
    [12]Huntly BJ, Guilhot F, Reid AG, et al. Imatinib improves but may not fully reverse the poor prognosis of patients with CML with derivative chromosome 9 deletions. Blood, 2003,102(6):2205-2212.
    [13]Quintas-Cardama A, Kantarjian H, Talpaz M, et al. Imatinib mesylate therapy may overcome the poor prognostic significance of deletions of derivative chromosome 9 in patients with chronic myelogenous leukemia. Blood,2005,105(6):2281-2286.
    [14]Smoley SA, Brockman SR, Paternoster SF, et al. A novel tricolor, dual-fusion fluorescence in situ hybridization method to detect BCR/ABL fusion in cells with t(9;22)(q34;q11.2) associated with deletion of DNA on the derivative chromosome 9 in chronic myelocytic leukemia. Cancer Genet Cytogenet,2004,148(1):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700