用户名: 密码: 验证码:
microRNA在急性白血病的分类和预后作用及在高三尖杉酯碱诱导急性髓系白血病细胞凋亡中的作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分microRNA在急性白血病中的分类及预后中的作用
     目的:
     观察23种前体miRNAs在85例初发未治急性白血病中的表达,探讨miRNAs在急性白血病中分类及与预后的关系。
     方法:
     采用逆转录实时荧光定量PCR技术检测23种miRNAs在初发未治急性白血病患者骨髓单个核细胞中的表达,并对患者的生存期进行随访。
     结果:
     ①16个miRNAs在85例AML与ALL中差异表达,9种miRNAs(miR-128a、miR-128b、miR-155、miR-150、miR-17、miR-29a/c、miR-29b、miR-146a、miR-20a)在ALL中表达明显高于AML,而7种miRNAs(miR-223、miR-221、miR-222、miR-27a/b、miR-23a、miR-196b、let-7b)在AML表达明显高于ALL。②32例ALL患者中miR-146a、miR-181a/c和miR-221与ALL患者的总生存期相关:miR-146a、miR-181a/c高表达的患者的生存期短,而miR-221高表达患者有更长的生存期。③5种miRNAs(miR-25、miR-26a、miR-29b、miR-146a、miR-196b)表达水平与53例AML患者生存期有显著相关。miR-25的表达水平与生存期呈正相关,另4种表达水平与生存期呈负相关。对其中的40例非M3亚型的AML病例进行分析,3种miRNAs(miR-26a. miR-29b、miR-146a)的表达水平与生存期均呈负相关。④考虑到miR-146a是我们研究的23个miRNAs中唯一一个与AML和ALL患者总生存期相关的miRNA,追加检测了61例初发未治AML患者骨髓标本miR-146a,结果显示miR-146a低表达患者生存期长。⑤通过检索国际上5个主要的miRNA靶基因数据库,我们发现miR-146a共有约7200个可能的靶基因。我们重点分析了至少3种算法都符合的622个基因。在基因本体论生物过程部分,与被预测的27901个人类可能受miRNA调控的基因相比,622个miR-146a的可能靶基因中负调控生物学过程、负调控细胞增殖、凋亡、细胞周期、细胞周期关卡、细胞周期停滞和DNA损害检查点相关的基因比例明显提高。高表达miR-146a的患者临床预后相对差,可能与miR-146a高表达后抑制了其靶基因表达有关。
     结论:
     ①9种miRNAs(miR-128a、miR-128b、miR-155、miR-150、miR-17、miR-29a/c、miR-29b、miR-146a、miR-20a)在ALL中表达明显高于AML;而7个miRNAs(miR-223、miR-221、miR-222、miR-27a/b、miR-23a、miR-196b、let-7b)在AML表达明显高于ALL。
     ②miR-146a、miR-181a/c高表达的ALL患者的生存期短,而miR-221高表达的ALL患者生存期长。
     ③miR-25的表达水平与AML患者生存期呈正相关,miR-26a、miR-29b、miR-146a、miR-196b表达水平与AML患者生存期呈负相关。miR-26a、miR-29b、miR-146a的表达水平与非M3亚型的AML患者生存期均呈负相关。
     ④在基因本体论生物过程部分,与被预测的27901个人类可能受miRNA调控的基因相比,622个miR-146a的可能靶基因中与负性调控生物学过程、阴性调控细胞增殖、凋亡、细胞周期、细胞周期关卡、细胞周期停滞和DNA损害检查点相关的基因比例明显提高。miR-146a高表达的患者临床预后相对差,可能与miR-146a高表达后抑制了靶基因表达有关。
     第二部分microRNA在高三尖杉酯碱诱导急性髓系白血病细胞凋亡中的作用机制
     目的:
     探讨microRNA在高三尖杉酯碱诱导急性髓系白血病细胞凋亡中表达变化,并初步探讨其作用机制。
     方法:
     采用MTT比色法研究HHT对K562、HL60、U937细胞的体外生长抑制作用;采用流式细胞仪PI染色检测细胞周期和Annexin V/PI双染色检测细胞凋亡;采用miRNA芯片技术检测HHT作用K562细胞后miRNA表达的变化;采用real-timePCR技术检测HHT对K562、HL60、U937细胞成熟miRNA表达的影响;采用real-time PCR技术检测HHT对K562、HL60、U937细胞及原代AML细胞miR-17-92表达的影响;采用real-time PCR技术检测HHT对K562、U937细胞C-Myc和p21mRNA表达水平的影响;采用Western Blot技术检测K562和U937细胞miR-17-92基因簇相关基因蛋白水平表达;采用Western Blot技术检测HHT作用K562细胞后bcr/abl P210蛋白和Bcl-2家族蛋白水平表达变化。
     结果:
     ①HHT抑制人AML细胞株K562、HL60、U937细胞的生长,均呈浓度和时间依赖性。②HHT对K562细胞无明显的周期抑制作用,HHT能诱导K562、HL60、U937细胞凋亡,并呈浓度依赖性。③共检测了600多个人miRNAs表达变化,发现有13种miRNAs(miR-17,miR-17*,miR-18a,miR-18b,miR-20a,miR-20b,miR-93,miR-106a,miR-126,miR-142-5p,miR-144,miR-233和miR-320)在HHT作用后3个时间点均表达下调,与对照组相比差异大于1.5倍,未发现3个时间点均表达上调的miRNA。进一步通过real-time PCR验证,HHT能下调K562、HL60、U937细胞13种成熟miRNA的表达。④HHT能明显下调K562、HL60、U937和3例原代AML细胞miR-17-92基因簇的初级转录本表达。⑤HHT下调K562、U937细胞C-Myc mRNA表达,并上调p21mRNA表达。⑥HHT能下调K562、U937细胞P-AKT和c-Myc蛋白的表达,上调p21、PTEN、P-PTEN和E2F1蛋白的表达,而BIM和总AKT则无明显变化。⑦HHT作用K562细胞24h后,bcr/abl P210蛋白表达才明显下调,而促凋亡蛋白Bak、Bax表达上调,抗凋亡蛋白Bcl-xl和Mcl-1表达下调。
     结论:
     ①HHT可以抑制人AML细胞株细胞的增殖并诱导细胞凋亡。
     ②HHT能下调人AML细胞13种miRNA的成熟体表达,其下调miR-17-92基因簇1miRNA表达是先通过下调c-Myc表达,进而下调miR-17-92基因簇的前体转录本表达实现的。HHT作用24h后才明显下调K562细胞bcr/ablP210蛋白表达,说明HHT下调K562细胞的c-Myc表达可能并不通过bcr/abl P210融合蛋白。
     ③HHT上调AML细胞miR-17-92基因簇及其两个旁系同源体的共同靶基因p21、PTEN、和E2F1蛋白表达,并抑制PTEN下游AKT磷酸化,上调p21蛋白表达可能与p21mRNA表达上调有关。这些靶基因表达上调可能与HHT下调miR-17-92基因簇及其两个旁系同源体的相关miRNAs表达有关。
     ④HHT还可以通过上调K562细胞的Bcl-2家族中促凋亡蛋白Bak、Bax表达,下调抗凋亡蛋白Bcl-xl和Mcl-1表达诱导AML细胞凋亡。
     第三部分miR-17-92基因及miR-17、miR-20a的类似物和抑制剂转染及作用机制
     目的:
     通过基因转染进一步研究miR-17-92、miR-17、miR-20a在HHT诱导AML细胞凋亡中的作用机制。
     方法:
     通过逆转录病毒载体将miR-17-92基因转染进入K562和U937细胞;采用电转法分别将miR-17和miR-20a的模拟物和抑制剂转染进入K562细胞;采用WesternBlot技术检测相关靶基因表达变化;采用real-time PCR技术检测p21基因表达变化及miRNA表达变化;采用Annexin V/PI双染色方法检测HHT对转染后细胞凋亡影响。
     结果:
     ①转染miR-17-92基因后,与对照细胞相比,K562和U937细胞的p21、E2F1和PTEN蛋白表达下调,p21mRNA表达下调。50ng/ml HHT处理转染了miR-17-92基因的K562和U937细胞24h后,与对照细胞相比,转染后细胞早期凋亡细胞比例明显下降。②K562细胞转染miR-17和miR-20a的模拟物后,与对照细胞相比,转染后p21、E2F1和PTEN蛋白表达下调,p21mRNA表达下调。K562细胞转染miR-17和miR-20a的抑制剂后,与对照细胞相比,p21、E2F1和PTEN蛋白表达上调,p21mRNA表达上调。50ng/ml HHT处理K562细胞24h后,与对照细胞相比,转染miR-17/miR-20a模拟物后K562细胞早期凋亡比例明显下降,转染miR-17/miR-20a抑制剂后K562细胞早期凋亡比例明显上升。
     结论:
     ①在K562和U937细胞中,p21、E2F1和PTEN是miR-17-92基因簇的靶基因。
     ②在K562细胞中,p21、E2F1、PTEN表达分别受miR-17和miR-20a调节,是miR-17和miR-20a的靶基因。
     ③结合第二部分结果,说明HHT先下调了AML细胞的miR-17-92基因的表达,进而降低了miR-17和miR-20a的表达,导致靶基因p21、E2F1、PTEN表达上调,从而促进AML细胞凋亡。
     ④提高miR-17-92、miR-17、miR-20a表达均可抑制AML细胞对HHT的敏感性;抑制miR-17或miR-20a功能可促进AML细胞对HHT的敏感性。
     总结:
     我们的研究发现在中国病人中一组miRNA—miR-223、miR-128a和miR-128b在AML和ALL中表达不同。在国际上首先发现一些miRNA的表达与急性白血病的总生存期明显相关:miR-146a、miR-181a/c高表达的ALL患者的生存期短,而miR-221高表达的ALL患者生存期长;miR-25的表达水平与AML患者生存期呈正相关,miR-26a、miR-29b、miR-146a、miR-196b表达水平与AML患者生存期呈负相关。分析miR-146a的可能靶基因,其中负性调控细胞生长和促进细胞凋亡的比例明显高于所有可能受miRNA调控的基因中相应基因比例,这可能是急性白血病高表达miR-146a预后相对差的原因之一。
     HHT能诱导人AML细胞凋亡并下调AML细胞13种miRNAs表达。HHT下调AML细胞miR-17-92基因簇的正向转录因子C-Myc蛋白的表达,导致miR-17-92基因簇表达下调。miR-17-92基因簇表达下调导致miR-17、miR-20a低表达。HHT通过降低miR-17、miR-20a等miRNA表达,上调了其靶基因p21、E2F1、PTEN表达,进而诱导AML细胞凋亡。因而我们认为miR-17-92基因簇及其两个旁系同源体的一些miRNAs,共同通过靶基因p21、E2F1、PTEN介导HHT诱导人AML细胞凋亡,国内外未见相关的报道。
Section 1 MicroRNAs expression signatures are associated with lineage and survival in acute leukemias
     Objective:
     The aim of this section was to assess expression of precursors of 23 miRNAs in 85 Chinese adolescent and adult de novo acute leukemia bone marrow specimens and to investigate microRNAs expression signatures in patients with lineage and survival.
     Methods:
     Quantitative real-time PCR was used to assess expression of precursors of 23 miRNAs in 85 Chinese adolescent and adult de novo acute leukemia bone marrow specimens.All patients were followed up.
     Results:
     ①We identified 16 miRNAs differentially expressed between 85 ALL and AML samples. Nine (i.e., miR-128a, miR-128b, miR-155, miR-150, miR-17, miR-29a/c, miR-29b, miR-146a, and miR-20a) were expressed at a significantly higher level in ALL than in AML; In contrast, seven (i.e., miR-223, miR-221, miR-222, miR-27a/b, miR-23a, miR-196b and let-7b) were expressed at a significantly higher level in AML compared to ALL.②We found that three miRNAs including miR-146a, miR-181a/c, and miR-221 were significantly associated with overall survival of the 32 ALL patients. Expression level of the first two precursor miRNAs was associated with a poor outcome whereas that of the latter was associated with a good outcome.③We found that five miRNAs including miR-25, miR-26a, miR-29b, miR-146a, and miR-196b were significantly associated with overall survival of the 53 AML patients. Expression level of the first miRNA was positively whereas that of the latter four was negatively associated with a good outcome. We also found that only three miRNAs including miR-26a, miR-29b, and miR-146a were significantly associated with overall survival of the 40 non-M3 AML patients. Expression level of all three miRNAs was negatively associated with a good outcome.④Because miR-146a is the only miRNA whose expression is significantly associated with overall survival of both AML (including or excluding AML-M3) and ALL patients, we confirmed that the expression signature of miR-146a was significantly inversely associated with overall survival of 61 additional AML patients.⑤Through searching five common human miRNA-target prediction programs/databases, we found that miR-146a has a total of 7,200 predicted targets. We focused on the 622 miR-146a targets that are predicted by at least 3 programs/databases for the GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. Particularly, in GO BP (biological process) terms, genes related to "negative regulation of biology process", "negative regulation of cellular process", "apoptosis", "cell cycle", "cell cycle checkpoint", "cell cycle arrest", and "DNA damage checkpoint" were significantly more enriched in the 622 miR-146a putative target list than in the 27,901 total putative miRNA target gene list. This might contribute to the association of miR-146a with poor survival.
     Conclusions:
     ①Nine (i.e., miR-128a, miR-128b, miR-155, miR-150, miR-17, miR-29a/c, miR-29b, miR-146a, and miR-20a) were expressed at a significantly higher level in ALL than in AML, In contrast, seven (i.e., miR-223, miR-221, miR-222, miR-27a/b, miR-23a, miR-196b and let-7b) were expressed at a significantly higher level in AML compared to ALL.
     ②Expression level of miR-146a and miR-181a/c was associated with a poor outcome whereas that of miR-221 was associated with a good outcome in ALL patients.
     ③Expression level of miR-25 was positively whereas that of 4 miRNAs (i.e., miR-26a, miR-29b, miR-146a, miR-196b) was negatively associated with a good outcome in AML patients. Expression level of miR-26a, miR-29b, and miR-146a was negatively associated with a good outcome in non-M3 AML patients.
     ④In GO BP terms, genes related to "negative regulation of biology process" "negative regulation of cellular process", "apoptosis", "cell cycle", "cell cycle checkpoint", "cell cycle arrest", and "DNA damage checkpoint" were significantly more enriched in the 622 miR-146a putative target list than in the 27,901 total putative miRNA target gene list. This might contribute to the association of miR-146a with poor survival.
     Section 2:The effects and mechanisms of micro RNAs to apoptosis induced by homoharringtonine in acute myeloid leukemia cells Objective: The aim of this section was to compare the miRNA expression profiles of HHT-treated AML cells with those of untreated and to study these mechanisms of microRNAs to apoptosis induced by homoharringtonine in acute myeloid leukemia cell.
     Methods:
     We used MTT assay to investigate the effects of HHT on AML cells (i.e., K562, HL60,U937). PI staining was used for cell cycle analysis by flow cytometry. AV-PI staining was used for detecting apoptosis. We used microarray to compare the miRNA expression profiles of HHT-treated K562 cells with those of untreated cells. We then compared miRNA expression in HHT-treated vs untreated AML cells (i.e., K562, HL60, U937) by using real-time PCR. The expression level of miR-17-92 in AML cells (i.e., K562, HL60, U937 and three primary AML patient blasts) was detected by real-time PCR. We compared c-Myc and p21 mRNA expression in HHT-treated vs untreated K562 and U937 cells by using real-time PCR. Western blot was used for detecting expression level of miR-17-92-associated proteins in K562 and U937 cells. We also detected the expression level of P210 bcr/abl and Bcl-2 family proteins in K562 cells by western blot.
     Results:
     ①HHT could inhibit growth of AML cells (i.e., K562, HL60, U937). The cell growth was inhibited in a time-and dose-dependent manner, corresponding to the reduced cell viability.②HHT could not evidently induce K562 cell cycle arrested. HHT induced apoptosis of K562 and U937 cells in a dose-dependent manner.③From more than 600 miRNAs, we identified that the expression level of 13 miRNAs(i.e.,miR-17, miR-17*, miR-18a, miR-18b, miR-20a, miR-20b, miR-93, miR-106a, miR-126, miR-142-5p, miR-144, miR-233 and miR-320) was downregulated (changed more than 1.5 times vs untreated cells) whereas none was upregulated in 50ng/ml HHT-treated K562 cells in all times(i.e.,3h,12h,24h). The results were confirmed in HHT treated K562, HL60 and U937 cells by using real-time PCR.④The expression level of miR-17-92 pri-miRNA was downregulated in AML cells (i.e., K562, HL60, U937 and three primary AML patient blasts) treated with 50ng/ml HHT.⑤the expression level of C-Myc mRNA and protein was decreased in 50ng/ml HHT-treated K562 and U937 cells. The expression level of P210 bcr/abl was specifically decreased only in 24-hour-HHT-treated K562 cells.⑥The expression level of P-AKT protein was downregulated whereas that of PTEN, P-PTEN, p21 and E2F1 protein was upregulated, and that of BIM and total AKT protein was stable in K562 and U937 cells which were treated with 50ng/ml HHT.⑦The expression level of apopotosis-induced protein Bak and Bax was increased whereas that of Bcl-2 and Mcl-1 proteins was decreased in 50ng/ml HHT treated K562 cells at different time.
     Conclusions:
     ①HHT inhibited cell growth and induced apoptosis in human AML cells (i.e., K562, HL60, U937).
     ②The expression level of 13 miRNAs was downregulated whereas none that of miRNAs was upregulated in human AML cells (i.e., K562, HL60, U937) treated by HHT. Firsrly, we thought maybe HHT downregulated expression level of miR-17-92 pri-miRNA through downregulated expression level of miR-17-92 activator protein c-Myc. Secondly, some miRNAs expression level of miR-17-92 clusters was downregulated. Expression level of bcr/abl P210 protein was specifically decreased only in 24-hour-HHT-treated K562 cells. So we thought HHT downregulated expression of c-Myc, which bypassed bcr/abl P210 protein.
     ③HHT downregulated expression of p21, PTEN and E2F1, which were target genes of miR-17-92 and its thomologous cluster in AML cells. HHT maybe downregulated expression level of those proteins through miR-17-92 and its two thomologous clusters. The enhanced expression level of p21 protein maybe resulted from enhanced p21 mRNA.HHT maybe inhibited expression of P-AKT through PTEN.
     ④The expression level of apopotosis-induced protein Bak and Bax was increased whereas that of Bcl-2 and Mcl-1 was decreased in HHT-treated K562 cells.
     Section 3:The study on effcts of cells transfected with miR-17-92 or mimic and inhibitor of miR-17 and miR-20a
     Objective:
     To study the effects of miR-17-92, miR-17 and miR-20a to apoptosis induced by homoharringtonine in acute myeloid leukemia cells.
     Methods:
     The miR-17-92 gene was transfected into K562 and U937 cells by the retroviral-mediated gene transfer. The mimic and inhibitor of miR-17 and miR-20a was transfected into K562 cells by electroblot. We used real-time PCR to detect p21 expression of mRNA and western blot to detect expression of those targeted proteins. AV-PI staining was used for detecting apoptosis in HHT-treated and HHT-untreated K562 or U937 cells after miR-19-92 gene transfer. We also used AV-PI staining to detect apoptosis in HHT-treated K562 cells after mimic and inhibitor of miR-17 and miR-20a was transfected.
     Results:
     ①The expression level of some proteins(i.e., E2F1, PTEN and p21) and p21 mRNA was decreased in K562 and U937 cells overexpressing miR-17-92 compared with controls.The percentage of apoptosis cells was deceased in 50ng/ml HHT-treated K562 and U937 cells overexpressing miR-17-92 compared with controls by using AV/PI staining.②The expression level of some proteins(i.e., E2F1, PTEN and p21) and p21 mRNA was decreased in K562 cells overexpressing miR-17 or miR-20a compared with controls.The percentage of apoptosis cells was deceased in 50ng/ml HHT-treated K562 cells overexpressing miR-17 or miR-20a compared with controls. The expression level of some proteins (i.e., E2F1, PTEN and p21) and p21 mRNA was upregulated in K562 cells transfected with miR-17 or miR-20a inhibitor compared with controls.The percentage of apoptosis cells was upregulated in 50ng/ml HHT-treated K562 cells transfected with miR-17 or miR-20a inhibitor compared with controls.
     Concludions:
     ①In K562 and U937 cells, some genes (i.e., E2F1, PTEN and p21) were real target genes of miR-17-92.
     ②In K562 cells, some gene (i.e., E2F1, PTEN and p21) were real target gene of miR-17 and miR-20a.
     ③Incorporated with the results of second section, at first, HHT downregulated the expression of miR-17/miR-20a through miR-17-92, secondly, HHT downregulated the expression of some proteins (i.e., E2F1, PTEN and p21) through miR-17/miR-20a in AML cells.
     ④Overexpressing miR-17-92 or miR-17/miR-20a decreased sensitivity to HHT induced K562 cells apoptosis, and inhibiting miR-17/miR-20a increased sensitivity to HHT induced K562 cells apoptosis.
     Summary:
     Our study shows that a group of microRNAs (e.g., miR-223, miR-128a and miR-128b) are discriminatory microRNAs between AML and ALL in Chinese patients. More importantly, our study also shows that expression of some microRNAs is associated with overall survival of patients with acute leukemias (e.g., miR-146a, miR-181a/c and miR-221 in ALL, and miR-25, miR-26a, miR-29b, miR-146a, and miR-196b in AML), which has not been reported previously. Furthermore, results from the GO and KEGG analysis of potential targets of miR-146a implicate some potential functions of miR-146a (e.g., negatively regulating genes that inhibit cell growth and promote apoptosis), which may be related to the association of miR-146a with poor survival.
     HHT induced apoptosis and downregulated expression of 13 mature miRNAs in human AML cells. Firstly, HHT downregulated expression of miR-17-92 pri-miRNA through downregulated expression of miR-17-92 activator protein c-Myc. Scondly, the expression of miR-17 and miR-20a were decreased by HHT through miR-17-92. At last some proteins (i.e., p21, PTEN and E2F1) were downregulated through some miRNA of miR-17-92 and its thomologous cluster. So we thought HHT induced human AML cells apotosis through real target protein (i.e., p21, PTEN and E2F1) of some miRNA of miR-17-92 and its thomologous cluster. This maybe one of the mechanisms that HHT induced AML cells apoptosis, which has not been reported previously.
引文
[1]Lin H, Gregory JH. MiRNA:Small RNAs with a big role in gene regulation. Nature 2006,5:522-531.
    [2]Esquela-Kerscher, JS Frank. Oncomis—miRNA with a role in cancer. Nat Rev Cancer 2006,6:259-269.
    [3]W Wu, M Sun, G.M. Zou, et al. MicroRNA and cancer:Current status and prospective. Int J Cancer 2007,120:953-960.
    [4]RC Friedman, KK Farh, CB Burge, and et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009,19:92-105.
    [5]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 2004,101:2999-3004
    [6]D.P. Bartel, MicroRNAs:genomics, biogenesis, mechanism, and function. Cell 2004,116:281-297.
    [7]V. Ambros. The functions of animal microRNAs. Nature 2004,431:350-355.
    [8]L. He, and G.J. Hannon, MicroRNAs:small RNAs with a big role in gene regulation. Nat Rev Genet 2004,5:522-531.
    [9]L. He, J.M. Thomson, M.T. Hemann, et al. A microRNA polycistron as a potential human oncogene. Nature 2005,435:828-833.
    [10]J. Lu, G. Getz, E.A. Miska, et al. MicroRNA expression profiles classify human cancers. Nature 2005,435:834-838.
    [11]S.M. Johnson, H. Grosshans, J. Shingara, et al. RAS is regulated by the let-7 microRNA family. Cell 2005,120:635-647.
    [12]XS Wang, JW Zhang. The microRNAs involved in human myeloid differentiation and myelogenous/myeloblastic leukemia. J. Cell. Mol. Med.2008,12:1445-1455
    [13]GA Calin, and C.M. Croce. MicroRNA signatures in human cancers. Nat Rev Cancer 2006 6:857-866.
    [14]J. Chen, O. Odenike, and J.D. Rowley. Leukemogenesis:More than mutant genes. Nat Rev Cancer 2010,10:23-36
    [15]J. Kluiver, B.J. Kroesen, S. Poppema, et al. The role of microRNAs in normal hematopoiesis and hematopoietic malignancies. Leukemia 2006,20:1931-1936.
    [16]M. Fabbri, R. Garzon, M. Andreeff, et al. MicroRNAs and noncoding RNAs in hematological malignancies:molecular, clinical and therapeutic implications. Leukemia 2008,22:1095-1105.
    [17]R. Garzon, C.M. Croce. MicroRNAs in normal and malignant hematopoiesis. Curr Opin Hematol 2008,15:352-358.
    [18]S. Yendamuri, G.A. Calin. The role of microRNA in human leukemia:a review. Leukemia 2009,23:1257-1263
    [19]S. Mi, J. Lu, M. Sun, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 2007,104:19971-19976.
    [20]Z. Li, J. Lu, M. Sun, et al. Distinct microRNA expression profiles in acute myeloid leukemia with common translocations. Proc Natl Acad Sci U S A 2008, 105:15535-15540.
    [21]M. Jongen-Lavrencic, S.M. Sun, M.K. Dijkstra, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 2008,111:5078-5085.
    [22]R. Garzon, M. Garofalo, M.P. Martelli, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 2008,105:3945-3950.
    [23]R. Garzon, S. Volinia, C.G Liu, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008, 111:3183-3189.
    [24]G. Marcucci, K. Maharry, M.D. Radmacher, et al. Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features: a Cancer and Leukemia Group B Study. J Clin Oncol 2008,26:5078-5087.
    [25]D.L. Zanette, F. Rivadavia, G.A. Molfetta, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 2007, 40:1435-1440.
    [26]D. Schotte, J.C. Chau, G. Sylvester, et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009,23:313-322.
    [27]H. Zhang, X.Q. Luo, P. Zhang, et al. MicroRNA patterns associated with clinical prognostic parameters and CNS relapse prediction in pediatric acute leukemia. PLoS One 2009,4:e7826.
    [28]Z. Li,R.T. Luo, S. Mi, et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res 2009,69: 1109-1116.
    [29]R. Popovic, L.E. Riesbeck, C.S. Velu, et al. Regulation of miR-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood 2009, 113:3314-3322.
    [30]G Marcucci, M.D. Radmacher, K. Maharry, et al. MicroRNA expression in cytogenetically normal acute myeloid leukemia. N Engl J Med 2008,358: 1919-1928.
    [31]Jin J, Jiang D-Z, Ma W-Y, et al. Homoharringtonine in combination with cytarabine and aclarubicin resulted in high complete remission rate after the first induction therapy in patients with de novoacute myeloid leukemia Leukemia 2006, 20:1361-1367
    [32]Lou YJ, Jin J, Xu WL, et al.. Homoharringtonine mediates myeloid cell apoptosis via upregulation of proapoptotic bax and inducing caspase-3-mediated cleavage of poly (ADP-ribose) polymerase (PARP). Am J Hematol 2004,76:199-204.
    [33]Ye XJ, Lin MF. Homoharringtonine induces apoptosis of endothelium and down-regulates VEGF expression of K562 cells. J Zhejiang Univ Sci 2004, 5:230-4.
    [34]Tong H, Ren Y, Zhang F, et al. Homoharringtonine affects the JAK2-STAT5 signal pathway through alteration of protein tyrosine kinase phosphorylation in acute myeloid leukemia cells European Journal of Haematology 2008,81 259-266
    [35]Jin W, Wu J, Zhuang Z, et al. Gene expression profiling in apoptotic k562 cells treated by homoharringtonine Acta Biochim Biophys Sin (Shanghai) 2007, 39:982-991.
    [36]R Garzon, F Pichiorri, T Palumbol,et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia Oncogene 2007 26,4148-4157.
    [37]J. Jiang, E.J. Lee, Y. Gusev, T.D. Schmittgen, et al. Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res.2005, 33:5394-5403.
    [38]V.G. Tusher, R. Tibshirani, G. Chu. Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A 2001,98:5116-5121.
    [39]L. Bullinger, K. Dohner, E. Bair, et al. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. N Engl J Med 2004,350: 1605-1616.
    [40]A.I. Saeed, N.K. Bhagabati, J.C. Braisted, et al. TM4 microarray software suite. Methods Enzymol 2006,411:134-193.
    [41]B.P. Lewis, C.B. Burge, and D.P. Bartel. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005 120:15-20.
    [42]Krek, D. Grun, M.N. Poy, et al. Combinatorial microRNA target predictions. Nat Genet 2005,37:495-500.
    [43]John, A.J. Enright, A. Aravin, et al. Human MicroRNA targets. PLoS Biol 2004, 2:e363.
    [44]Subramanian, P. Tamayo, V.K. Mootha,et al. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005,102:15545-15550.
    [45]Lee R.C., Feinbaum, R.L.& Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993,75: 843-854.
    [46]Wightman B., Ha, I.& Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993,75:855-862.
    [47]AE Pasquinelli, BJ Reinhart, F Slack, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 2000, 408:86-89.
    [48]BJ Reinhart, FJ Slack, M Basson, et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 2000,403:901-906.
    [49]Lee, R.C.& Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 2001,294:862-864.
    [50]M Lagos-Quintana, R Rauhut, W Lendeckel, et al. Identification of novel genes coding forsmall expressed RNAs. Science 2001 294,853-858.
    [51]Lau N.C, Lim L.P, Weinstein, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001,294:858-862.
    [52]I Bentwich, A Avniel, Y Karov, et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 2005,37:766-770.
    [53]X Xie, J Lu, EJ Kulbokas, et al. Systematic discovery of regulatory motifs in human promoters and 3'UTRs by comparison of several mammals. Nature 2005, 434:338-345.
    [54]Berezikov E, Chung WJ, Willis J, et al. Mammalian miRtron genes. Mol Cell 2007,28:328-336.
    [55]Rana TM. Illuminating the silence:understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007,8:23-36.
    [56]Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
    [57]S. Monticelli, K.M. Ansel, C. Xiao, et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol 2005,6:R71.
    [58]Xiao, D.P. Calado, G. Galler, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007,131:146-159.
    [59]Zhou, S. Wang, C. Mayr, et al.A microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc Natl Acad Sci U S A 2007,104:7080-7085.
    [60]T.H. Thai, D.P. Calado, S. Casola, et al. Regulation of the germinal center response by microRNA-155. Science 2007,316:604-608.
    [61]Rodriguez, E. Vigorito, S. Clare, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007,316:608-611.
    [62]R.M. O'Connell, D.S. Rao, A.A. Chaudhuri, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008,205:585-594.
    [63]Vigorito, K.L. Perks, C. Abreu-Goodger, et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 2007, 27:847-859.
    [64]Ventura, A.G. Young, M.M. Winslow, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008,132:875-886.
    [65]S.B. Koralov, S.A. Muljo, G.R. Galler, et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 2008,132:860-874.
    [66]C. Xiao, L. Srinivasan, D.P. Calado, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008,9:405-414.
    [67]C.Z. Chen, L. Li, H.F. Lodish, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004,303:83-86.
    [68]N. Felli, L. Fontana, E. Pelosi, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci U S A 2005,102:18081-18086.
    [69]Kim YK, Yu J, Han TS, et al. Functional links between clustered microRNAs: suppression of cell-cycle inhibitors by microRNA clusters in gastric cancer. Nucleic Acids Res.2009,37:1672-1681.
    [70]Ji J, Shi J, Budhu A, et, al. MicroRNA expression, survival, and response to interferon in liver cancer. Engl J Med.2009,361:1437-1447.
    [71]Popovic R, Riesbeck LE, Velu CS, et al.Regulation of miR-196b by MLL and its overexpression by MLL fusions contributes to immortalization. Blood. 2009,113:3314-3322.
    [72]Cameron, J.E., Yin Q., Fewell, C., et al. Epstein-Barr virus latent membrane protein 1 induces cellular microRNA miR-146a, a modulator of lymphocyte signaling pathways. J. Virol.2008,82:1946-1958.
    [73]Motsch N., Pfuhl T, Mrazek J, et al. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol 2007,4:131-137.
    [74]He, H, Jazdzewski K, Li W, et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. U.S.A.2005,102:19075-19080
    [75]Pallante P, Visone R., Ferracin M, et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer 2006,13:497-508.
    [76]Volinia S, Calin G.A., Liu C.G., et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc. Natl. Acad. Sci. U.S.A.2006,103: 2257-2261.
    [77]Lin, S L., Chiang, A., Chang, D, et al. Loss of miR-146a function in hormone-refractory prostate cancer. RNA 2008,14:417-424.
    [78]Wang, X., Tang S, Le SY, et al. Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS One 2008,3:e2557.
    [79]Pacifico F, E Crescenzi, S Mellone, et al. Nuclear Factor-{kappa}B Contributes to Anaplastic Thyroid Carcinomas through Up-Regulation of miR-146a. J Clin Endocrinol Metab.2010,95:1421-1430.
    [80]Li Y, Vandenboom TG 2nd, Wang Z, et al. miR-146a suppresses invasion of pancreatic cancer cells. Cancer Res.2010,70:1486-1495.
    [81]D Bhaumik, GK Scott, S Schokrpur, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 2008,27:5643-47.
    [82]张振武,安洋,滕春波.miR-17-92基因簇nicroRNAs对哺乳动物器官发育及肿瘤发生的调控.遗传2009,31:1-9.
    [83]. Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008,132:875-886.
    [84]Inomata M, Tagawa H, Guo YM, et al. MicroRNA-17-92 downregulates expression of distinct targets in different B-cell lymphoma subtypes. Blood 2009, 113:396-402.
    [85]E Beillard, N Pallisgaard, VHJ Van der Velden, et al. Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using 'real-time' quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)-a Europe against cancer program. Leukemia 2003,17:2474-2486.
    [86]Kathryn A. O, Erik A. W, Karen I. Z, et al. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005,359:839-843.
    [87]Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia(CML)CD34+ cells. Blood,2007,109: 4399-4405.
    [88]Fabio P, Rosa V, Mariadele R, et al. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 2009,13:272-286.
    [89]Xiao C, Srinivasan L, Calado DP, et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008,9:405-414.
    [90]Athanassiadou P, Athanassiades P, Grapsa D, et al. The prognostic value of PTEN, p53, and beta-catenin in endometrial carcinoma:a prospective immunocytochemical study. Int. J. Gynecol. Cancer 2007,17:697-704.
    [91]Blanco-Aparicio C, Renner O, Leal JF, et al. PTEN, more than the AKT pathway. Carcinogenesis 2007,28:1379-1386.
    [92]Youle, R.J. and Strasser, A. The BCL-2 protein family:opposing activities that mediate cell death. Nat Rev Mol Cell Biol 2008,9:47-59.
    [93]Ruvolo, P.P., Deng, X. and May, W.S. Phosphorylation of Bcl2 and regulation of apoptosis. Leukemia,2001,15:515-522.
    [94]I Nicoletti, G Migliorati, MC Pagliacci, et al. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991,139:271-279.
    [95]He, L., Thomson, JM, Hemann, et al. A microRNA polycistron as potential human oncogene. Nature 2005,435:828-833.
    [96]Ventura A, Young AG, Winslow MM, et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008,132:875-886.
    [97]Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007,310: 442-453.
    [98]Lu Y, Okubo T, Rawlins E, Hogan BL. Epithelial progenitor cells of the embryonic lung and the role of microRNAs in their proliferation. Proc Am Thorac Soc 2008,5:300-304.
    [99]Suarez Y, Fernandez-hernando C, Yu J, et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 2008,105:14082-14087.
    [100]Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res,2005,65(21):9628-9632.
    [101]Rinaldi A, Poretti G, Kwee I, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 2007,48:410-412.
    [102]Gottardo F, Liu CG, Ferracin M, et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007,25:387-392.
    [103]Volinia S, Calin GA, Liu CG, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006,103: 2257-2261.
    [104]inaldi A, Poretti G, Kwee I, et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 2007,48:410-412.
    [105]Ota A, Tagawa H, Karnan S, et al. Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. Cancer Res 2004,64:3087-3095.
    [106]Hossain A, Kuo MT, Saunders GF. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol. Cell. Biol.2006, 26(21):8191-8201.
    [107]Yu Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol,2008,182:509-517.
    [108]Landais S, Landry S, Legault P, Rassart E. Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res, 2007,67:5699-5707.
    [109]Stefan A, Robyn L. P, Ming Y. Genomic Profiling of MicroRNA and Messenger RNA Reveals Deregulated MicroRNA Expression in Prostate Cancer. Cancer Res 2008,68:6162-6170.
    [110]JT Mendell. miRiad Roles for the miR-17-92 Cluster in Development and Disease. Cell 2008,133.217-222.
    [111]Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 2007,129:1401-1414.
    [112]Fish J E, Santoro M M, Morton S U, et al. miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 2008,15:272-284.
    [113]Chen, CZ, Li, L, Lodish H.F, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004,303:83-86.
    [114]Fu YF, Du TT, Dong M, et al. Mir-144 selectively regulates embryonic {alpha}-hemoglobin synthesis during primitive erythropoiesis. Blood 2009, 113:1340-1349.
    [115]Fazi, F, Rosa, A., Fatica, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPa regulates human granulopoiesis. Cell 2005,123:819-831.
    [116]Fukao T, Fukuda Y, Kiga K, et al. An Evolutionarily Conserved Mechanism for MicroRNA-223 Expression Revealed by MicroRNA Gene Profiling. Cell 2007, 129:617-631
    [117]Kim DH, Saetrom P, Snove O Jr, Rossi JJ. MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U.S.A.2008, 105:16230-16235.
    [118]Zhao JJ, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis. Childs Nerv Syst. 2009,25:13-20.
    [119]Yan LX, Huang XF, Shao Q, et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 2008,14:2348-2360.
    [120]Rama S, Suresh Y, Rao A J. TGF hetal induces multiple independent signals to regulate human trophoblastic differentiation:mechanistic insights. Mol Cell Endocrinol 2003,206:123-136.
    [121]Kim S J, Letterio J. Transforming growth factor-beta signaling in normal and malignant hematopoiesis. Leukemia 2003,17:1731-1737.
    [122]S Collins, M Groudine.Amplification of endogenous myc-related DNA sequences in a human myeloid leukaemia cell line. Nature 1982,298:679-681.
    [123]V Gopal, B Hulette, YO Li,. C-myc and C-myb expression in acute myelogenous leukemia 1992,16:1003-1011
    [124].Rakesh K, Anupama EG, Christopher JB. p21-activated kinases in cancer. Nature Reviews Cancer 2006,6:459-471.
    [125]Chargari C, Toillon RA, Macdermed D, et al.Concurrent hormone and radiation therapy in patients with breast cancer:what is the rationale? Lancet Oncol 2009, 10:53-60.
    [126]Li G, Luna C, Qiu J, et al. Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev.2009,130:731-41.
    [127]Sfiewe T, Putzer BM. Role of the p53-homologue p73 in E2F1-induced apoptosis. Nat Genet 2000,26:464-469.
    [128]Wu. X.&Levine,A. L p53 and E2F-1 cooperate to mediate apoptosis. Proc Natl Acad Sci U S A 1994,91:3.602-3606.
    [129]Trimarchi, J.M.& Lees, J.A. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 2002,3:11-20.
    [130]Y Sylvestre, V De Guire, E Querido, et al. An E2F/miR-20a autoregulatory feedback loop. J Biol Chem 2007,282:2135-43.
    [131]Yang J, liu J, Zheng J, et al. A reappraisal by qmmtitative flow cymmetry analysis of PTEN expression in acute leukemia. Leukemia,2007,21:2072-2074.
    [132]Roman-Gomez J, Jimenez-Velaseo A, Castillejo JA, et al. Promoter hypermethylation of cancer-related genes:a strong independent prognostic factor in acute lymphoblagtie leukemia. Blood 2004,1048:2492-2498.
    [1]Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993,75: 843-854.
    [2]W. Wu, M. Sun, G.M. Zou, et al. MicroRNA and cancer:Current status and prospective. Int J Cancer 2007,120:953-960.
    [3]R.C. Friedman, K.K. Farh, C.B. Burge, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009,19:92-105.
    [4]Berezikov E, Chung WJ, Willis J, et al. Mammalian miRtron genes. Mol Cell 2007,28:328-336.
    [5]Rana TM. Illuminating the silence:understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007,8:23-36.
    [6]Chendrimada TP, Gregory RI, Kumaraswamy E, et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436:740-744.
    [7]Hutvagner G, Simard M J. Argonaute proteins:key players in RNA silencing. Nat Rev Mol Cell Biol 2008,9:22-32
    [8]Farazi T A, Juranek S A, Tuschl T. The growing catalog of small RNAs and their association with distinct Argonaute/Piwi family members. Development 2008, 135:1201-1214
    [9]Brennecke J, Stark A, Russell RB, et al. Principles of microRNA-target
    recognition. PLoS Biol 2005,3:e85.
    [10]Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005,120:15-20.
    [11]Grimson A, Farh KK, Johnston WK, et al. MicroRNA targeting specificity in mammals:determinants beyond seed pairing. Mol Cell 2007,27:91-105.
    [12]Vasudevan S, Tong Y, Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science 2007,318:1931-1934.
    [13]Doench JG, Sharp PA. Specificity of microRNA target selection in translational repression. Genes Dev 2004,18:504-511.
    [14]Vella MC, Choi EY, Lin SY, et al. The C. elegans microRNA let-7 binds to imperfect let-7 complementary sites from the lin-413'UTR. Genes Dev 2004,18: 132-137.
    [15]Wang B; Love TM, Call ME, et al. Recapitulation of short RNA-directed translational gene silencing in vitro. Mol Cell 2006,22:553-560.
    [16]Lytle JR, Yario TA, Steitz JA. Target mRNAs are repressed as efficiently by microRNA-binding sites in the 5'UTR as in the 3'UTR. Proc Natl Acad Sci USA 2007,104:9667-9672.
    [17]Olsen PH, Ambros V. The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol 1999,216:671-680.
    [18]Maroney PA, Yu Y, Fisher J. Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 2006,13: 1102-1107.
    [19]Chendrimada TP, Finn KJ, Ji X, et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 2007,447:823-828.
    [20]Lin H, Gregory JH. MiRNA:Small RNAs with a big role in gene regulation. Nature,2006,5:522-531.
    [21]Aurora EK. Frank JS. Oncomis—miRNA with a role in cancer. Nature 2006,6: 259-69.
    [22]W. Wu, M. Sun, G.M. Zou, et al. MicroRNA and cancer:Current status and prospective. Int J Cancer 2007,120:953-960.
    [23]R.C. Friedman, K.K. Farh, C.B. Burge, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009 19:92-105.
    [24]Liu CG, Calin GA, Meloon B, et al. An oligonucleotide microchip for genome-wide microRNA profiling in human and mouse tissues. Proc Natl Acad Sci USA 2004,101:9740-9744.
    [25]Hammond SM. MicroRNAs as oncogenes. Curr Opin Genet Dev 2006,16:4-9.
    [26]Kim VN, Nam JW. Genomics of microRNA. Trends Genet 2006,22:165-173.
    [27]Kloosterman WP, Weinholds E, Debruun E, et al. In situ detection of miRNAs in animal embryos using LNA modified oligonucleotide probes. Nat Methods, 2006,3:27-29.
    [28]Schmittgen TD, Jiang J, Liu Q, Yang L. A high-throughput method to monitor the expression of microRNA precursors. Nucleic Acids Res 2004,32:e43.
    [29]Chen C, Ridzon DA, Broomer AJ, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 2005,33:e179.
    [30]Cummins JM, He Y, Leary RJ, et al. The colorectal microRNAome. Proc Natl Acad Sci USA 2006,103:3687-3692.
    [31]Chen CZ, Li L, Lodish HF, et al. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004,303:83-86.
    [32]Neilson JR, Zheng GX, Burge CB, et al. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev 2007,21: 578-589.
    [33]Xiao C, Calado DP, Galler G, et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 2007,131:146-159.
    [34]Haasch D, Chen Y W, Reilly R M, et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosup-pressant drugs and encoded by the proto-oncogene, BIC. Cell Immunol 2002,217:78-86
    [35]O'Connell R M, Taganov K D, Boldin M P, et al. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA 2007, 104:1604-1609
    [36]Rodriguez A, Vigorito E, Clare S, et al. Requirement of bic/microRNA-155 for normal immune function. Science 2007,316:608-611
    [37]Johnnidis JB, Camargo FD. Isolation and functional characterization of side population stem cells. Methods Mol Biol 2008,430:183-193.
    [38]Fukao T, Fukuda Y, Kiga K, et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 2007,129: 617-631.
    [39]Fazi F, Rosa A, Fatica A, et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPalpha regulates human granulopoiesis. Cell 2005,123:819-831
    [40]Kasashima K, Nakamura Y, Kozu T. Altered expression profiles of microRNAs during TPA-induced differentiation of HL-60 cells. Biochem Biophys Res Commun 2004,322:403-410.
    [41]Rosa A, Ballarino M, Sorrentino A, et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc Natl Acad Sci USA 2007,104:19849-19854.
    [42]Fujita S, Ito T, Mizutani T, et al. miR-21 expression triggered by AP-1 is sustained through a double-negative feedback mechanism. J Mol Biol 2008, 278:429-504.
    [43]Feng J, Iwama A, Masanobu S, et al. MicroRNA-27 enhances differentiation of myeloblasts into granulocytes by post-transcriptionally downregulating Runxl. Brit J Haematol 2009 145:412-423.
    [44]Fontana L, Pelosi E, Greco P, et al. MicroRNAs 17-5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat Cell Biol 2007,9:775-786.
    [45]Garzon R, Pichiorri F, Palumbo T, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA 2006,103:5078-5083.
    [46]Lu J, Guo S, Ebert BL, et al. MicroRNAmediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell 2008,14:843-853.
    [47]Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol 2008,10: 788-801.
    [48]Ben-Ami O, Pencovich N, Lotem J. A regulatory interplay between miR-27 and Runxl during megakaryopoiesis. Proc Natl Acad Sci USA 2009,106:238-243.
    [49]Romania P, Lulli V, Pelosi E, et al. MicroRNA155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meisl transcription factors. Br J Haematol 2008,143:570-580.
    [50]Felli N, Fontana L, Pelosi E, et al.MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 2005,102:18081-18086.
    [51]Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis. Exp Hematol 2007,35: 1657-1667.
    [52]Dore L, Amigo JD, Dos Santos CO, et al. A GATA-1 regulated miRNA locus essential for erythropoiesis. Proc Natl Acad Sci USA 2008,105:3333-3338.
    [53]Pase L, Layton JE, Kloosterman WP, et al. Mit-451 regulates zebrafish erythroid maturation in vivo via its target gata2. Blood 2009,113:1794-1804.
    [54]Fu YF, Du TT, Dong M, et al. Mir-144 selectively regulates embryonic-hemoglobin synthesis during primitive erythropoiesis. Blood 2009, 113:1340-1349.
    [55]Wang Q, Huang Z, Xue H, et al. MicroRNA miR-24 inhibits erythropoiesis by targeting activin type receptor ALK4. Blood 2008 111:588-595.
    [56]Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 2005,102:13944-13949.
    [57]Marton S, Garcia MR, Robello C, et al. Small RNAs analysis in CLL reveals a deregulation of miRNA expression and novel miRNA candidates of putative relevance in CLL pathogenesis. Leukemia 2008,22:330-338.
    [58]Fulci V, Chiaretti S, Goldoni M, et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 2007,109: 4944-4951.
    [59]Pekarsky Y, Santanam U, Cimmino A, et al. Tcll expression in chronic
    lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006, 66:11590-11593.
    [60]Sonoki T, Iwanaga E, Mitsuya H, et al. Insertion of microRNA-125b-1, a human homologue of lin-4, into a rearranged immunoglobulin heavy chain gene locus in a patient with precursor B-cell acute lymphoblastic leukemia. Leukemia 2005,19: 2009-2010.
    [61]Zanette DL, Rivadavia F, Molfetta GA, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 2007, 40:1435-1440.
    [62]S. Mi, J. Lu, M. Sun, et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc Natl Acad Sci U S A 2007,104:19971-19976.
    [63]M. Jongen-Lavrencic, S.M. Sun, M.K. Dijkstra, et al. MicroRNA expression profiling in relation to the genetic heterogeneity of acute myeloid leukemia. Blood 111 (2008) 5078-5085.
    [64]Dixon-McIver, P. East, C.A. Mein, et al. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS ONE 2008,3 e2141.
    [65]R. Garzon, M. Garofalo, M.P. Martelli, et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc Natl Acad Sci U S A 2008,105:3945-3950.
    [66]R. Garzon, S. Volinia, C.G. Liu, et al. MicroRNA signatures associated with cytogenetics and prognosis in acute myeloid leukemia. Blood 2008,111: 3183-3189.
    [67]G. Marcucci, K. Maharry, M.D. Radmacher, et al. Bloom field, Prognostic significance of, and gene and microRNA expression signatures associated with, CEBPA mutations in cytogenetically normal acute myeloid leukemia with high-risk molecular features:a Cancer and Leukemia Group B Study. J Clin Oncol 2008,26:5078-5087.
    [68]D.L. Zanette, F. Rivadavia, G.A. Molfetta, et al. miRNA expression profiles in chronic lymphocytic and acute lymphocytic leukemia. Braz J Med Biol Res 2007,
    40:1435-1440.
    [69]D. Schotte, J.C. Chau, G. Sylvester, et al. Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2009,23:313-322.
    [70]Z. Li, R.T. Luo, S. Mi, et al. Consistent deregulation of gene expression between human and murine MLL rearrangement leukemias. Cancer Res 2009, 69:1109-1116.
    [71]O'Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 2008,205:585-594.
    [72]Nakamura T, Canaani E, Croce CM. Oncogenic ALL1 fusion proteins target Drosha-mediated microRNA processing. Proc Natl Acad Sci USA 2007,104: 10980-10985.
    [73]Venturini L, Battmer K, Castoldi M, et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood 2007, 109:4399-4405.
    [74]Bueno MJ, Perez de Castro I, Gomez de Cedron M, et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell 2008,13:496-506.
    [75]Tong A. W, Nemunaitis J. Modulation of miRNA activity in human cancer:a new paradigm for cancer gene therapy? Cancer Gene Ther 2008,15:341-355.
    [76]GA Calin, CG Liu, C Sevignani, et al. MicroRNA profiling, reveals distinct signatures in B cell chronic lymphocytic leukaemias. Proc. Natl Acad. Sci. USA 2004,101:11755-11760.
    [77]Volinia, S, Calin G.A, Liu CC, et al. A microRNA expression signature of human solid tumours defines cancer gene targets. Proc. Natl Acad. Sci. USA 2006,103:2257-2261.
    [78]Hossain, A., Kuo, M. T, Saunders, G. F. Mir-17-5p regulates breast cancer cell proliferation by inhibiting translation of AIB1 mRNA. Mol Cell Biol 2006, 26:8191-8201
    [79]Yu, Z, Wang C, Wang M, et al. A cyclin D1/microRNA 17/20 regulatory feedback loop in control of breast cancer cell proliferation. J Cell Biol 2008,182, 509-517

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700