用户名: 密码: 验证码:
秸秆慢速裂解液态产物物性分析及分馏试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个农业大国,农作物秸秆产量丰富,能否有效利用农作物秸秆等生物质能源,关系到解决我国农村生活用能的重要问题。加快秸秆裂解工业化利用和大力发展生态农业,是新时期农业发展的主题,也是在农村全面建设小康社会的有效途径。农作物秸秆裂解产物的特点是固态、液态、气态均有产物,而且均能利用。相对于固态碳和裂解气的利用便捷性,液态产物的利用就相对复杂。秸秆裂解所产生的生物油中含有一些所不希望有的特性给生物油直接作为高品位能源的应用带来了一些难免的问题,如热稳定性差、热值低、低挥发性和腐蚀性,必须经过进一步的改性处理才能应用。为了生物油的直接应用和进一步改性,对液态产物理化特性进行试验分析以及对其进行分馏试验是非常必要的。
     本文以常见的玉米秸秆、玉米芯、小麦秸秆为研究对象,通过严谨的科学试验和认真、精确的数据处理,对秸秆慢速裂解液态产物物性及分馏进行实验研究,得到的以下主要内容与研究结论:
     (1)秸秆慢速裂解液态产物物性分析。通过实验测量,液态产物的含水率较高,接近25%,在后续开发时要注意水分的分离。液态产物具有较强酸性,pH值2.6左右,在储存、运输时要注意器具的选择。液态产物密度值在1100 Kg/m3~1200 Kg/m3之间,干基热值约为20 MJ/Kg,能够体现出热裂解过程对生物质能量密度的增加。
     (2)秸秆慢速裂解液态产物分子蒸馏馏分分析。通过对各个馏分物理性质的分析,并与未分馏的液态产物作对比,发现各个工况的轻质馏分均表现出较高的酸性,液态产物中的水分经过分子蒸馏全部馏出且几乎都在轻质馏分中,其含水量达到50~70wt%,不可燃。热值则是重质馏分的最高,其中一个热值达到25.4MJ/Kg,比原液态产物提高了60%以上。
     (3)通过横向对比三个不同工况蒸馏温度下同种馏分各族类的百分含量,以及纵向对比同一工况下三种馏分的族类百分含量,分析分馏后各馏分成分分布情况以及蒸馏温度对各馏分成分分布的影响。馏分A中酮类占比最大,液态产物中绝大部分轻质组分都在其中;馏分B中只有ketones和酚类含量较高,其它族类占比都较小;馏分C不含acids和U-alcohols外,酚类中只有catechols占到绝对大的比例外,其它均匀分布在5%左右。由此可见蒸馏温度的改变对酮类、邻苯二酚类、苯酚类的影响最为显著。
China is a large agricultural country, rich in crop straw yield, the effective use of crop stalks and other biomass energy, related to the settlement of rural life, the important issue of energy use. Speed up the industrialization of straw decomposition, and to develop ecological agriculture use, is the subject of the Agricultural Development is also building a well in the rural areas an effective way. Straw pyrolysis products are characterized by solid, liquid, gaseous products are, and can use. Relative to the solid carbon and the use of pyrolysis gas convenience, the use of liquid products is relatively complicated. Straw produced by pyrolysis bio-oil contains some of the undesirable characteristics to the bio-oil directly as a high-grade energy resources brought some unavoidable problems, such as poor thermal stability, low heat value, low-volatile and corrosive, must be applied for further modification. For the direct application of bio-oil and further modification, physical and chemical properties of the liquid products to test for fractional analysis and tests of its very necessary.
     In this paper, a common corn stalk, corn cob, wheat straw as the research object, through rigorous scientific testing and careful, accurate processing of straw slow pyrolysis liquid products and fractionation properties of the experimental study, obtained the following main elements and Research Conclusion:
     (1) Straw slow pyrolysis properties of liquid products. The experimental measurements, the higher the moisture content of liquid products, nearly 25% in the subsequent development should pay attention to water separation. Strong acid liquid products, pH, around 2.6, in the storage, transportation should pay attention to the choice of equipment. Density of liquid products in between 1100 Kg/m3~1200Kg/m3, dry basis calorific value of approximately 20 MJ/Kg, to reflect the amount of biomass pyrolysis process on the increase in density.
     (2) Slow pyrolysis liquid products of straw fractions of molecular distillation. By analyzing the physical properties of the various fractions, and fractionation of liquid products with and without compare, was found in all light conditions showed a higher fraction of acidic, liquid products through the molecular distillation of the water and almost all of distillate are light fraction, its water content to 50 ~ 70wt%, non-combustible. Calorific value is the heavy fraction of the maximum, one of the calorific value to 25.4MJ/Kg, than the original liquid products increased by 60% or more.
     (3)By comparing three different lateral conditions hereinafter kind of distillation temperature fractions, the contents of all classes, and the comparison between the condition of three fractions with the same percentages of ethnic categories, analysis of various fractions after fractionation component distribution and the distillation temperature on the fraction composition distribution. Fraction A, the largest proportion ketones, most of the liquid products of the light components which are; fraction B, only ketones and phenols were higher, accounting for all other ethnic categories less; fraction C does not contain acids and U-alcohols, the phenols, only catechols account for a large proportion of the absolute, the other uniformly distributed in about 5%. Distillation temperature change shows that ketones, catechol, phenol of the most significant.
引文
[1] Das D,Veziroglu.N.Hydrogen production by biological process:a survey of literature. 2001:26:13-28.
    [2] Bockris JOM.The origin of ideas on hydrogen economy and its solution to the decay of the environment [J].International Journal 0f Hydrogen Energy,2002,27:731-740.
    [3] Momolan M,veziroglu T N.Current status of hydrogen energy[J].Renewable and Rustainable Energy Reviews,2002,6:141-179.
    [4]肖波,周英彪,李建芬.生物质能和循环经济技术[M].北京:化学工业出版社,006.
    [5]冯秀,丁勇.可持续发展下中国的能源环境与经济[J].北方经济,2006(2):23-25.
    [6]郑痞鄂.我国能源安全面临的问题及应对策略张磊[J].价格理论与实践,2005(1):17-19.
    [7]王新新.我国能源安全存在的问题及战略选择.http//www.studa.net/fazhan/090525/ 11141399.html
    [8]李永平,秦曾灏,端义宏.上海地区海平面上升趋势的预测和研究[J].地理学报,1998,53(5):393-403.
    [9]王碧峰.中国能源安全问题讨论综述[J].经济理论与经济管理,2006(6):12-14.
    [10]夏义善.论中国的能源安全战略[J].中外能源,2006,11(1):1-5.
    [11]王玉庆.中国能源环境战略与对策[J].环境保护,2006,1(4):24-26.
    [12]闰长乐.中国能源发展报告[M].北京:经济管理出版社,1994.
    [13]中国科学院生物质资源领域战略研究组.中国至2005年生物质资源科技发展路线图[M].北京:科学出版社,2009.
    [14]日本能源学会.生物质和生物能源手册[M].北京:化学工业出版社,2007.
    [15] VeldenMV,Baeyens J,Bouk is I. Modeling CFB Biomass Py-rolysis Reactors[J] .B iomass B ioenergy, 2008,32, 32 (2) :128-139 .
    [16]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社,2005:266-271.
    [17]曹有为,王述洋.国内生物质热解技术的研究进展探究[J].林业劳动安全,2005,18(2):24-26.
    [18]苗真勇,厉伟,顾永琴.生物质快速热解技术研究进展[J].节能与环保,2005,(2):13-15.
    [19]张洪勋.纤维素类生物质热解技术研究进展[J].北京联合大学学报, 2004, 18(1): 16-19.
    [20]雷廷宙.秸秆干燥过程的实验研究与理论分析.博士论文:大连理工大学,2006.
    [21]李宁.河南省生物质发电现状、存在问题及对策研究.硕士论文:河南农业大学,2008.
    [22]李文革,李倩,贺小香.秸秆还田研究进展[J].湖南农业科学,2006,1.
    [23]任大明,刘江.秸秆饲料新技术[J].新农业,2001,1.
    [24]樊峰呜,张百良,李保谦等大粒径生物质成型燃料物理特性的研究[J].农业环境科学学报,2005,24(2):398-402.
    [25]孙振钧,孙永明.我国农业废弃物资源化与农村生物质能源利用的现状与发展[J].中国农业科技导报.2006,8(1):6-13.
    [26]张明,袁益超,刘聿拯.生物质直接燃烧技术的发展研究[J].能源研究与信息,2005, 21(1):15-20.
    [27]石磊,赵由才,柴晓利.我国农作物秸秆的综合利用技术进展[J].中国沼气.2005,23(2):11-14,19.
    [28]王晓燕.生物油及相关生物质原料的特性分析.硕士论文:吉林农业大学,2005.
    [29]翟秀静,刘奎仁,韩庆.新能源技术[M].北京:化学工业出版社,2005:266-271.
    [30] http://www.clinet.com.cn/dynamic/expert/2001120306.asp?hotspotid=95
    [31] http://www.sikosci.com/catcgory_7729_1.html
    [32]朱锡锋.生物质热解原理与技术[M].合肥:中国科学技术大学出版社,2006.
    [33]矫常命,何芳.玉米秸秆热解液体产物热值的测定[J].山东理工大学学报(自然科学版),2006,20(2):11-13.
    [34]王华.卡尔费休方法测定生物油含水量的试验研究[J].可再生能源,2005,3(1):17-20.
    [35]刘荣厚,牛卫生,张大雷.生物质热化学转换技术[M].北京:化学工业出版社,2005.
    [36] Lede Jacques,Broust Francois,Ndiaye Fatou-Toutie,Ferrer Monique. Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor[J] .Fuel, 2007,86, 86 (12-13) :1800-1810 .
    [37] Rick,Vix.Product standards for pyrolysis products for use as fuel in industrial firing plants[J].London&New York:Elsevier Applied Science.2001,24(3):177-218.
    [38] Peacocke,G.V.C.,Russell,P.A.,Jenkins,J.D.and Bridgwater,A.V.Physical pfoperties of flash pyrolysis liuqids. Biomass and energy,1994,7(l一6):169-177.
    [39] M Garcia-Perez, A Chaala, H Pakdel, et al. Vacuum pyrolysis of softwood and hardwood biomass Comparison between product yields and bio-oii properties [J] .J. Anal. Appl. Pyrolysis, 2007,78, 78 (1) :104-116 .
    [40]董良杰.生物质热裂解制取生物油的研究「R].博士后研究工作报告.浙江:浙江大学,1999.
    [41] Vitolo,S.and Ghetti.P Physical and combustion characterizatin of pyrolytic oils derived form biomass ,aterial upgraded by catalytic hydrogenation. Fuel,1994,73(11):18101-812.
    [42]王树荣,骆仲泱,谭洪,等.生物质热裂解生物油特性的分析研究[J].工程热物理学报,2004,25(6):1049-1052.
    [43]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [44] Rioche C,Kulkarni S,Meunier F C,et al. Steam reforming of model compounds and fast pyrolysis bio-oil on supported noble metal catalysts[J]. Applied Catalysis B:Environmental,2005,61(l-2):130~139.
    [45] Demirbas Ayhan. Biomass resources for energy and chemical industry energy, Educ .Sci Technol, 2000,51, 5(1) :21-45 .
    [46]刘守新,张世润.生物质的快速热解[J].林产化学与工业,2004,24(3):95-101.
    [47] Bridgwater A V,Peacocke G V C. Fast Pyroly-sis Process of Biomass .Renewable and Sus-tainable Energy Reviews. 2000,4, 4 :1-17 .
    [48] Garcia-Perez M,Wang X S,Shen J,et al. Fast pyroly-sis of oil mallee woody biomass:effect of temperatureon the yield and quality of pyrolysis products[J] .IndEng Chem Res, 2008,47, 47 (6) :1846-1854 .
    [49] M Garcia-Perez, A Chaala, H Pakdel, et al. Vacuum pyrolysis of softwood and hardwood biomass Comparison between product yields and bio-oii properties [J] .J. Anal. Appl. Pyrolysis, 2007,78, 78 (1) :104-116 .
    [50]杨村,于宏奇,冯武文,等.分子蒸馏技术[M].北京:化学工业出版社,2003.
    [51] Cvengros J, Lutisan J, Micov M. Feed temperature influnce on efficiency of a molecular evaporator .Chemical Engineering Journal. 2000, 78 :61-67 .
    [52]胡德荣,张新位.分子蒸馏浅释[J].首都师范大学学报(自然科学版),2006,27(3):45-47. [53 ]卓震,巢建伟,许进文,等.旋转刮膜式分子蒸馏器[J].轻工机械,2005,23(4):134-138.
    [54]分子蒸馏技术http://www.ccebbs.com/bbs/dispq.php?lid=110826.
    [55]分子蒸馏技术的原理和应用http://chenxg3303.blog.163.com/blog/static/ 647303102009 8223555978/. [56 ] Allen Robert R,Campbel JR Robert L. Process for the manufacture of fatty acid esters [ P] . US: 3313834 ,19671.
    [57] Sharma R K,Bakhshi N N. Catalytic upgradingof pyrolysis oil .Energy&Fuels, 1993,72, 7(2) :306-314 .
    [58] Samolada M C,Baldanf W,Vasalos I A. Pyrol-ysis liquids via hydrogen processing and catalyticcracking .Fuel, 1998,7714, 77(14) :1667-1675 .
    [59]闫雪梅,张勇.分子蒸馏技术应用[J].农机化研究,2004,(6):206-210.
    [60]吴鹏.短程蒸馏原理及工业应用[J].化工进展,2000(1):49-52.
    [61]杨村.分子蒸馏技术在维生素提取中的应用[R].中国维生素研讨会,2005,9.
    [62]杨村,冯武文,于宏奇.分子蒸馏—一种精细化学品的高效分离技术[R].国际精细化工原料及中间体市场研讨会,2004,5.
    [63]陈立军,陈焕钦.分子蒸馏技术及其应用的研究进展[J].香精香料化妆品,2004,(5):22-26.
    [64]周家春.食品工业新技术[M].化学工业出版社,2005:414-415.
    [65]时宏,郭洪.面向21世纪的分子蒸馏单甘酯工业[J].中国食品添加剂,2000(4):54-59.
    [66]冯武文,杨村.一种新型分离技术—分子蒸馏技术[J].化工生产与技术,2000,(7):6-9.
    [67]杨村,于宏奇,冯武文,等.分子蒸馏技术(第一版)[M].化学工业出版社,2003.
    [68] M.E.Boucher,C.Roy.Bio-oils obtained by vacuum Pyrolysis of softwood bark as a liquid fuel for gas turbines.PartⅡ:Stability and ageing of bio-oil and its blends with methanol and a Pyrolytic aqueous phase. Biomass and Bioenergy.2000.19(351-361).
    [69]周晓颖,汤志刚,丁立,周荣琪.阳离子交换树脂作催化剂合成乙酸乙酷的反应动力学.清华大学学报(自然科学版).2002.42(5):629-632
    [70]徐莹,常杰,张琦,王铁军,王晨光.固体碱催化剂上生物油催化酯化改质.石油化工.2006.35(7):615-618.
    [71]张琦,常杰,王铁军,吴创之,徐莹,朱锡锋.固体酸改质生物油的研究.燃料化学学报.2006.34(6):680-684.
    [72]姚燕.生物油的分馏及品味提升试验研究.博士论文:浙江大学,2008.
    [73] Carlos Amen-chen,Separation of phenols from eucalyptus wood tar. Biomass and Bioenergy. 1997.13:25-37.
    [74]李继红,生物质焦油及其馏分的热动力学研究.2005,硕士论文:河南农业大学
    [75]贺博.生物油的分级分离和初步改性.硕士论文:浙江大学,2007
    [76] Branca C,Giudicianni P,DiBlasi C. GC/MS Characterization of Liquids Generated from Low-Temperature Pyrolysis of wood[J]. Ind.Eng.Chem.Res,2003.42(14):3190-3202
    [77] Garcia-Perez M,Chaaja A,Pakdel H,et al. Characterization of bio-oils in chemical families[J]. Biomass and Bioenergy,2007,31(4):222-242.
    [78]杨村,于宏奇,冯武文,等。分子蒸馏技术[M]。北京:化学工业出版社,2003
    [79]王秀华,谷克仁.分子蒸馏提取天然维生素E研究[J].中国油脂,2006,31(09):72-74.
    [80]韩荣伟,庄桂东,安桂香,等.利用SFE-MD技术分离提纯玫瑰精油及其成分分析[J].精细化工.2006.23(06):553-557.
    [81]栾礼侠,许松林,任艳奎.分子蒸馏技术提纯天然维生素E的工艺研究[J].中国粮油学报.2006.21(01):100-103.
    [82]傅红,裘爱泳.分子蒸馏法富集鱼油ω-3脂肪酸[J].中国粮油学报,2006,21(03):156-159

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700