用户名: 密码: 验证码:
再生核空间中对非自治系统的求解
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微分方程起源于各种应用学科中,例如核物理、气体动力学、流体力学、边界层理论、非线性光学等。非自治系统的研究是微分方程的一个重要内容,在实际应用中,许多物理问题都可以转化为求解非自治系统(微分方程组)的问题,通过设置人工势场和人工边界条件的办法去控制微观粒子的量子运动,非自治系统的哈密顿量或边界条件通过某些参数依赖于时间,这些随时间变化的参数体现了人类对系统的控制或环境对系统的影响,因此对非自治系统算法及理论的研究对推动量子系统的发展非常重要。能否得到适当精度和可靠的数值解在很大程度上依赖所用的数值方法。精确度高、稳定性强、收敛性好、计算量少的算法显得尤为重要。本文在再生核空间中给出了非自治系统的求解方法。对于线性的微分方程组,主要利用再生核函数构造出再生核空间的完全正交系,将非自治系统的解以级数形式精确的给出,并通过对精确解的级数进行截断,从而得到其近似解。方法的创新之处在于证明了近似解收敛到精确解。对于非线性微分方程组,构造了一个迭代序列,证明了迭代序列是有界的,利用迭代序列构造近似解的表达形式。方法的特点在于对任意给定的初值函数,近似解收敛到方程的精确解。本文给出了一些数值算例来验证我们的方法的精度,数值结果表明了本文的所提方法的可行性和有效性。
Differential equations arise from many applied fields, such as nuclear physics, pneumatic dynamics, fluid mechanics, boundary layer theory, nonlinear optics and so on. Non-autonomous systems are a class of important problems of the differential equations. In practical applications, a lot of physical problems can be reduced to solving the problem of nonautonomous system. One can control microscopic particles of quantum movement by setting artificially potential field and boundary conditions. The Hamilton quantum or boundary conditions of nonautonomous system depend on time through certain parameters. These parameters which change with time reflect that the human controls the system or the system is affected by the environmental impact. Thus the study of theories and algorithms for nonautonomous systems are very important for the development of quantum systems. It is important to obtain the algorithms which possess the excellent properties such as high accuracy, strong stability, good convergence and little labor of calculation. In this paper, the method for solving the non-autonomous system is proposed in reproducing kernel space. For a linear system of ordinary differential equations, using the reproducing kernel function, the complete normal orthogonal system of the reproducing kernel space is constructed. The exact solution of the system is represented in the form of series. By truncating the series, the approximate solution is obtained. The advantage of the approach is that the approximate solution uniformly converges to the exact solution. For a nonlinear system of ordinary differential equations, we construct an iterative sequence and prove that the sequence is bounded. Using the sequence, the approximate solution is obtained. For an arbitrary value function, the approximate solution converges uniformly to exact solution. We give some numerical examples to validate the present method. And the numerical results demonstrate the feasibility and validity of our method.
引文
1王顺金,张华.物理计算的保真与代数动力学算法——I.动力学系统的代数动力学解法与代数动力学算法.中国科学.2005,35(6):573~608
    2王顺金,张华.物理计算的保真与代数动力学算法——II.代数动力学算法与其他算法计算结果的比较.中国科学.2006,36(1):14~37
    3 X. Cen, J. Wang, J. Ying. Some Important Quantum Systems with An su ( N) Dynamical Structure .Phys. Lett. A.. 1999, 256 :329~332
    4王顺金,李福利,左维,揭泉林,韦联福.量子系统的动力学对称性研究.量子光学学报,2001,6(1):1~17
    5 Per Grove Thomsen, Zahari Zlatev. Development of A Data Assimilation Algorithm. Comput. Math. Appli..2008,55(10): 2381~2393
    6 J. Wang, H. Zhang. Algebraic Dynamics Solutions and Algebraic Dynamics Algorithm for Nonlinear Partial Differential Evolution Equations of Dynamical Systems. Sci. G-Phys. Mecha. Astr.. 2008, 51(6):577~590
    7全景才,朱燊权,丘衡.求非线性动态网络稳定周期解的一种数值算法.华南理工大学报.1995,23(8):68~75
    8 L. Tang, X. Wu. A Note on Periodic Solutions of Nonautonomous Second-order Systems. Proc. Amer. Math. Soc. .2004,132 (5):1295~1303
    9 X. Wu. Periodic Solutions for Nonautonomous Second-order Systems with Bounded Nonlinearity. J. Math. Anal. Appl. .1999,230 (1):135~141
    10唐美兰,刘心歌,刘心笔.一类差分方程周期解的存在性.山东理工大学学报.2005,19(1):56~60
    11罗娜,孙树林.有界约束非线性方程组的仿射内点法.河南科技大学理学院.2008,10:1~8
    12 F.Facchinei, S.Lucidi, L.Palagi. A Truncated Newton Algorithm for Large Scale Box Constrained Optimization . SIAM. JOptim.. 2002, 12 :1100~1125
    13 C.Kanzow, H.D.Qi,AQP. Free Constrained Newton-type Method for Variational Inequality Problems. Mathe.Prog..1999,85:81~106
    14刘星果.解非线性病态方程组的一种修正Newton法及其应用.湖南大学硕士论文.2003:15~35
    15 Qaisi M I, Abu-Hilal. Analysis of A Forced Strongly Nonlinear Two-degree-of-freedom System by Means of The Power-series Method. Shock. Vibr. Dig.. 2001,33:78~101
    16裘春航,吕和祥.非线性动力学方程的一种级数解.计算力学学报. 2001,18(1):1~7
    17 Oz h R. Non-linear Vibrations and Stability Analysis of Tensioned Pipes Conveying Fluid with Variable Velocity. Int. J. Non-linear. Mech.. 2001, 36 :1031~1039
    18 Li Li. Energy Method for Approximate Periodic Solution of Strongly Nonlinear Nonautonomous Systems. Nonlinear Dynamics. 1999, 19:101~120
    19 H. Chen, K. Chang. A Modified Lindstedt-Poincare Method for A Strongly Nonlinear System with Quadratic and Cubic Nonlinearities. Shock. Vibr.. 1996,3 (4):15~70
    20唐驾时.求强非线性系统次谐共振解的MLP方法.应用数学和力学.2000,10:110~120
    21周一峰.求强非线性动力系统周期解的MH法和EMH法.中南大学学报. 2004,01(30):1005~9792
    22裘春航,吕和祥.在哈密顿体系下分析非线性动力学问题.计算力学学报.2000,17(2):169~172
    23周一峰,唐进元,何旭辉.二阶强非线性非自治系统周期解的能量迭代法.振动与冲击.2006,25(3):193~197
    24 H.B. Thompson, C. Tisdell. Systems of Difference Equations Associated with Boundary Value Problems for Second Order Systems of Ordinary Differential Equations. J. Math. Anal. Appl.. 2000,248:333~347
    25 H. B. Thompson, C. Tisdell. Boundary Value Problems for Systems of Difference Equations Associated with Systems of Second-order Ordinary Differential Equations. Appl. Math. Lett.. 2002,15(6):761~766
    26 S. Li, P. Liu, M. Jia, L. Li, F. Li. Existence of Three Positive Solutions in Boundary Value Problems of A Class of Second Order Ordinary Differential Systems. J. Shu. Sci. Tech.. 2007,1:301~312
    27 Y. Liu, X. Liu, M. Jia. Multiplicity Results for Second Order m Point Boundary Value Problem. J. Math. Anal.Appl..2006, 324 :532~542
    28 H.B. Thompson. Systems of Differential Equations with Fully Nonlinear Boundary Conditions. Austd. Math. Sot.. 1997(56):197~208
    29 X. Cheng, C. Zhong. Existence of Positive Solutions for A Second Order Ordinary Differential System. J. Math. Anal. Appl.. 2005(312):14~23
    30 C.O. Alves, D.G. De Figueiredo. Nonvariational Elliptic Systems. Discrete Contin. Dyn. Syst.. 2002(8 ):289~302
    31 X. Cheng, C. Zhong. Existence of Positive Solutions for A Second-orderOrdinary Differential System. J. Math. Anal. Appl.. 2005,312:1~23
    32 D.R. Dunninger, H. Wang. Existence and Multiplicity of Positive Solutions for Elliptic Systems. Nonlinear Anal.. 1997,29:1051~1060
    33 D.R. Dunninger, H. Wang. Multiplicity of Positive Radial Solutions for An Elliptic System on An Annulus. Nonlinear Anal.. 2000,42: 803~811
    34 Y.H. Lee. Multiplicity of Positive Radial Solutions for Multiparameter Semilinear Elliptic Systems on An Annulus. J. Differential Equations. 2001,174:420~441
    35 R. Ma. Existence of Positive Radial Solutions for Elliptic Systems. J. Math. Anal. Appl.. 1996(201):375~386
    36 Joa? Marcos doó, Sebastián Lorca, Pedro Ubilla. Local Superlinearity for Elliptic Systems Involving Parameters. J. Differential Equations. 2005, 211: 312~320
    37 J.M. doó, S. Lorca, J. Sánchez, P. Ubilla. Positive Solutions for A Class of Multiparameter Ordinary Elliptic Systems. J. Math. Anal. Appl.. 2007,332(2):1249~1266
    38 Y. Liu. Multiple Positive Solutions of Nonlinear Singular Boundary Value Problem for Fourth-order Equations. Appl. Math. Lett.. 2004,17: 747~757
    39 R. Ma, C. Tisdell. Positive Solutions of Singular Sublinear Fourth-order Boundary Value Problems. Appl. Anal.. 2005,84:1199~1220
    40 H.B. Thompson, C. Tisdell. The Nonexistence of Spurious Solutions to Discrete Two-point Boundary Value Problems. Appl. Math. Lett.. 2003,16 (1): 79~84
    41 R. Gaines. Difference Equations Associated with Boundary Value Problems for Second Order Nonlinear Ordinary Differential Equations, SIAM J. Numer. Anal.. 1974,11: 411~434
    42廖健斌,余赞平.一类三阶微分方程的非线性三点边值问题.龙岩学院学报.2007,3(1):8~25
    43陈铁云.两点边值问题k次有限元解的渐近展式.湘潭师范学院学报,2000,21(6):31~36
    44 H.B. Thompson, C. Tisdell. Systems of Difference Equations Associated with Boundary Value Problems for Second Order Systems of Ordinary Differential Equations. J. Math. Anal. Appl.. 2000, 248: 333~347
    45 H.B. Thompson, C. Tisdell. Boundary Value Problems for Systems of Difference Equations Associated with Systems of Second-order Ordinary Differential Equations. Appl. Math. Lett.. 2002,15 (6): 761~766
    46 J. Chen, V. Kotta, H. Lu, D. Wang, D. Moldovan, D. Wolf. A Variational Formulation and a Double-grid Method for Meso-scale Modeling of Stressed Grain Growth in Polycrystalline Materials. Comput. Methods Appl. Mech. Engrg..2004,193:1277~1303
    47 Serguei Shimorin. Complete Nevanlinna-Pick Property of Dirichlet-Type Spaces. J. Fun. Anal.. 2002,191:276~296
    48 D.Alpay, C.Dubi. Carathéodory Fejér Interpolation in the Ball with Mixed Derivatives. Linear Alg. Appl.. 2004, 382:117~133
    49 Nour eddine ASKOUR, Ahmed INTISSAR et Zouha?r MOUAYN. Explicit Formulas for Reproducing Kernels of Generalized Bergmann Spaces. C.R.Acad.Sci.Paris.. 1997,325(1):707~712
    50 Jolanta K. Misiewicz. Infinite Divisibility of Sub-stable Processes. Part I. Geometry of Sub-spaces of LαSpace. Stochastic Processes and their Applications.1995,56:101~116
    51 A. Daniela, B. Vladimira, D. Aadb, R. Amesc, S. Cora. Hilbert Spaces Contractively Included in the Hardy Space of the Bidisk. Comptes Rendus del’Academie des Sciences Series I Mathematics. 1998,326(12):1365~1370
    52 A. Daniela, V. Victora. Fonctions de Carathéodory Surune Surface de Riemannet Espacesànoyau Reproduisant associésl. Comptes Rendus de l’Academie des Sciences Series I Mathematics. 2001,333(6):523~528
    53 A. Daniela, B.Vladimirb, T.Kaptanoglu. The Schur Algorithm and Reproducing Kernel Hilbert Spaces in the Ball. Linear Alge. Appl.. 2002,342(1-3):163~186
    54 A. Daniela, K. H. Turgayb. Integral Formulas for a Sub-Hardy Hilbert Space on the Ball with Complete Nevanlinna-Pick Reproducing Kernel. Comptes Rendusde l’Academie des Sciences Series I Mathematics. 2001,333(4):285~290
    55 S. Saitoh. Theory of Reproducing Kernels and its Applications. Pitman Research Notes in Mathematics Series, Longman Scientific & Technical. 1988,189
    56 D. W. Byun, S. Saitoh. Best Approximation in Reproducing Kernel Hilbert Spaces.Proc. of the 2th International Colloquium o Numerical Analysis. SP-Holland.1999,55~61
    57 S. Saitoh. Itegral Transforms,Reproducing Kernels and Their Applications. Pitma Research Notes in Mathematics Series, Addison Wesley Longman. 1997,369:121~130
    58 S. Saitoh. Linear Integro-differential Equations and the Theory of Reproducing Kerels. Volterra Equations and Applications. Gordon and Breach Science Publishers.2000,36:232~241
    59 T. Tada, S. Saitoh. A Method by Separation of Variables for the First Order Nonlinear Ordinary differetial Equations. Journal of Analysis and Applications.2004,2(1):51~63
    60 T. Matsuura, S. Saitoh. Numerical Inversion Formulas in the Wave Equation. J. Comput. Mathe. Optimi.. 2005,1(1):1~19
    61文松龙,金昌录,朴东哲.空间中有界线性算子的最佳逼近及其应用. 2000,(2):151~158
    62邓彩霞,濮安山,邓中兴.再生核空间中的微分算子样条插值.黑龙江大学自然科学学报. 2001,(4):10~13
    63 B. Wu, Q. Zhang. The Numerical Methods for Solving Euler System of Equations in Reproducing Kernel Space .J. Comp. Math.. 2001,19(3):327~336
    64吴勃英.再生核和小波理论及其应用若干问题研究.哈尔滨工业大学博士学位论文. 2001:19~25
    65 C. Li, M. Cui. How to Solve the Equation AuBu+Cu=f. Appl.Math.Comput.. 2002,19:285~302
    66 David K. Ruch, Patrick J.Van Fleet. Gibbs’phenomenon for Nonnegative Compactly Supported Scaling Vectors. J. Math. Anal. Appl.. 2005,304:370~382
    67 Steve Smale, D. Zhou. Shannon Sampling II: Connections to Learning Theory . Appl. Comput. Harmon. Anal. . 2005,133(2-3):643~653
    68 C. Gu. Penalized Likelihood Estimation:Convergence under Incorrect Model. Statistics & Probability Letters. 1998,36:359~364
    69 Henrik Hult. Approximating some Volterra Type Stochastic Integrals with Applications to Parameter Estimation. Stochastic Processes and their Applications.2003,105:456~470
    70 J. Romero, E. I. Plotkin, M. N. S. Swamy. Reproducing Kernels and the Use of Root Loci of Specific Functions in the Recovery of Signals from Nonuniform Samples. Signal Processing. 1996,49:510~521
    71 J. Xian, S. Luo, W. Lin. Weighted Sampling and Signal Reconstruction in Spline Subspaces. Signal Processing. 2006,86:331~340
    72 Massimiliano Pontil. A Note on Different Coveringnumbers in Learning Theory. J. Complexity. 2003,19:665~671
    73 Shahar Mendelson. Learnability in Hilbert Spaces with Reproducing Kernels. J. complexity. 2002,18:152~170
    74 S. Xiong,Wing Kam Liu, J. Cao, C.S. Li, J.M.C. Rodrigues, P.A.F. Martins. Simulation of Bulk Metal Forming Processes Using the Reproducing Kernel Particle Method. Comput. Stru.. 2005,83:574~587
    75 J. Chen, Cristina Maria Oliveira Lima Roque, C. Pan, Se’rgio Tonini Button. Analysis of Metal Forming Process Based on Meshless Method. J. Mate. Proc. Tech.. 1998,(80-81):642~646
    76 J. Chen, Sangpil Yoon, H. Wang, Wing Kam Liu. An Improved Reproducing Kernel Particle Method for Nearly Incompressible Finite Elasticity. Comput. Methods Appl. Mech. Engrg.. 2000,181:117~145
    77 J. Wang, K.M. Liew, M.J. Tan, S. Rajendran. Analysis of Rectangular Laminated Composite Plates via FSDT Meshless Method. Int. J. Mech. Sci.. 2002,44:1275~1293
    78 Thomas E. Voth, Mark A. Christon. Discretization Errors Associated with Reproducing Kernel Methods: One-dimensional Domains q. Comput. Methods Appl. Mech. Engrg.. 2001,190:2429~2446
    79 J. Zhou, X. Wang, Z. Zhang, L. Zhang. Explicit 3-D RKPM Shape Functions in terms of Kernel Function Moments for Accelerated Computation. Comput. Methods. Appl. Mech. Engrg.. 2005,194:1027~1035
    80 K. M. Liew, T. Y. Ng, X. Zhao, J. N. Reddy. Harmonic Reproducing Kernel Particle Method for Free Vibration Analysis of Rotating Cylindrical Shells. Comput. Methods. Appl. Mech. Engrg.. 2002,191:4141~4157
    81 H. Li, J. Cheng, T. Y. Nga, J. Chen, K. Y. Lama. A Meshless Hermite-Cloud Method for Nonlinear Fluid-structure Analysis of Near-bed Submarine Pipelines under Current. Engi. Stru.. 2004,26:531~542
    82 Jiun-Shyan Chen, X. Zhang, Ted Belytschko. An Implicit Gradient Model by a Reproducing Kernel Strain Regularization in Strain Localization Problems.Comput. Methods. Appl. Mech. Engrg.. 2004,193:2827~2844
    83 D. Alpay, C. Dubi. Carath′eodory Fej′er Interpolation in the Ball with Mixed Derivatives. Linear Alge. Appl.. 2004,382:117~133
    84 Daniel Alpay, Vladimir Bolotnikov, H.Turgay Kaptanˇoglu. The Schur Algorithm and Reproducing Kernel Hilbert Spaces in the Ball. Linear Alge. Appl.. 2002,342:163~186
    85 G. W. Wasilkowskia, H. W′ozniakowskib. Finite-order Weights Imply Tractability of Linear Multivariate Problems. J. Approx. Theory.2004,130:57~77
    86 Y. Xu. Representation of Reproducing Kernels and the Lebesgue Constants on the Ball. J. Approx. Theory. 2001,112:295~310
    87 G.E. Fasshauer. Dual Bases and Discrete Reproducing Kernels: a Unified Framework for RBF and MLS Approximation. Engineering Analysis with Boundary Elements.2005,29:313~325
    88 Ole Christensena, Thomas Strohmerb. The Finite Section Method and Problems in frame Theory. J Approx. Theory. 2005,133:221~237
    89崔明根,吴勃英.再生核空间数值分析.科学出版社, 2004:7~70
    90杨丽宏.非线性积分方程的求解.哈尔滨工业大学硕士学位论文.2003:13~15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700