用户名: 密码: 验证码:
不同倍性扁穗牛鞭草有性生殖差异及繁殖对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扁穗牛鞭草(Hemarthria compressa (L.f.) R. Br.)为禾本科黍亚科牛鞭草属多年生根茎型C4植物,分布广,野生种质资源丰富。由于生长速度快、适应性广、抗逆性强、管理方便,被广泛应用于长江流域及沿海各省畜牧业生产及生态建设中。扁穗牛鞭草具有强大的克隆繁殖能力,而野生或人工栽培条件下结实率很低。生产利用上,通常采用种茎扦插繁殖,栽植耗工费时,建植成本较高。种子的缺乏在很大程度限制了扁穗牛鞭草的推广应用,良种繁育工作也难以取得较大成果。为提高结实率以解决生产实际需要,已对扁穗牛鞭草繁殖生态特性进行了初步研究,但部分结论与前人研究报道矛盾,研究内容不够全面。
     本研究在明确扁穗牛鞭草种质资源染色体倍性基础匕,从个体水平探讨不同倍性扁穗牛鞭草幼穗分化与外部形态、环境的关系,查明花粉萌发与双受精作用是否存在生殖障碍;从种群水平,探讨不同倍性种群生长季内生殖分配情况及变化动态,通过克隆多样性鉴定及克隆结构分析,揭示种群生殖对策,为揭示扁穗牛鞭草天然种群结实率低的关键环节及其影响因素、解决生产实际需要,奠定理论基础。主要研究结论如下:
     1.供试40份材料中,发现7份四倍体(H014、H026、H028、H029、H052、H053、WG02),33份六倍体,染色体基数n=9。染色体非整倍性变异比例高低与结实率之间相关性不显著。六倍体扁穗牛鞭草自然结实率低,四倍体自然结实率较高。发现4份具结实潜力材料为H028、H029、H052、H053。
     2.扁穗牛鞭草幼穗分化为连续过程,划分为初生期、伸长期、结节期、小穗分化期、小花分化期和抽穗期6个时期。完全展开叶片数可作为判断营养生长向生殖生长转变的形态指标之一;当完全展开叶片数大于12片,营养生长逐渐向生殖生长转变;第一成熟叶的叶面积、第一茎节到茎尖距离与幼穗分化呈显著负相关;当“双0叶环”出现时,幼穗完成分化,进入抽穗期;适当升温是促进扁穗牛鞭草幼穗分化的有效手段,当≥10℃积温超过1400℃时,扁穗牛鞭草开始进行幼穗分化。
     3.扁穗牛鞭草大孢子发生与雌配子体发育过程不存在生殖障碍。四倍体材料花粉母细胞减数分裂过程基本正常,异常细胞率为3.41%,六倍体异常率较高(22.58%),异常表现主要是减数分裂Ⅱ后期胞质分裂不同步。四倍体材料绒毡层发育正常,而六倍体绒毡层在雄配子发育过程中解体较多,占15%左右。六倍体花粉在柱头上萌发后盘绕不伸入柱头,或伸入柱头后停止生长,未观察到精细胞释放。四倍体材料花粉可成功伸入子房并释放精细胞,完成双受精。扁穗牛鞭草从开花散粉到完成双受精总用时20h;开花后4-5h,花粉管进入助细胞释放精子;5~10h精细胞分别移向卵细胞和极核;7-14h精核分别与卵核、极核融合;14~20h形成初生胚乳。
     4.扁穗牛鞭草种群对有性生殖构件生物量分配比例极低,四倍体、六倍体种群分别为6.6士0.9%和2.2士1.3%。氮、磷、钙、硼与扁穗牛鞭草生殖器官发育及种子形成有积极作用。扁穗牛鞭草植株中钙、硼含量较低,是导致扁穗牛鞭草有性生殖能力弱原因之一。立地条件下,六倍体种群更倾向于无性繁殖,四倍体种群倾向于有性繁殖。
     5采用ISSR分子标记对六倍体扁穗牛鞭草种群克隆结构进行分析,种群中含有4种不同基因型分株,平均克隆大小(NC)为31.5,不同基因型比率为0.032,基因型分布的均匀度E为0.581。Simpson多样性指数仅为0.459。
     综上所述,扁穗牛鞭草种群繁殖对策为以无性克隆繁殖为主,并不放弃有性生殖。有性生殖过程在四倍体植株中表现正常,且可形成一定数量的种子,喷施微肥是可探索的提高结实率途径;六倍体扁穗牛鞭草具有一定的有性生殖能力,但想要获得较高结实率,还需要对更多六倍体种质资源染色体遗传构成、受精过程等进行深入分析。
Hemarthria compressa (L. f.) R. Br., a stoloniferous perennial C4grass, belongs to the tribe Andropogoneae, family Poaceae, which mainly distributed in tropical or subtropical regions. Owing to its high yield, regeneration ability, strong resistance, convenient management, it is widely used in the grassland animal husbandry production and ecological environment construction of Changjiang River rasin and coastal provinces. As a typical warm season grass, H. compressa has strong ability of vegetative propagation with strong rhizomes and stolons, but its sexual reproductive ability is poor, no seed under the wild or cultivated environments. The stolon cuttings were usually used in the fields, which take more time and money. So the lack of seed to a great extent limit the application and popularization of whipgrass. Due to the limitation of sexual reproductive ability, three H. compressa cultivars have been generated by the selection of clones in breeding, which makes genetic basis relatively single and further breeding work hardly achievable. For the sake of improving the seed setting rate to meet the practical need and break the existing pattern of cultivating, the studies on reproductive characteristics of whipgrass have been conducted, but the conclusions are very different from previous studies, which are not comprehensive and lack basic cytologic research.
     In this study, according to H. compressa germplasms chromosome ploidy basis, to investigate the relationship between the different times of spike differentiation and the external form, the environment from the level of the individual, to identify pollen germination and the double fertilization of reproductive disorder. At the population level, to explore the different times of population growth and changes of reproductive allocation. Through the analysis of clonal diversity and identification of clonal structure, reveal the reproductive strategy, revealing the H. compressa in natural populations of key rate is low and its influence to solve the actual production needs, and lay the theoretical foundation. The main conclusions are as follows:
     1. The40samples of H.compressa, included7samples of tetraploids (H014, H026, H028, H029, H052, H053, WG02) and33hexaploids, chromosome number is n=9.No correlation between chromosome aneuploidy variation ratio and seed setting rate is not significant. Natural seed setting rate of hexaploids are low, but higher for tetraploids. Find4materials with strong seed productive potential, that is H028, H029, H052, H053.
     2. H. compressa spike differentiation is a continuous process, divided into primary stage, elongation stage, nodular stage, spikelet, floret differentiation stage and booting stage,6stages. Fully expanded leaves can be used as one of the morphological index of vegetative growth to reproductive growth judgment. Fully expanded leaf number greater than12, the vegetative growth to reproductive growth changed gradually. The first mature leaves first stem to stem tip distance negatively associated with the differentiation of young spike. Appropriate temperature promote effective means of spike differentiation, when≥10℃accumulated temperature over1400℃, H. compressa began to spike differentiation.
     3. There is no reproductive barriers in the H. compressa development process of megasporogenesis and female gametophyte. Tetraploid material meiosis process was almost normal, abnormal cells was3.41%. Hexaploid abnormal rate was22.58%, mainly abnormal will happened in late of meiosis Ⅱ cytokinesis is not synchronized. Tapetum cells in meiosis of microspore mother cell division period ahead of degradation or disintegration, accounting for about15%of all. Hexaploid pollen tube germination, the pollen tube coiled round the style instead of into the papillary cells; Tetraploid materials pollen can successfully inserted into the ovary and the release of sperm cells to complete the double fertilization. It will take20h to finish double fertilization of H. compressa. After bloom4-5hours pollen tube entered the synergids and released sperm,5-10h sperm went to the egg;6-12h later, sperm attached to the egg nuclear envelope The sperm and egg nucleus mixed together and formed the primary endosperm were happened14-20h after bloom.
     4. There are remarkable differences in reproductive allocation of biomass between different ploidy of H. compressa,6.6±0.9%and2.2±1.3%, respectively. Nitrogen, phosphorus, calcium and boron has a positive role in development and seedformed of H. compressa. Calcium and boron content in plant is low. It is the limit factor of sexual reproduction. Stand conditions, hexaploid populations tend to asexual reproduction, tetraploid populations tend to sexual reproduction.
     5. Clonal diversity and clonal structure in small scale of hexaploid H. compressa populations were studied by ISSR techniques. There were four different genotypes in the population, the average clone size (NC) was31.5, the ratio of different genotypes was0.032; evenness of the distribution of genotypes was0.581; the mean Simpson's index was0.459. In certain extent, plant populations are produced by a few genotypes in a asexual way.
     In summary, H. compressa population reproductive strategies to give priority to asexual reproductive, but do not give up sexual reproduction. Sexual reproduction in tetraploid plants appear normal, and can form numbers of seeds, spraying micronutrient fertilizer is an exploring ways to raise seed setting. Hexaploid plant has a certain ability to sexual reproduction, but want to improve the seed setting rate, need more hexaploid germplasm resources of chromosome genetic constitution, fertilization and so on in-depth analysis.
引文
[1]韩建国.实用牧草种子学[M].北京:中国农业大学出版社,1997:47-49.
    [2]李扬汉.禾本科作物的形态解剖[M].上海:上海科学技术出版社,1979.
    [3]云锦凤,米福贵,杜建才.冰草茎生长锥分化、幼穗形成及小孢子发育[J].中国草地,1989,(5):30-35.
    [4]Martin M L, Field R J. A development scale for perennial ryegrass [C].In Proceedings of the ⅩⅦ International Grassland Congress,1993:1679-1680.
    [5]章崇玲,梁祖铎.多花黑麦草幼穗分化进程对种子生产形状的影响[J].种子,1997,(5):21-24.
    [6]毛培胜,韩建国,刘刚.老芒麦幼穗的分化过程[J].中国草地,2004,26(5):15-20.
    [7]程晓丽,刘建秀.狗牙根花序发育过程的形态学观察[J].植物资源与环境学报,2007,16(2):40-43.
    [8]Tischle C R, Burson B L. Evaluating different bahiagrass cytotypes for heat tolerance and leaf epicuticular wax content [J]. Euphytica,1995,84:229-235.
    [9]Nielsen E L.Analysis of variation in Panicum virgatum [J]. Agric. Res.,1944,69:327-353.
    [10]Huff D R,Wu L. Distribution and inheritance of inconstant sex forms in natural populations of dioecious buffalograss (Buchloe dacyloides(Nutt.)Engelm) [J]. American Journal of Botany,1992, 79(2):207-215.
    [11]Huff D R. Sex ratios and inheritance of anther and stigma color in diploid buffalograss [J]. Crop Sci.,1991,31:328-332.
    [12]Johnson P G, Riordan T P, Arumuganatjan K. Ploidy level determination in buffalograss clones and populations [J]. Crop Science,1998,38(2):478-482.
    [13]彭海,张静,吴先军.植物基因表达中的倍性效应:研究进展、问题与展望[J].中国科学,2008,38(1):1-7.
    [14]马国华,赵南先,胡晓颖,等.雀稗属花粉形态及其多萌发孔现像[J].热带亚热带植物学报,2001,9(3):201-204.
    [15]黄群策.多倍体水稻及其潜存价值[J].杂交水稻,2001(1):1-3.
    [16]李贵全,刘克治.同源四倍体玉米的细胞遗传学研究[J].山西农业大学学报,1993,14(3):347-350.
    [17]常金华,罗耀武.高粱同源四倍体与二倍体受精前后生殖特性的比较[J].中国农学通报,2001,17(1):11-13.
    [18]桂琴,徐延浩,王建波.多倍体植物中基因表达模式的变化[J].武汉植物学研究,2007,25(2):198-202.
    [19]Lowell E M, Byron L B, Lynn E S. Warm-season (C4) Grasses [M]. Madison, Wisconsin,2004.
    [20]马国华,赵南先.雀稗属细胞学和繁殖生物学研究[J].亚热带植物科学,2003,32(3):5-9.
    [21]彭雄波,孙蒙祥.被子植物受精作用的分子和细胞生物学机制[J].植物学通报,2007,24(3):355-371.
    [22]Edlund A F, Swanson R, Preuss D. Pollen and stigma structure and function:the role of diversity in pollination [J]. Plant Cell,2004,16(Suppl):S84-S97.
    [23]Huck N, Moore J M, Federer M, Grossniklaus U. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception [J]. Development 2003,130:2149-2159.
    [24]Johnson M A, Preuss D. Plotting a course:multiple signals guide pollen tubes to their targets [J].Dev Cell,2002,2:273-281.
    [25]Marton M L, Cordts S, Broadhvest J, Dresselhaus T. Micropylar pollen tube guidance by egg apparatus 1 of maize[J]. Science,2005,307:573-576.
    [26]Rotman N, Rozier F,Boavida L, Dumas C, Berger F, Faure J E. Female control of male gamete delivery during fertilization in Arabidopsis thafiana [J]. Curr Biol,2003,13:432-436.
    [27]Sanchez A M,Bosch M, Bots M, Nieuwland J, Feron R, Mariani C. Pistil factors controlling pollination [J]. Plant Cell,2004,16(Suppl):S98-S106.
    [28]Sun M X. Kranz E, Moscatelli A, Yang H Y, Loerz H, Cresti M. A reliable protocol for direct detection of lectin binding sites on the plasma membrane of a single living sperm cell in maize [J]. Sex Plant Reprod,2002,15:53-55.
    [29]Yang Y, Qiu Y, Xie C. Tian H, Zhang Z, Russell S. Isolation of two populations of sperm cells and microelectrophoresis of pairs of sperm cells from pollen tubes of tobacco (Nicotiana tabacum) [J].Sex Plant Reprod,2005,18:47-53.
    [30]Chen S H, Liao J P, Kuang A X, Tian H Q. Isolation of two populations of sperm cells from the pollen tube of Torenia fournieri [J]. Plant Cell Rep,2006,25:1138-1142.
    [31]Yang BC, Thorogood D, Armstead I, et al. How far are we from unraveling self-incompatibility in grasses [J]. New Phytologist,2008,179:740-753.
    [32]Yang BC. Investigations of self-incompatibility (SI) in perennial ryegrass (Lolium perenne L.) [D]. The university of Birmingham,2009.
    [33]Shinozuka H, Cogan NOI, Smith KF, et al. Fine-scale comparative genetic and physical mapping supports map-based cloning strategies for the self-incompatibility loci of perennial ryegrass (Lolium perenne L.) [J]. Plant mol biol,2010,(72):343-355.
    [34]Zhang WD, Liu GS, Chen SY, et al. Molecular cloning, expression and activity assay of Thioredoxin h-A gene related to self-incompatibility in Leymus chinensis [J]. Acta agronomica sinica, 2004,30(12):1192-1198.
    [35]Dresselhaus T, Lausser A, Marton ML. Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses [J]. Ann bot,2011,108(4):727-737.
    [36]Kliwer I, Dresselhaus T. Establishment of the male germline and sperm cell movement during pollen germination and tube growth in maize [J]. Plant signal behave,2010,5(7):885-889.
    [37]Lausser A, Dresselhaus T. Sporophytic control of pollen tube growth and guidance in grass [J]. Biochemical society transactions,2010,38:631-634.
    [38]Amien S, Kliwer I, Marton ML, et al. Defensin-like ZmES4 mediates pollen tube burst in maize via opening of the potassium channel KZM1 [J]. Plos biology,2010,8(6):1-13.
    [39]Marton ML, Cordts S, Broadhvest J, et al. Micropylar pollen tube guidance by egg apparatus 1 of maize [J]. Science,2005,307:573-576.
    [40]陈艳红,杜鞠萍,刘建胜,等.DUF784基因在花粉管导向中的功能分析[J].中国生物化学与分子生物学报,2010,26(10):903-910.
    [41]Huck N, Moore JM, Federer M, et al. The Arabidopsis mutant feronia disrupts the female gametophytic control of pollen tube reception [J]. Development,2003,130:2149-2159.
    [42]Rotman N, Rozier F, Boavida L, et al. Female control of male gamete delivery during fertilization in Arabidopsis thaliana [J]. Curr Biol,2003,13:432-436.
    [43]Dresselhaus T, Amien S, Marton M, et al. Transparent leaf areal encodes a secreted proteolipid required for anther maturation, morphogenesis, and differentiation during leaf development in maize [J]. Plant Cell,2005,17:730-745.
    [44]Engel ML, HolmesDavis R, McCormick S. Identification of male gamete promoters in Arabidopsis [J]. Plant Physiol,2005,138:2124-2133.
    [45]Yang H, Kaur N, Kiriakopolos S, et al. EST generation and analyses towards identifying female gametophyte-specific genes in Zea mays L. [J]. Planta,2006,224:1004-1014.
    [46]Kaufmann K, Smaczniak C, Vrioes S, et al. Proteomics insights into plant signaling and development [J]. Proteomics,2011,11(4):744-755.
    [47]Diana D, Katrin W, Muhammad S, et al. Transcriptomic and proteomic analyses of pericycle cells of the maize primary root [J]. Plant Physiology,2007,145:575-588.
    [48]陈蕊红,叶景秀,张改生,等.小麦质核互作型雄性不育系及其保持系花药差异蛋白质组学分析[J].生物化学与生物物理进展,2009,36(4):431-440.
    [49]刘怀华,王莉雯,刘旭,等.玉米异交不亲和基因Gal-S的蛋白质组分析[J].作物学报,2011,37(7):1212-1218.
    [50]Kakeda K, Ibuki T, Suzuki J, et al. Molecular and genetic characterization of the S locus in Hordeum bulbosum L., a wild self-incompatible species related to cultivated barley [J]. Mol genet genomics,2008,280:509-519.
    [51]Shahpiri A, Svensson B, Finnie C. From proteomics to structural studies of cytosolic/mitochondrial-type thioredoxin systems in barley seeds [J]. Molecular plant,2009,2(3):378-389.
    [52]Kumar A, Mcclure B. Pollen-pistil interactions and the endomembrane system [J]. Journal of experimental botany,2010,61(7):2001-2013.
    [53]Dai SJ, Wang T, Yan XF, et al. Proteomics of pollen development and germination [J]. Journal of proteome research,2007,6(12):4556-4563.
    [54]Zhu YH, Zhao PF, Wu XL, et al. Proteomic identification of differentially expressed proteins in mature and germinated maize pollen [J]. Acta physiol plant,2011,33:1467-1474.
    [55]Eckert C G, Barrett S C H. Clonal reproduction and pattems of genotypic diversity in decodon verticillatus[J]. American Journal of Botany,1993,80:1175-1185.
    [56]Kalisz S, Wardel G M. Life history variation in campanula Americana:Pollination differentiation [J]. American Journal of Botany,1994,81:521-527.
    [57]Lalonde R, Roitberg B D. Mating system, life-history, and reproduction in Canada this He (Cirsium arvense)[J]. American Journal of Botany,1994,81:21-28.
    [58]Dole J A. Reproductive assurance mechanisms in three taxa of the Mimulus guttatus complex [J]. American Journal of Botany,1992,79:650-659.
    [59]刘公社,刘杰,齐冬梅.羊草有性繁殖相关性状的变异和相关分析[J].草业学报,2003,12(2):20-24.
    [60]王仁忠,祖元刚.羊草种群生物量和能量生殖分配的研究[J].植物研究,2001,21(2):299-303.
    [61]李金花,潘浩文,王刚.草地植物种群繁殖对策研究[J].西北植物学报,2004,24(2)352-355.
    [62]刑福,郭继勋,王珂.狼毒种群生殖构件数量特征与生殖配置研究[J].草业学报,2005,14(4):111-115.
    [63]郭力华,杨允菲,李建东.松嫩平原不同生境寸草苔种群生殖分株的数量特征及生殖分配动态 [J].草业学报,2005,14(2):63-68.
    [64]宋会兴,彭远英.缙云山2种禾草种群生殖配置的比较[J].植物资源与环境学报,2005,14(3):12-15.
    [65]Wilson A M, Thompson K A. A comparative study of reproductive allocation in 40 British grasses [J]. Functional Ecol.,1989,3(3):297-320.
    [66]Schat H. Life history and plant architecture:size-dependent reproductive allocation in annual and biennial Centauea species [J]. Acta Botanica Nearlandica,1989,38(2):183-201.
    [67]Hartnett D C. Size-dependent allocation to sexual and vegetative reproduction in four clonal composites [J]. Oecologia,1990,84(2):254-259.
    [68]阿里穆斯,刘颖茹,杨持.内蒙古典型草原常见种营养元素生殖分配动态规律研究[J].内蒙古大学学报:自然科学版,2001,32(6):649-653.
    [69]祝廷成.羊草生物生态学[M].吉林:吉林科学技术出版社,2004:44-46.
    [70]车代弟,樊金萍,王金刚.东方百合花粉萌发培养基组分的优化[.J].植物研究,2003,23(2):178-181.
    [71]李旭新,张艳青,周如久.硼及植物生长调节物质对阿月浑子花粉萌发和花粉管生长的影响[J].河北农业大学学报,2009,32(3):63-66.
    [72]汤红明,徐冬青,徐根娣,刘鹏.植物花粉萌发的研究进展[J].安徽农业科学,2006,34(24):6436-6438,6440.
    [73]曾丽霞,艾应伟.硼对花粉生物化学功能影响的研究进展[J].中国土壤与肥料,2008,3:9-11.
    [74]Kudoh H, Dhibaike H, Whish D F, et al.. Genet structure and determinants of clonal structure in a temperate deciduous woodland herb, Uvularia perfoloata [J]. Journd of Ecology,1999,87:244-257.
    [75]Charpentier A. Consequences of clonal growth for plant mating [J]. Evolutionary Ecology,2002, 15:521-530.
    [76]Eekert C G, Dorken M E, Mitchel SA. Loss of sex in clonal populations of a flowering plant, Decodon verticillatus (Lythraceae) [J]. Evolution,1999,53:1079-1092.
    [77]Prati D, Schmid B. Genetic diferentiation of life-history traits within populatiom of the clonal plant Ranunculus reptans [J]. Oikos,2000,90:442-456.
    [78]Brochmann C, Hapnes A. Reproductive strategies in some arctic Saxifraga (Saxifragaceae), with emphasis on the narrow endemic S. svalbardensis and its parental species [J]. Botanical Journal of the Linnean Society,2001,137:31-49.
    [79]Lopez-Ahnama J C, Pannell J R, Gil L. Female sterility in Ulmus minor (Uhnaceae):a hypothesis invoking the cost of sex in a clonal plant [J]. American Journal of Botany,2003,90:603-609.
    [80]McLetchie D N, Garcia-Ramos G, Crowley P H. The lost ratio dynamics:a model for the dioecious liverwort Marchantia inflexa [J]. Evolutionary Ecology,2002,15:231-254.
    [81]Dorken M E, Eckert C G. Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae) [J]. Journal of Ecology,2001,89:339-350.
    [82]张大勇.植物生活史进化与繁殖生态学[M].北京:科学出版社,2004.97-148.
    [83]张玉芬,张大勇.克隆植物的无性与有性繁殖对策[J].植物生态学报,2006,30(1):174-183.
    [84]张大勇,姜新华.植物交配系统的进化、资源分配对策与遗传多样性[J].植物生态学报,2001,25(2):130-143.
    [85]何田华,葛颂.植物种群交配系统亲本分析及基因流动研究[J].植物生态学报,2001,25(2):144-154.
    [86]白伟宁,张大勇.植物生活史进化及繁殖生态学[M].北京:科学出版社,2004:284-301.
    [87]Vange V. Breeding system and inbreeding depression in the clonal plant species Knautia arvensis (Dipsacaceae):implications for survival in abandoned grassland [J]. Biological Conservation, 2002,108:59-67.
    [88]Charpentier A. Consequences of clonal growth for plant mating [J]. Evolutionary Ecology, 2002,15:521-530.
    [89]Iwasa Y. Evolution of the selfing rate and resource allocation models [J]. Plant Species Biology,1990,5:19-31.
    [90]Malik M R, Wang F, Dirpaul J M, et al. Transcript profiling and identification of molecular markers for early microspore embryogenesis in Brassica napus [J]. Plant Physiol,2007,144:134-154.
    [91]杨春华,张新全,李向林,等.牛鞭草资源农艺性状和育种研究[J].四川草原,2004,(9):8-11.
    [92]徐胜,张新全,吴彦奇.牛鞭草研究与应用概况[J].中国草地,2001,23(4):53-58.
    [93]杨春华,张新全,李向林,等.牛鞭草属种质资源及育种研究[J].草业学报,2004,13(2):7-12.
    [94]张键,黄勇富,张家骅.扁穗牛鞭草生产及利用的现状和潜力[J].畜牧市场,2003,(5):17-19.
    [95]何玮,张新全,杨春华,等.牛鞭草种质资源在中国的分布及其人工草地建植技术[J].四川草原,2003,(5):42-44.
    [96]刘金平,张新全,游明鸿,等.草坪型扁穗牛鞭草种质资源的坪用价值初步评价[J].植物遗传资源学报,2006,7(3):301-305.
    [97]吴彦奇,杜逸.扁穗牛鞭草几个有性生殖特性的研究[J].四川农业大学学报,2000,3:262-264.
    [98]陈灵鸷.‘广益’扁穗牛鞭草生殖生态特性研究[D].四川农业大学,2009.
    [99]傅鲜桃,杨春华,陈灵鸷,等.‘广益’扁穗牛鞭草花粉特性及结实性研究[J].草业学 报,2008,17(2):61-67.
    [100]刘金平,张新全,游明鸿,等.西南地区扁穗牛鞭草有性生殖多样性研究[J].种子,2006,25(8):17-21.
    [101]Olorode O. Chromosome counts in some Nigcrian grasses [J]. Cytologia,1974,39(3):429-435.
    [102]Schank S C. Chromosome numbers in eleven new Hemarthria (limpograss) introductions [J]. Crop Science,1972,12(4):550-551.
    [103]Quesenberry K H, Oakes A J, and Jessop D S. Cytological and geographical characterization of Hemarthria [J]. Euphytica 31:409-416.
    [104]De Wet J M. Chromosome number of a few South African grasses [J]. Cytologia,1954,19:97-103.
    [105]Tedesco S B, Battistin A, Valls J F M. Cytogenetics of six natural and introduced genotypes of Hemarthria altissima (Poiret) Stapf & Hubbard (Gramineae) [J]. Ciencia Rural,1998,28(2):241-244.
    [106]Mehra P N, Sharma M L. Cytological studies in some central and eastern Himalayan grasses I The Andropogoneae [J]. Cytologia,1975,40(1):61-74.
    [107]Wilms H.J., Carmichael J.W., Schank S.C.Cytological and Morphological Investigation on the Grass Hemarthria altissima (Poir) Stapfet C. E. Hubb. Crop Science,1970,10:309-312.
    [108]季淑丽,张凤兰,郝丽珍,等.沙芥属植物染色体数及核型分析[J].西北植物学报,2011,10(5):56-61.
    [109]何凌斐,陈灵鸷,杨春华,等.扁穗牛鞭草染色体数目及核型分析[J].中国草地学报,2011,(7):47-52.
    [110]马克群,刘建秀,胡化广,等.狗牙根属部分优良选系染色体倍性的初步研究[J].草业科学,2006,23(4):82-87.
    [111]马克群.狗牙根(Cynondon dactylon)和非洲狗牙根(C. transvaalensis)杂交后代的鉴定与评价[D].南京农业大学硕士论文,2006.
    [112]范彦,李芳,张新全,马啸.扁穗牛鞭草种质遗传多样性的ISSR分析[J].草业学报,2007,16(4):76-81.
    [113]Stebbins G L. Chromosomal evolution in higher plants [M].London:Eswarad Amold,1971.
    [114]朱潋.植物染色体及染色体技术[M].北京:科学出版社,1982:43-83.
    [115]Jones, C.E., and R.J. Little. Handbook of experimental pollination biology [M]. Van Nostrand Reinhold. New York.1983.
    [116]Willson, M.F. Plant reproductive ecology [M].John Wiley & Sons, Inc. New York.1983.
    [117]Davis G L. Systematic embryology of the Angiosperms[M]. New York:John Wiley and Sons, 1996,130-132.
    [118]Brink R. A., Cooper D. C.. The endosperm in seed development [J]. Botanical Review,1983,13:423-541.
    [119]Ehlenfeldt M. K., Ortiz R.. Evidence on the nature and origins of endosperm dosage requirements in solanum and other Angiosperm genera[J].Sex Plant Reprod,1995,8:189-196.
    [120]Zhang C, Guinel F C, Moffatt B A. A comparative ultrastructural study of pollen development in Arabidopsis thaliana ecotype Columbia and male-sterile aptI-3 [J]. Protoplasma,2002,219:59-71.
    [121]谢潮添,魏冬梅,田惠桥.高等植物雄性不育的细胞生物学研究进展[J].植物生理与分子生物学学报,2006,32(1):17-23.
    [122]康向阳.毛白杨花粉败育机制的研究[J].林业科学,2001,37(3):35-40.
    [123]Suzuki K, Takeda H, Tsukaguchi T. Ultra structural study on degeneration of tapetum in anther of snap bean (Phasedus vulgaris L.) under heat stress [J]. Sex Plant Reproductive,2001 13:293-299.
    [124]程杏安,何金华,刘向东,等.不同倍性水稻亚种间杂种小孢子发生的细胞学观察[J].西北植物学报,2009,29(7):1320-1327.
    [125]孙天恩,叶梦炜,王明全,等.三种细胞质雄性不育水稻小孢子发育过程的研究[J].武汉大学学报(自然科学版),1996,42(6):733-739.
    [126]胡适宜.植物胚胎学实验方法(五).检查花粉在柱头上萌发和花粉管在花拄中生长的制片法[J].植物学通报,1994,]1,58-60.
    [127]申家恒,李慧蓉,车玉芬,等.玉米双受精过程的细胞学观察[J].植物学报,1987,29(5):480-485.
    [128]孙桂贞,屠骊璩.羊草的双受精作用与胚胎发育[J].内蘩古大学学报(自然辩学版),1990,20,4.
    [129]申家恒,王谱,李慧蓉,等.春小麦受精过程及其各阶段持续时间的研究[J].作物学报,1983,9,29-32.
    [130]丁建庭,申家恒,等.水稻双受精过程的细胞形态学及时间进程的观察[J].植物学报,44(4):473-483.
    [131]刘善江,赵丽萍.植株中全硼测定方法的研究[J].华北农学报,2007,22(2):169-170.
    [132]高强.大青山四种根茎禾草种群生殖分配的研究[D].内蒙古农业大学硕士论文,2008.
    [133]班勇.植物生活史对策的进化[J].生态学杂志.1995,14(3):33-39.
    [134]Anderson M A, Cornish E C, Mau S L,et al. Cloning of cDNA for a style glycoprotein associated with expression of self-incompatibility in Nicotiana alata. Nature,1986,321:38-44.
    [135]Hill M. J.. A study of seed production in 'Grasslands Ruanui'perennial ryegrass (Lolium perenne L.),'Grasslands Kahu' timothy (Phleum pratense L.) and prairiegrass (Bromus unioloides H. B.K.) [D]. Dissmassey University, Palmerston North, NZ.1971.
    [136]黄琳凯,张新全,李芳马,等.扁穗牛鞭草的克隆多样性与克隆结构[A].中国草学会牧草育种专业委员会,2007.
    [137]夏立群,李建强,李伟.论克隆植物的遗传多样性[M].植物学通报,2002,19(4):425-431.
    [138]Balloux F, Lehmann L, De Meeus T. The population genetics of clonal and partially clonal diploids [J]. Genetics,2003,164:1635-1644.
    [139]Bengtsson B O. Genetic variation in organisms with sexual and asexual reproduction [J].Journal of Evolutionary Biology,2003,16:189-199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700