用户名: 密码: 验证码:
天线雷达散射截面分析与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前复杂电磁环境下的战争中,飞行器等载体目标的隐身性能直接决定了其战场生存概率及突防能力。随着隐身技术的快速发展,载体目标的雷达散射截面(RCS)已能得到较好的控制。而对于这些低可见平台,天线的散射特性往往成为制约整个系统电磁隐身性能的瓶颈。因此,合理地缓解天线的辐射指标与散射要求之间的矛盾,有效地控制天线的RCS对于目标的隐身设计具有重要的指导意义。本论文密切结合“十一五”国防科技预研重点项目研究了天线RCS的分析及控制方法,所取得的成果可概括为:
     1.研究了天线的散射机理,给出了几种不同形式天线的结构模式项散射与天线模式项散射的计算结果。为了便于进一步探索天线RCS的控制方法,文中讨论了矩量法(MoM),并通过矩量法完成了天线辐射参数和散射参数,尤其是天线模式项散射的计算。同时,为克服矩量法计算时存储量过大的问题,又研究了自适应积分(AIM)方法,并给出了电大目标的RCS计算结果及相关分析。
     2.由于对天线RCS的控制实际上是对各种相互矛盾的要求之间的一个折衷,因此,本文将优化算法引入到天线的散射控制与低RCS天线设计中,并通过加权求和等形式的目标函数的构造来平衡天线的高辐射性能与低散射效果这一组矛盾,从而在实现天线RCS减缩的同时有效地保证了天线的基本工作性能。
     3.在优化过程中,研究了差分进化(DE)算法和粒子群优化(PSO)算法,并将其用于天线RCS的优化控制。为提高阵列天线的优化设计效率,本文又研究了空间映射(SM)方法,将隐式空间映射(ISM)策略与差分进化算法相结合,建立起能够快速计算的粗糙模型与能够精确计算的精细模型。之后,通过参数抽取过程找出两模型的映射关系,并采用DE优化这一关系,使粗糙模型不断逼近精细模型,最终实现优化速度与计算精度的共同提升。
     4.通过分析入射波照射下微带天线的表面电流,找出了微带天线RCS峰值的形成原因。发现微带天线的RCS峰值谐振频率与天线表面电流的谐振模式密切相关,这为微带天线的RCS减缩提供了依据。因此,本文通过优化思想找出能够抑制散射谐振模式而不影响天线工作模式的最佳开槽位置,通过开槽的手段截断或削弱非辐射模式下的谐振电流,从而获得了较好的RCS减缩效果。
     5.对于频率选择表面(FSS)进行了研究,并根据分形结构独特的空间填充特性,设计出一款小尺寸的六边环形带阻频率选择表面结构。该FSS采用等边三角形排列,具有良好的角度稳定性。将这一频率选择表面结构用于天线的反射板,在天线工作频带内,该结构表现出带阻特性,作用类似于金属板;而在天线工作频带外,该结构表现出带通特性,使大部分入射能量透过天线,被天线背后的吸波材料吸收,从而保证了天线的辐射要求,实现了天线的RCS减缩。
     6.将阵列综合思想引入到阵列天线的RCS控制中,通过对阵列各单元空间位置的优化,实现了对阵列天线结构模式项RCS的控制;通过在天线端口与馈电端口接入一组不等长的延时传输线,人为地增大阵列辐射与天线模式项散射两种状态下的相位差异,并优化这组相差,从而实现对阵列天线的天线模式项散射的控制。
     7.对于HFSS软件进行了二次开发,通过Matlab软件编写了天线辐射、散射的VB脚本程序。之后,使用优化算法启动这些VB脚本模块,并通过调用HFSS来计算待优化的天线候选模型。最终,通过该方法设计了一副具有双阻带特性的UWB天线以及一副具有低RCS效果的4×2微带共形阵列天线。
In the modern war with complicated electromagnetic environment, the stealth performance of the weapon target (such as aircraft) directly determines its battlefield survival probability and penetration ability. With the rapid development of stealth technology, the radar cross section (RCS) of a target has been better controlled. For these low observable platforms, the RCS from an antenna often becomes a bottleneck, which restricts the stealth effect of the whole system. Therefore, effectively control the antenna RCS and reasonably relieve the contradictions between the radiation demands and the scattering requirements have great guiding significance for the stealth design of a target. Being associated with the research project, this dissertation is mainly concerned with the antenna RCS analysis and control methods, the author’s major contributions are outlined as follows:
     1. The antenna scattering mechanism is analyzed, and the results of the structural mode and the antenna mode scattering from different antennas are given. To achieve the antenna RCS control, the method of moments (MoM) has been studied. The antenna radiation and scattering parameters, especially the result of the antenna mode scattering are calculated by MoM. Meanwhile, in order to overcome the problem of MoM excessive storage, the adaptive integration method (AIM) is discussed, and the RCS calculation results and relevant analyses of the electrically large objects are presented.
     2. The antenna RCS reduction is virtually a compromise process among various conflicting requirements. Therefore, this dissertation adopts optimization algorithms to control the antenna scattering and achieve the antenna design of low RCS. The contradiction between the high radiation performance and low scattering effect is better balance through the design of the objective function.
     3. In the optimization process, the differential evolution (DE) algorithm and particle swarm optimization (PSO) algorithm are investigated and used to control the antenna RCS. To improve the design efficiency of the antenna array, this dissertation discusses the space mapping (SM) method, and combines the implicit space mapping (ISM) strategy with differential evolution algorithm. In this process, the coarse model with high speed and fine model with high accuracy are established. The parameter extraction course is designed to find the mapping relationship between these two models. This mapping relationship is optimized by DE, so that the coarse model can continuously approach the fine model. At last, the optimization speed and calculation accuracy are improved together.
     4. The forming reason of RCS peak from the microstrip antenna is analyzed through the discussion of the surface current excitated by incident wave. It shows that the RCS resonance peak of a microstrip antenna is closely related to the resonance mode of antenna surface current, which provides a basis for RCS reduction of a microstrip antenna. Therefore, through the optimization method, this dissertation finds the best slot locations, in which the scattering resonance modes are restrained but the antenna operation mode is almost unchanged. The method of slotting can cut off or weaken the resonance current of non-radiation mode, thus a batter RCS reduction effect is obtained.
     5. The frequency selective surface (FSS) has been studied, and a small size bandstop FSS with regular hexagon structure is proposed. This FSS is designed according to the space-filling characteristics of fractal structure. The FSS array adopts the equilateral triangle arrangement and has good angle stability. Using this FSS as antenna reflector, in the antenna operating band, this structure performs the bandstop characteristic and works as a metal plate. While outside the operating band, this design shows the bandpass characteristic, so that most of the incident energy passes through the antenna and is absorbed by the absorbing material behind the antenna. Therefore, the antenna radiation is ensured and the RCS is reduced.
     6. The application of array synthesis method in antenna RCS control is proposed. By optimizing the spatial location of array element, the structure mode scattering from array antenna is restrained. By loading a group of delay lines with different length between the array elements and the feed network ports, the phase difference between the array radiation and the antenna mode scattering can be amplified artificially. Optimizing this phase difference, the antenna mode RCS from array antenna can be controlled.
     7. The secondary development of HFSS software is proposed. The VB scripts for antenna radiation and scattering problems are compiled by Matlab software. And then, these VB modules are operated by optimization algorithm. The candidate antenna models to be optimized are calculated by calling HFSS software. By this method, finally, a UWB antenna with dual band-rejected characteristic and a 4×2 microstrip conformal array antenna with low RCS effect are successfully designed.
引文
[1]阮颖铮.雷达截面与隐身技术.北京:国防工业出版社, 1998.
    [2] E. F. Knott, J. F. Shaeffer, M. T. Tuley. Radar Cross Section. 2nd edition, Raleigh: SciTech Pub., NC, 2004.
    [3] W. B. Gordon. Far-Field approximation to the Kirchhoff-Helmhotz representation of the scattered field. IEEE Trans. Antennas Propagat., 1975, 23(7): 590-592.
    [4] J. B. Keller. Geometrical theory of diffraction. J. Opt. Soc. Am., vol.52, pp.116-130, 1962.
    [5] J. Pérez, M. F. Cátedra. Application of Physical Optics to the RCS Computation of Bodies Modeled with NURBS Surfaces. IEEE Trans. Antennas Propagat., 1994, 42(10): 1404-1411.
    [6]汪茂光.几何绕射理论.西安:西安电子科技大学出版社, 1994.
    [7] R. G. Kouyoumjian, P. H. Pathak. A uniform geometrical theory of diffraction for an edge in a perfectly. Proc. IEEE, 1974, 62(3):1448-1461.
    [8] H. Ling, R. Chou. Shooting and bouncing rays: calculating the RCS of an arbitrarily shaped cavity. IEEE Trans. Antennas Propagat. 1989, 37(2). 194-205.
    [9] J. Jin. The Finite Element Method in Electromagnetics. 2nd edition, NewYork: John Wiley&Sons inc., 2002.
    [10] A. Taflove, S. Hagness. Computational Electrodynamics: The Finite-Difference Time-Domain Method. 2nd edition, Boston, MA: Artech House, 2000.
    [11]哈林登著,王尔杰译.计算电磁学的矩量法.北京:国防工业出版社, 1981.
    [12] S. M. Rao, D. R. Wilton, A. W. Glisson. Electromagnetic scattering by surfaces of arbitrary shape. IEEE Trans. Antennas Propagat. 1982, 30(3): 409-418.
    [13] U. Jakobous, F. M. Landstorfer. Improved PO-MM hybrid formulation for scattering from three dimensional perfectly conducting bodies of arbitrary shape. IEEE Trans. Antennas Propagat. 1995, 43(2): 162-169.
    [14] P. F. Zhang, S. X. Gong, S. F. Zhao. Fast hybrid FEM/CRE-UTD method to compute the radiation pattern of antennas on large carriers. Progress In Electromagnetics Research, vol.89, 75-84, 2009.
    [15] V. Rokhlin. Rapid Solution of Integral Equations of Classical Potential Theory. J. Comput. Phys. 1985, 60. 187-207.
    [16] L. Greengard, V. Rokhlin. A Fast Algorithm for Particle Simulations. J. Comput.Phys. 1987, Dec., 73. 325-348.
    [17] R. Coifman, V. Rokhlin, S. Wandzura. The Fast Multipole Method for the Wave Equation: A Pedestrian Prescription. IEEE Trans. Antennas Propagat. Mag. 1993, 35(3): 7-12.
    [18] C. Cheng, W. C. Chew. A Multilevel Algorithm for Solving Boundary Integral Equation. Microwave Opt. Tech. Lett., 1994, 7(10): 466-470.
    [19] J. M. Song, W. C. Chew. Multilevel Fast Multipole Algorithm for Solving Combined Field Integral Equation of Electromagnetic Scattering. Microwave Opt. Tech. Lett., 1995, 10(1): 14-19.
    [20] T. K. Sarkar, E. Arvas, S. M. Rao. Application of FFT and the Conjugate Gradient Method for the Solution of Electromagnetic Radiation from Electrically Large and Small Conducting Bodies. IEEE Trans. Antennas Propagat. 1986, 34, 635-640.
    [21] M. F. Catedra, R. P. Torres, J. Basterrechea, E. Gago. CG-FFT Method: Application of signal Processing Techniques to ElectIomagnetics. Norwood, MA: Artech House, 1995.
    [22] J. R. Phillips, J. K. White. A Precorrected-FFT Method for Electrostatic Analysis of Complicated 3-D Structures. IEEE Trans. Computed-Aided Design of Integrated Circuits and Systems. 1997, 16. 1059-1072.
    [23] J. R. Phillips. Error and Complexity Analysis for a Collocation-Grid-Projection Plus Precorrected-FFT Algorithm for Solving Potential Integral Equations with Laplace or Helmholtz Kernels. Proc. 1995 Copper Mountain Conf. Multigrid Methods.
    [24] C. H. Chan and L. Tsang. A Sparse-Matrix Canonical-Grid Method for Scattering by Many Scatterers. Microwave Opt. Tech. Lett., 1995, 8(2). 114-118.
    [25] S. Q Li, Y. Yu, C. H. Chan, K. F. Chan, L. Tsang. A Sparse-Matrix/Canonical Grid Method for Analyzing Densely Packed Interconnects. IEEE Trans. Microwave Theory Tech. 2001, 49(7): 1221-1228.
    [26] E. Bleszynski, M. Bleszynsky, and T. Jaroszewicz. AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems. Radio Science. 1996, 31(5): 1225-1251.
    [27] F. Ling, C. F. Wang, J. M. Jin. Application of adaptive integral method to scattering and radiation analysis of arbitrarily shaped planar structures. IEEE Antennas and Propagation Society International Symposium, 1998. 3: 1778-1781.
    [28] S. S. Bindiganavale, J. L. Volakis. Scattering from planar structures containing small features using the adaptive integral method (AIM). IEEE Trans. AntennasPropagat. 1998, 46. 1867-1878.
    [29] C. F. Wang, F. Ling, J. M. Jin. Adaptive Integral Solution of Combined Field Integral Equation. Microwave Opt. Tech. Lett. 1998, 19(5): 321-328.
    [30]阮颖铮.天线的散射机理和雷达散射截面减缩.宇航学报, 1990, 11(4): 94-100.
    [31] W.-T. Wang, S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling. Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm. Progress in Electromagnetics Research, 2009, PIER 94: 119-132.
    [32] B. Lu, S. X. Gong, Y. J. Zhang, F. T. Zha, J. Ling. Optimum Spatial Arrangement of Array Elements for Suppression of Grating-Lobes of Radar Cross Section. IEEE Antenna and Wireless Propagation Letters, 2010, 9: 114-117.
    [33] Guangfeng Cui, Ying Liu, Shuxi Gong. A novel fractal patch antenna with low RCS. Journal of Electromagnetic Waves and Applications, 2007, 21(15): 2403- 2411.
    [34] Wentao Wang, Shuxi Gong, Xing Wang, Ying Guan, Wen Jiang. Differential evolution algorithm and method of moments for the design of Low-RCS antenna. IEEE Antenna and Wireless Propagation Letters, 2010, 9: 295-298.
    [35]张明旭,龚书喜,刘英,利用接地板开槽减缩微带贴片天线的RCS.电子与信息学报, 2008, 30(2): 498-500.
    [36] T. Wu, Y. Li, S.-X. Gong, and Y. Liu. A novel low RCS microstrip antenna using aperture coupled microstrip dipoles. Journal of Electromagnetic Waves and Applications, vol.22, pp.953-963, 2008.
    [37] W. Jiang, Y. Liu, S. X. Gong, T. Hong. Application of bionics in antenna radar cross section reduction. IEEE Antenna and Wireless Propagation Letters, 2009, 8: 1275-1278.
    [38] J. L. Volakis, et.al. Radar Cross Section Analysis and Control of Microstrip Patch Antennas. IEEE AP-S International Symposium, pp.2225-2228, 1992.
    [39] D. M.Pozar. Radiation and Scattering from a Microstrip Patch on a Uniaxial Substrate. IEEE Trans. Antennas Propag., 1987, 35(6): 613-621.
    [40] J. L. Volakis, et.al, Broadband RCS Reduction of Rectangular Patch by Using Distributed Loading, Electronic Letters, 1992, 28(25): 2322-2325.
    [41]刘英.天线雷达散射截面预估与减缩.西安电子科技大学博士论文, 2004.
    [42]贺秀莲.微带天线的数学建模理论与数值分析方法研究.西安电子科技大学博士论文, 2005.
    [43] D. R. Jackson. The RCS of a Rectangular Microstrip Patch in a Substrate-Superstrate Geometry. IEEE Trans. Antennas Propag., 1990, 38(1): 2-8.
    [44] D. M. Pozar. Radar Cross Section of Microstrip Antenna on Normally Biased Ferrite Substrate. Electronic Letters, vol.25, pp.1079-1080, 1989.
    [45] Haiyan Chen, Xinyu Hou, Longjiang Deng. Design of Frequency-Selective Surfaces Radome for a Planar Slotted Waveguide Antenna. IEEE Antenna and Wireless Propagation Letters, 2009, 8: 1231-1233.
    [46] G. Q. Luo, et al. Filtenna consisting of horn antenna and substrate integrated waveguide cavity FSS. IEEE Trans. Antennas Propag., 2007, 55(1): 92-98.
    [47] W.-T. Wang, S.-X. Gong, X. Wang, H.-W. Yuan, and J. Ling. RCS reduction of array antenna by using bandstop FSS reflector. Journal of Electromagnetic Waves and Applications, 2009, 23: 1505-1514.
    [48] Wei He, Ronghong Jin, Junping Geng, and Guoming Yang. 2×2 array with UC-EBG ground for low RCS and high gain. Microwave Opt. Tech. Lett, 2007, 49(6): 1418-1422.
    [49]阮颖铮,冯林等.天线RCS减缩技术研究.机械电子工业部电子科学研究院成果鉴定文集, pp.16-66, 1990.
    [50]阮颖铮,冯林,雷平.低RCS选频滤波反射面天线技术.电子科学学刊, 1993, 15: 506-511.
    [51]钱志华.等离子体天线的辐射与散射特性分析.南京理工大学博士论文, 2006.
    [52] D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, D. R. Smith. Metamaterial Electromagnetic Cloak at Microwave Frequencies. Science, 2006,314: 977-979.
    [53] Hongsheng Chen, Bae-Ian Wu, Baile Zhang, Jin Au Kong. Electromagnetic Wave Interactions with a Metamaterial Cloak. Physical Review Letters, 2007, 99: 063903-1-4.
    [54]陈继红.非线性优化问题的一类共轭梯度算法研究.首都师范大学硕士论文, 2007.
    [55] J. Holland. Adaptation in Nature and Artificial Systems. Ann Arbor: The University of Michi gan Press, 1975.
    [56]李敏强,寇纪松,林丹.遗传算法的基本理论与应用.北京:科学出版社, 2002.
    [57] J. M. Johnson, Yahya Rahmat-Samii. Genetic Algorithms and Method of Moments (GA/MOM) for the Design of Integrated Antennas. IEEE Trans. Antennas Propagat., 1999, 47(10): 1606-1614.
    [58] S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi. Optimization by simulated annealing. Science, 1983, vol.220, no.4598, pp.372-380.
    [59] J. Kennedy, R. C. Eberhart. Particle swarm optimization. Proc. of IEEE int conf. Neural networks. IEEE service center, IV: 1942 - 1948, 1995.
    [60] R. C. Eberhart, J. Kennedy. A new optimizer using particle swarm theory. Proc. of the sixth international symposium on micromachine and human science. IEEE service center, Nagoya, Japan, 39-43, 1995.
    [61] M. M. Khodier, C. G. Christodoulou. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. IEEE Trans. Antennas Propagat., 2005,53(8): 2674-2679.
    [62] R. Storn, K. Price. Minimizing the real functions of the ICEC’96 contest by differential evolution. in Proc. IEEE Conf. Evolutionary Computations, Nagoya, Japan, May 1996, pp. 842-844.
    [63] R. Storn, K. Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim., vol. 11, pp. 341-359, 1997.
    [64] F. Glover. Tabu search: part I. ORSA Journal on Computing, 1989, 1(3): 190-206.
    [65] F. Glover. Tabu search: part II. ORSA Journal on Computing, 1990, 2(1): 4-32.
    [66]焦李成.神经网络系统理论.西安:西安电子科技大学出版社, 1990.
    [67]孟斌,冯永杰,翟玉庆.前馈神经网络中BP算法的一种改进.东南大学学报, 2001, 31(4): 1-3.
    [68] J. W. Bandler, R.M. Biernacki, S.H. Chen, et al. Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Techniques, 1994, 42(12): 2536-2544.
    [69] J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, J. S?ndergaard. Space Mapping: The State of the Art. IEEE Trans. Antennas Propagat., 2004, 52(1): 337-361.
    [70] J. W. Bandler, R. M. Biernacki, S. H. Chen, Y. F. Huang. Design optimization of interdigital filters using aggressive space mapping and decomposition. IEEE Trans. Microwave Theory Tech., 1997, 45(5): 761-769.
    [71] M. H. Bakr, J. W. Bandler, N. K. Georgieva, K. Madsen. A hybrid aggressive space-mapping algorithm for EM optimization. IEEE Trans. Microwave Theory Tech., 1999, 47(12): 2440-2449.
    [72] J. W. Bandler, Q. S. Cheng, N. K. Nikolova, M. A. Ismail. Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Antennas Propagat., 2004, 52(1): 378-385.
    [73] J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, Q. J. Zhang. Neuromodeling of microwave circuits exploiting space mapping technology. IEEE Trans. Microwave Theory Tech., 1999, 47(12): 2417-2427.
    [74] M. H. Bakr, J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, Q. J. Zhang. Neural space-mapping optimization for EM-based design. IEEE Trans. Microwave Theory Tech., 2000, 48(12): 2307-2315.
    [75] J. W. Bandler, M. A. Ismail, J. E. Rayas-Sánchez, Q. J. Zhang. Neural inverse space mapping (NISM) optimization for EM-based microwave design. Int. J. RF Microwave Computer- Aided Eng., vol. 13, pp. 136-147, 2003.
    [76] Y. T. Lo, S. W. Lee. Antenna Handbook: Theory, Applications, and design. New York: Van Nostrand Reinhold Company, 1988.
    [77]龚书喜.天线隐身基础理论研究.西安,中日微波会议报告, 2006.
    [78]张鹏飞.隐身技术中的雷达截面预估与控制.西安电子科技大学博士论文, 2008.
    [79]张鹏飞,龚书喜,刘英,徐云学.相控阵天线系统散射分析.电子与信息学报, 2009, 31(3): 628-631.
    [80] Liu, Y., D.-M. Fu, S.-X. Gong. A novel model for analyzing the radar cross section of microstrip antenna, J. of Electromagn. Waves and Appl., vol. 23, 1505-1514, 2009.
    [81] R. D. Graglia. On the numerical integration of the linear shape function or its gradient on a plane triangle. IEEE Trans. Antennas Propagat., 1993, 41 (10) :1448- 1455.
    [82] J. S. Savage, A. F. Peterson. Quadrature rules for numerical integration over triangles and tetrahedral. IEEE Trans. Antennas Propagat., 1996, 38(3):100-102.
    [83] Y. Kamen, L. Shirman. Triangle rendering using adaptive subdivision. IEEE Computer Graphics and Applications, 1998:95-103.
    [84] C. J. Leat, N. V. Shuley, G. F. Stickley. Triangular-patch model of bowtie antennas: validation against Brown and Woodward. IEE Proc., Microw. Antennas Propag., 1998, 145(6): 465-470.
    [85] G. A. Deschamps. Microstrip microwave antennas. Proc. 3rd USAF Symposium on Antennas, 1953.
    [86]钟顺时.微带天线理论与应用.西安:西安电子科技大学出版社, 1991.
    [87] Y. T. Lo, D. Solomon, W. F. Richards. Theory and Experiment on Microstrip Antenna. IEEE Trans. Antennas Propagat. 1979, 27(2): 137-145.
    [88] E. H. Newman, D. Forral. Scattering from a Microstrip Patch. IEEE Trans. Antennas Propagat., 1987, 35(3): 245-251.
    [89] E. H. Newman, D. Forral. Analysis of Microstrip Antennas Using Moment Methods. IEEE Trans. Antennas Propagat., 1981, 29(1): 47-53.
    [90] D. M. Pozar. Microwave Engineering. 2rd ed. New York: Wiley, 1998.
    [91] S. N. Markarov,许献国译.通信天线建模与Matlab仿真分析.北京:北京邮电大学出版社, 2006.
    [92] K. Price. Differential evolution vs. the functions of the 2nd ICEO. IEEE International Conference on Evolutionary Computation. Indianapolis, 1997. 153-157.
    [93] Salvatore Caorsi, Andrea Massa, Matteo Pastorino, Andrea Randazzo. Optimization of the difference patterns for monopulse antennas by a hybrid real/integer-coded differential evolution method. IEEE Trans. Antennas Propagat., 2005, 53 (1): 372-376.
    [94] Jing-Li Guo, Jian-Ying Li. Pattern Synthesis of Conformal Array Antenna in the Presence of Platform Using Differential Evolution Algorithm. IEEE Trans. Antennas Propagat., 2009, 57(9): 2615-2621.
    [95] S. K. Goudos, J. N.Sahalos. optimal microwave filter design using multiobjective differential evolution. IEEE Trans. Antennas Propagat., 2010, 58 (1): 132-144.
    [96] Jouni Lampinen. A constraint handling approach for the differential evolution algorithm. Proceedings of the congress on evolutionary computation, Honolulu, USA, 2002: 1468-1473.
    [97] H. A. Abbass, R. Sarker, C. Newton. PDE: A pareto-frontier differential evolution approach for multi-objective optimization problems. IEEE Congress on Evolutionary Computation, Piscataway, 2001: 971-978.
    [98] B. V. Babu, M. Mathew, L. Jehan. Differential Evolution for multi-objective optimization. IEEE Congress on Evolutionary Computation, Canberra, 2003: 2696-2703.
    [99] K. E. Parsopoulos, D. K. Tasoulis, N. G. Pavlidis. Vector evaluated differential evolution for multiobjective optimization. IEEE Congress on Evolutionary Computation, Portland, 2004: 204-211.
    [100] Yung-Chien Lin, Feng-Sheng Wang, Kao-Shing Hwang. A hybrid method of evolutionary algorithms for mixed-integer nonlinear optimization problems. IEEE Proceeding of Evolutionary Computation. Piscataway, 1999, 2159-2166.
    [101] R. J. Luebbers, B. A. Munk. Some effects of dielectric loading on periodic slot arrays. IEEE Trans. Antennas Propagat., 1978, 26(4): 536-542.
    [102] B. A. Munk. Frequency Selective Surface: theory and design. New York: Wiley, 2000.
    [103] S. B. Savia, E. A. Parker. Superdence FSS with wide reflection band and rapid rolloff. Electronics Letters, 2002, 38(25): 1688-1689.
    [104] J. C. Vardaxoglou, D. S. Lockyer. Modified FSS response from two sided and closely coupled arrays. Electronics Letters, 1994, 30(16): 1818-1819.
    [105] R. Mittra, C. H. Chan, T. Cwik. Techniques for analyzing frequency selective surface-a review. Proceedings of the IEEE, 1988, 76(12): 1593-1615.
    [106] John D. Kraus著,章文勋译.天线.北京:电子工业出版社, 2004.
    [107] H.-W. Yuan, S.-X. Gong, X. Wang, W.-T. Wang. Wideband Printed Dipole Antenna Using A Novel PBG Structure. Microwave Opt. Tech. Lett, 2009, 51(8): 1861-1865.
    [108] J. Kennedy, R. C. Eberhart. A discrete binary version of the particle swarm algorithm. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 1997, 5:4104-4108.
    [109] Yuhui Shi, Russell Eberhart. A modified particle swarm optimizer. Proc, IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, May 4-9, 1998.
    [110] P. N. Suganthan. Particle Swarm Optimizer with Neighborhood Operator. Proceedings of the Congress on Evolutionary Computation. 1999. 1958-1961.
    [111] B. Al-Kazemi, C. K. Mohan. Multi-phase generalization of the particle swarm optimization algorithm. Proceeding of the Congress on Evolutionary Computation, Honolulu, HI: IEEE, 2002, 489-494.
    [112]李爱国.多粒子群协同优化算法.复旦大学学报, 2004, 43(5):923-925.
    [113]高鹰,谢胜利.混沌粒子群优化算法.计算机科学, 2004, 31(8):13-15.
    [114]高鹰,谢胜利.免疫粒子群优化算法.计算机工程与应用, 2004, 40(6):4-6.
    [115]高鹰,谢胜利.基于模拟退火的粒子群优化算法.计算机工程与应用, 2004, 40(1):47-50.
    [116] Xie Xiao-feng, Zhang Wen-jun, Yang Zhi-lian. Dissipative particle swarm optimization. Proceedings of the Congress on Evolutionary Computation, Honolulu, 2002. 1456-1461.
    [117]吕振肃,侯志荣.自适应变异的粒子群优化算法.电子学报, 2004, 32,(3): 416-420.
    [118]焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计.电波科学学报, 2006, 21(1): 749-753.
    [119]朱旗,王义春,陈艳丽,龚晨.圆柱体圆锥体共形相控阵设计.电波科学学报, 2010, 25(3): 428-435.
    [120] N. Jin, Y. Rahmat-Samii. Parallel Particle Swarm Optimization and Finite- Difference Time-Domain (PSO/FDTD) Algorithm for Multiband and Wide-Band Patch Antenna Designs. IEEE Trans. Antennas Propagat. , 2005, 53(11): 3459-3468.
    [121] N. Jin, Y. Rahmat-Samii. Advances in particle swarm optimization for antenna designs: Real-number, binary, singleobjective and multiobjective implementations. IEEE Trans. Antennas Propagat. , 2007, 55(3): 556-567.
    [122] Aaron J. Kerkhoff, Robert L. Rogers, Hao Ling. Design and Analysis of Planar Monopole Antennas Using a Genetic Algorithm Approach. IEEE Trans. Antennas Propagat., 2004, 52(10): 2709-2718.
    [123] David Lynch, Jr. Introduction to RF stealth. Sci. Tech Publishing, 2004.
    [124] R. Courant. Variational methods for the solution of the problems of equilibrium and vibrations. Bull. Am. Math. Soc., 1943(49): 1-23.
    [125] M. J. Turner, R. W. Clough, H. C. Martin and L. J. Topp. Stiffness and deflection analysis of complex structures. Journal of Aeronautical Sciences, 1956, 23(9): 805-823.
    [126] Matthew, Sadiku. Numerical Techniques in Electromagnetics. 2nd edition. CRC Press LLC, 2001.
    [127] Ansoft Corporation. Introduction to Scripting in HFSS. June 2003.
    [128] Wentao Wang, Shuxi Gong, Zhen Cui, Jianfu Liu, and Jin Ling. Dual band-notched ultrawideband antenna with codirectional SRR. Microwave and Optical Technology Letters, 2009, 51(4): 1032-1034.
    [129] M. Navarro-Cia, et al. Left-handed behavior in a microstrip line loaded with squared split-ring resonators and an EBG pattern. Microwave Opt Technol Lett., 2007, 49(11): 2689-2692.
    [130] V. Oznazi and V. B. Erturk. A comparative investigation of SRR- and CSRR- based bandreject filters: simulations, experiments, and discussions. Microwave Opt Technol Lett., 2008, 50(2): 519-523.
    [131] Jiang Zhu, John W. Bandler, Natalia K. Nikolova, Slawomir Koziel. Antenna optimization through space mapping. IEEE Trans. Antennas Propagat., 2007, 55(3): 651-658.
    [132] Mario Fernández Pantoja, Peter Meincke, Amelia Rubio Bretones. A hybridgenetic-algorithm space-mapping tool for the optimization of antennas. IEEE Trans. Antennas Propagat., 2007, 55(3): 777-781.
    [133]袁军,邱扬,刘其中,田锦,谢拥军.基于空间映射及遗传算法的车载天线优化配置.电波科学学报, 2006, 21(1): 26-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700