用户名: 密码: 验证码:
长江口潮滩环境下厌氧氨氧化(Anammox)过程及形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮素是地球上生命物质的重要生源要素,长期以来人类一直从生物圈生态发展和满足人类食物需要的角度加以研究和利用。而随着农业、工业和生活N使用量的不断增加,来自工农业生产和生活污水的排放已成为河口及近岸水域富营养化、导致有害赤潮频繁发生的重要原因之一,其生物地球化学循环与影响机制的研究对于深刻认识河口生态系统富营养化演变过程和防止富营养化发生具有极其重要的意义。
     目前,厌氧氨氧化过程作为公认的脱氮途径存在于自然界中。自Graaf等人(1990)在污泥处理过程中首次证实了厌氧氨氧化过程的存在后,在海洋生态系统,河口地区和淡水湖泊等环境中陆续发现了该过程的存在。厌氧氨氧化过程的发现,是对氮的生物地球化学循环过程的一种重要补充,为氮元素在水圈中传统的循环模式与机制提出了新的认识和思考,它在氮循环过程中的地位和作用及其产生机制成为目前研究的热点。
     长江口滨岸潮滩受潮汐、径流双重影响,是一个典型的海陆交互地带,其特有的河口过程及其特殊的地理位置在国际河口与海岸与海岸研究中占有重要地位。本文选择高强度作用下的城市化河口-—长江河口滨岸潮滩为研究对象,选取浒浦(XP)、吴淞口(WSK)、白龙港(BLG)、浏河口(LHK)、芦潮港(LC)、大新港(DXG)、寅阳(YY)和崇明(CM)八个典型采样断面,利用同位素示踪技术,研究沉积物中厌氧氨氧化速率的时空分布规律,并结合长江口沉积物理化性质特征,探究影响厌氧氨氧化过程的主要控制因子,并估算了该过程在长江口潮滩湿地特殊生境下脱氮过程的影响。主要研究结论如下:
     (1)长江口滨岸潮滩表层沉积物中厌氧氨氧化速率变化存在明显的时空分布差异,春、夏、秋、冬四季厌氧氨氧化速率变化范围分别为18.82-52.04μmolN-29*kg-1*d-1,24.92-153.73μmol N-29*kg-1*d-1,34.52-133.41μmol N-29*kg-1*d-1, 7.09-24.33μmol N-29*kg-1*d-1,变异系数分别为0.37,0.52,0.46,0.47。厌氧氨氧化速率季节变化,夏秋强于冬春,空间变化,淡水区域强于咸水区域,并且BLG,WSK两点受附近人为排污影响,速率表现更强。
     (2)崇明东滩枯洪两季表层沉积物Anammox速率的时空分布,从空间分布来看,其中洪枯两季的最高值均出现在高潮滩,分别为54.98μmo1 N-29*kg-1*d-1和8.31μmol N-29*kg-1*d-1,最低值出现在低潮滩,分别为23.46μmol N-29*kg-1*d-1和3.41μmol N-29*kg-1*d-1,而对于干湿交替较为强烈的中潮滩来说,则介于两者之间,即从高潮滩向低潮滩递减的趋势。从时间分布可以看出,枯季的均值为8.31μmol N-29*kg-1*d-1,洪季的均值为64.67μmol N-29*kg-1*d-1,即在崇明东滩Anammox速率表现为洪季强于枯季。柱状沉积物中厌氧氨氧化速率变化范围为9.2-52.34μmol N-29*kg-1*d-1,4-6cm时达到最大值,基本上是一个“先升高-再降低”的过程。
     (3)长江口潮滩表层沉积物中厌氧氨氧化速率变化主要是受控于盐度和沉积物温度,硫化氢,有机质含量和C/N都对沉积物厌氧氨氧化速率分布存在明显的影响作用;而Fe,Mn等土壤中活跃的金属离子则非厌氧氨氧化速率的主控因子。发现在沉积物中硫化氢,有机质含量和C/N都对沉积物厌氧氨氧化速率的垂向分布存在明显的影响作用。
     (4)通过对长江口潮滩沉积物中厌氧氨氧化速率在整个脱氮过程所占比例的研究,发现总脱氮率是101.29-787.31μmol N-30*kg-1*d-1,厌氧氨氧化的脱氮率是7.09-153.73μmol N-29*kg-1*d-1;厌氧氨氧化脱氮量占到总脱氮量的5-23%,表明厌氧氨氧化过程是长江口滨岸带湿地N去除的重要途径。
Nitrogen is one of essential elements for biological growth on earth. It has always been studied and utilized by human being for ecological development and food supply. In recent decades, due to the effects of intense human activities, substantial reactive nitrogen has been transported into estuarine and coastal seas, as a result leading to serious eutrophication and frequent occurrence of harmful algae blooms. Therefore, it is of significant to study the biogeochemical cycle of nitrogen for understanding the occurrence of eutrophication in estuarine ecosystems.
     At present, anaerobic ammonium oxidation (anammox) has been identified as a significant pathway of nitrogen removal in natural ecosystems. In the early 1990's the first direct evidence of the anaerobic oxidation of NH4+ came from a waste water treatment facility in Delft, the Netherlands. A few years after the initial discovery of anammox, the anaerobic oxidation of ammonium coupled to nitrite reduction with N2 as the end product, is a newly discovered microbial transformation pathway in the marine ecosystems, estuaries and freshwater lakes. The ubiquitous presence of anammox in marine ecosystems has changed our knowledge of the global nitrogen cycle.
     The estuarine and coastal tidal flat, as a typical transitional zone between land and ocean, is a multifunctional and complex ecosystem with special ecological values and potential resources. The study area is situated on the Yangtze Estuary and adjacent coastal tidal flat areas. In the present study, the eight sampling sites were selected along the Yangtze estuarine and coastal lines, including Xupu (XP), Liuhekou (LHK), Wusongkou (WSK), Bailonggong (BLG), Luchaogang (LC), Daxinang (DXG), Yinyang (YY) and Chongming (CM). Based on the technique of nitrogen-isotopic trace, the temporal and spatial changes of the anammox process occurring were investigated in the intertidal sediments of the Yangtze Estuary. The mainly findings are as follows:
     1. There were obviously temporal and spatial changes of the anammox rates in the tidal sediments of the Yangtze Estuary. The anammox rates ranges from 18.82 to 52.04μmol N-29*kg-1*d-1,24.92 to 153.73μmol N-29*kg-1*d-1,34.52 to 133.41μmol N-29*kg-1*d-1 and 7.09 to 24.33μmol N-29*kg-1*d-1 in spring, autumn, fall and winter, respectively. In general, the anammox rates in spring and winter were lower than in summer and autumn. Also, the anammox rates in fresh water areas were higher than in brackish areas.
     2. Significantly temporal and spatial variations of the anammox rates were observed in the Chongming eastern tidal flat. Generally, the anammox rates in dry season were lower than in flood season. Also, the maximum rates of anammox appeared in the high tidal flat, followed by the middle and low tidal flats.
     3. Under the periodical changes of exposure-immersion, the spatial and temporal distributions of the anammox rates were controlled probably by salinity and sediment temperature. H2S, OC and C/N rate can also affect the anammox rate in intertidal surface sediments of the Yangtze Estuary. However, the anammox rate had no correlation with Fe and Mn contents.
     4. The results showed that the total rates of nitrogen removal were from 101.29 to 787.31μmol N-30*kg-1*d-1. In contrast, the anammox rates ranged from 7.09-153.73μmol N-29*kg-1*d-1 at the study area. This comparison shows that about 5 to 23% of N2 production in sediments of the Yangtze Estuary may be attributed to the activities of anammox bacteria. Therefore, the anammox process plays a significant role in reactive nitrogen removal at the study area.
引文
Alawi M., Lipski A., Sanders T. et al.,2007.Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic. ISME 1:256-264.
    Amano T., Yoshinaga I., Okada K. et al.,2007. Detection of anammox activity and diversity of anammox bacteria-related 16S rRNA genes in coastal marine sediment in Japan. Microbes.Environ.22:232-242.
    Bender M., Jahnke R.A., Weiss R., et al.,1989.Organic carbon oxidation and benthic nitrogen and silica dynamics in San Clemente Basin, a continental borderland site, Geochim. Cosmochim. Acta 53:685-697.
    Bezbaruah A., Zhang T.C.,2004.pH, redox, and oxygen microprofiles in rhizosphere of Bulrush (Scirpus validus) in a constructed wetland treating municipal wastewater. Biotechnol. Bioeng.88(1):60-69.
    Birol E., Karousakis K., Koundouri P.,2006.Using a choice experiment to account for preference heterogeneity in wetland attributes:the case of Cheimaditida wetland in Greece. Ecol. Econ.60(1):145-156.
    Booth M.S., Campbell C.,2007. Spring nitrate flux in the Mississippi river basin:a landscape model with conservation applications. Environmental Science and Technology 41:5410-5418.
    Boumann H.A., Hopmans E.C., Leemput I. et al.,2006.Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups. FEMS Microbiol. Lett.258:297-304.
    Brandes J.A., Devol A.H., Deutsch C.,2007.New developments in the marine nitrogen cycle. Chem. Rev.107(2):577-589.
    Brion N., Andersson M., Elskens M. et al.,2008. Nitrogen cycling, retention and export in a eutrophic temperate macrotidal estuary. Marine Ecology Progress Series 357:87-99.
    Broda E.,1977. Two kinds of lithotrophs missing in nature, Z. All. Mikrobiol.17 491-493.
    Brune A., Frenzel P., H. Cypionka,2000.Life at the oxic-anoxic interface:microbial activities and adaptations. FEMS Microbiol Rev 24:691-710.
    Byrne N., Strous M., Crepeau V. et al.,2009.Presence and activity of anaerobic ammonium oxidizing bacteria at deep-sea hydrothermal vents. ISME J 3(1):117-123.
    Chai C., Yu Z.M., Song X.X. et al.,2006. The status and characteristics of eutrophication in the Yangtze River (Changjiang) Estuary and the adjacent East China Sea, China. Hydrobiologia 563:313-328.
    Christensen P.B., Revsbech N.P., Sand-Jensen K.,1994.Microsensor Analysis of Oxygen in the Rhizosphere of the Aquatic Macrophyte Littorella uniflora Ascherson. Plant Physiol. 105:847-852.
    Cline J.D., Richards F.A.,1972. Oxygen deficient conditions and nitrate reduction in the Eastern tropical northern Pacific Ocean, Limnol.Oceanogr.17:885-900.;
    Cline J.D., Richards F.A.,1972.Oxygen deficient conditions and nitrate reduction in the Eastern tropical northern Pacific Ocean, Limnol.Oceanogr.17:885-900.
    Codispoti L.A., Brandes J.A., Christensen J.P. et al.,2001.The oceanic fixed nitrogen and nitrous oxide budgets:Moving targets as we enter the anthropocene.Sci. Mar.65:85-105.
    Dahnke K., Bahlmann E., Emeis K.,2008. A nitrate sink in estuaries? An assessment by means of stable nitrate isotopes in the Elbe estuary. Limnology and Oceanography 53:1504-1511.
    Dale O.R., Tobias C.R., Song B.,2009.Biogeographical distribution of diverse anaerobic ammonium oxidizing (anammox) bacteria in Cape Fear River Estuary. Environ.Microbiol. 11:1194-1207.
    Dalsgaard T., Bak F.,1994.Nitrate reduction in a sulfate-reducing bacterium,Desulfovibrio desulfuricans, isolated from rice paddy soil—sulfide inhibition,kinetics, and regulation, Appl. Environ. Microbiol.60:291-297.
    Dalsgaard T., Canfield D.E., Petersen J., Thamdrup B. et al.,2003. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica, Nature 422:606-608.
    Dalsgaard T., Thamdrup B.,2002.Factors controlling anaerobic ammonium oxidation with nitrite in marine sediments. Appl.Environ. Microbiol.68:3802-3808.
    Damste J.S.S., Strous M., Rijpstra W.I.C. et al.,2002.Linearly concatenated cyclobutane lipids form a dense bacterial membrane, Nature 419:708-712.
    Devol A.H.,2003.Solution to a marine mystery. Nature 422:575-576
    Devol A..H.,2003.Nitrogen cycle—solution to a marine mystery.Nature 422:575-576.
    Douglas G.C., Angela N.K.,2007.A marine nitrogen cycle fix? Nature 445:159-160.
    Engstrom P., Penton C.R., Devol A.H.,2009.Anaerobic ammonium oxidation in deep-sea sediments off the Washington margin.Limnol Oceanogr 54(5):1643-1652.
    Erguder T. H., Boon N., Wittebolle L.,2009.Environmental factors shaping the ecological niches ofammoniaoxidizing archaea. FEMS Microbiol. Rev.33:855-869.
    Erler D.V., Eyre B.D., Davison L.,2008.The contribution of Anammox and denitrification to sediment N2 production in a surface flow constructed wetland. Environ Sci Technol 42(24):9144-9150.
    Ettwig K.F., Alen T., Pas-Schoonen K.T. et al.,2009. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum. Appl. Environ. Microbiol. 75(11):3656-3662.
    Ettwig K.F., Shima S., Pas-Schoonen K.T. et al.,2008.Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10(11):3164-3173.
    Francis C.A., Roberts K.J., Beman J.M. et al.,2005.Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 102(41):14683-14688.
    Fulweiler R.W., Nixon S.W., Buckley B.A.. et al.,2007. Reversal of the net dinitrogen gas flux in coastal marine sediments. Nature 448:180-182.
    Galan A., Molina V., Bo T. et al.,2009.Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile. Deep-sea Res. Part 2, Top Stud.Oceanogr.56(16):1021-1031.
    Galloway J.N., Townsend A.R., Erisman J.W. et al.,2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889-892.
    Graaf A.A., Bruijn P., Robertson L.A. et al.,1996.Autotrophic growth of anaerobic ammonium oxidizing micro-organisms in a fluidized bed reactor. Microbiology (UK) 142:2187-96.
    Graaf A., Mulder A., Brujin P. et al.,1995.Anaerobic oxidation of ammonium. is a biologically mediated process, Appl. Environ. Microbiol.61:1246-1251.
    Halpern B.S., Walbridge S., Selkoe K.A. et al.,2008. A global map of human impact on marine ecosystems. Science 319:948-952.
    Hamersley M.R., Woebken D., Boehrer B. et al.,2009.Water column anammox and denitrification in a temperate permanently stratified lake (Lake Rassnitzer, Germany).Systematic and Applied Microbiology 32(8):571-582.
    Hamersley M.R., Lavik G, Woebken D. et al.,2007.Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone. Limnol. Oceanogr.52:923-933.
    Hamm R.E., Thompson T.G.,1941.Dissolved nitrogen in the sea water of the Northeast Pacific with notes on the total carbon dioxide and the dissolved oxygen, J. Mar. Res.4:11-27.
    Hietanen S., Kuparinen J.,2008.Seasonal and short-term variation in denitrification and anammox at a coastal station on the Gulf of Finland, Baltic Sea. Hydrobiologia 596:67-77.
    Hopmans E.C., Kienhuis M., Rattray J.E. et al.,2006.Improved analysis of ladderane lipids in biomass and sediments using high-performance liquid chromatography/atmospheric pressure chemical ionization tandem mass spectrometry. Rapid Commun. Mass Spectrom.20(14):2099-2103.
    Hu S., Zeng R.J., Burow L.C. et al.,2009.Enrichment of denitrifying anaerobic methane-oxidizing microorganisms. Environ. Microbiol. Rep. 1(5):377-384.
    Itokawa H, Hanaki K,Matsuo T,2001.Nitrous oxide production in high loading biological nitrogen removal process under low cod/n ratio condition. Water Res 35(3):657-664.
    Jaeschke A., Camp H.J.M., Harhangi H. et al.,2009a.16S rRNA gene and lipid biomarker evidence for anaerobic ammonium oxidizing bacteria (anammox) in California and Nevada hot springs. FEMS Microbiol. Ecol.67:343-350.
    Jaeschke A., Rooks C., Trimmer M. et al.,2009b.Comparison of ladderane phospholipid and core lipids as indicators for anaerobic ammonium oxidation (anammox) in marine sediments. Geochim. Cosmochim. Acta.73(7):2077-2088.
    Jensen M.M., Petersen J., Dalsgaard T. et al.,2009.Pathways, rates, and regulation of N2 production in the chemocline of an anoxic basin, Mariager Fjord, Denmark. Mar. Chem. 113:102-113.
    Jensen M.M., Thamdrup B., Dalsgaard T.,2007.Effects of specifiz inhibitors on anammox and denitrification in marine sediments.Appl Environ Microbiol 73:3151-3158.
    Jetten M.S.M., Camp H.J.M., Keltjens J.T. et al.,2008.Two impossible microbes with global implications:the nitrite-dependent anaerobic oxidation of methane and ammonium. In:Liu S-J, Drake HL (eds) Microbes and the Environment:Perspective And Challenges Science Press, Beijing 100717, China pp 15-22.
    Jetten M.S.M., Strous M., Pas-Schoonen K.T. et al.,1999.The anaerobic oxidation of ammonium. FEMS Microbiol. Rev.22:421-437.
    Jetten M.S.M., Wagner M., Fuerst J. et al.,2001.Microbiology and application of the anaerobic ammonium oxidation (anammox) process. Curr. Opin. Biotechnol.12:283-288.
    Joye S.B., Hollibaugh J.T.,1995.Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270:623-625.
    Kalyuzhnyi S., Gladchenko M., Mulder A.,2006.DEAMOX-New biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Water Res.40:3637-3645.
    Kampschreur M.J., Star W.R.L., Wielders H.A. et al.,2008.Dynamics of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Res 42:812-826.
    Kampschreur M.J., Tan N.C.G., Picioreanu C. et al.,2006.Role of nitrogen oxides in the metabolism of ammonia-oxidizing bacteria. Biochem. Soc. Trans.34:179-181.
    Kartal B., Niftrik L., Rattray J. et al.,2008.Candidatus 'Brocadia fulgida':an autofluorescent anaerobic ammonium oxidizing bacterium. FEMS Microbiol. Ecol.63(1):46-55.
    Kartal B., Rattray J., Niftrik L., Vossenberg J. et al.,2007. Candidatus'Anammoxoglobus propionicus'a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol.30:39-49.
    Konnecke M., Berhnard A.E., Torre J.R. et al.,2005.Isolation of an autotrophic ammoniaoxidizing marine archaeon. Nature 437:543-546.
    Koops H.P., Pommerening-Roser A.,2001.Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiol. Ecol.37:1-9.
    Kuenen J.G., Jetten M.S.M.,2001. Extraordinary anaerobic ammoniumoxidizing bacteria, ASM News 67:456.
    Kuypers M.M.M., Sliekers A.O., Lavik G. et al.,2003.Anaerobic ammonium oxidation by anammox bacteria in the Black Sea, Nature 422:608-611.
    Laverman A.M., Canavan R:W., Slomp C.P. et al.,2007. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Research 41:3061-3068.
    Middelburg J.J., Soetaert K., Herman P.M.J. et al.,1996.Denitrification in marine sediments:A model study, Global Biochem. Cyc.10 (4):661-673.
    Mooy B.A.S., Keil R.G., Devol A.H.,2002.Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification.Geochim. Cosmochim.Acta 66:457-465.
    Mulder A., Graaf A.A., Robertson L.A. et al.,1995.Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor.FEMS Microbiol. Ecol.16:177-184.
    Murray J.W., Codispoti L.A., Friederich G.E.,1995.Oxidation-reduction environments—the suboxic zone in the Black-Sea, Aquat. Chem.244:157-176.
    Murray J.W., Codispoti L.A., Friederich G.E.,1995.Oxidation-reduction environments—the suboxic zone in the Black-Sea, Aquat. Chem.244:157-176.
    Niftrik L.A., Fuerst J.A., Damste J.S.S. et al.,2004.The anammoxosome:An intracytoplasmic compartment in anammox bacteria, FEMS Microbiol. Lett.233 7-13.
    Pantoja S., Sepulveda J., Gonzales H.E.,2004.Decomposition of sinking proteinaceous material during fall in the oxygen minimum zone off northern Chile.Deep-Sea Res.51:55-77.
    Rabalais N.N.,2002. Nitrogen in aquatic ecosystems. Ambio.31:102-112.
    Rattray J.E., Vossenberg J., Hopmans E.C. et al.,2008. Ladderane lipid distribution in four genera of anammox bacteria. Arch. Microbiol.190(1):51-66.
    Rich J.J., Dale O.R., Song B. et al.,2008.Anaerobic Ammonium Oxidation (Anammox) in Chesapeake Bay sediments. Microb. Ecol.55:311-320.
    Richards F.A.,1965.Chemical observations in some anoxic, sulfide-bearing basins and fjords, in: E.A. Pearson (Ed.), Advances in Water Pollution Research, vol.3, Pergamon, London, pp. 215-232.
    Richards F.A.,1965.Anoxic basins and fjords, in:J.P. Riley, G. Skirrow (Eds.), Chemical Oceanography, vol.1, Academic Press, London, pp.611-645.
    Richards F.A.,1965.Chemical observations in some anoxic, sulfide-bearing basins and fjords, in: E.A. Pearson (Ed.), Advances in Water Pollution Research, vol.3, Pergamon, London, pp. 215-232.
    Risgaard-Petersen N., Meyer R.L., Schmid M. et al.,2004.Anaerobic ammonia oxidation in an estuarine sediment, Aquat. Microb. Ecol.36:293-304.
    Risgaard-Petersen N., Nielsen L.P., Rysgaard S. et al.,2003.Application of the isotope pairing technique in sediments where anammox and denitrification coexist, Limnol. Oceanogr. 1:63-73.
    Rocha, C.,2008. Sand sediments as active biogeochemical reactors:compound cycling in the fast lane. Aquatic Microbial. Ecology 53:119-127.
    Rysgaard S., Glud R.N.,2004.Anaerobic N2 production in Arctic sea ice.Limnol. Oceanogr. 49:86-94.
    Rysgaard S., Glud R.N., Risgaard-Petersen N. et al.,2004.Denitrification and anammox activity in arctic marine sediments, Limnol.Oceanogr.491 493-1502.
    Scavia D., Donnelly K.A.,2007. Reassessing hypoxia forecasts for the Gulf of Mexico. Environmental Science and Technology 41:8111-8117.
    Schmid M., Twachtmann U., Klein M. et al.,2000.Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Systamatic Applied Microbiology 23:93-106.
    Schmid M., Walsh K., Webb R. et al.,2003.Candidatus Scalindua brodae, sp. nov., Candidatus Scalindua wagneri, sp. nov.,two new species of anaerobic ammonium oxidizing bacteria, Syst. Appl. Microbiol.26:529-538.
    Schmid M.C., Maas B., Dapena A.et al.,2005.Biomarkers for in situ detection of anaerobic ammoniumoxidizing(anammox) bacteria. Appl. Environ. Microbiol.71 (4):1677-1684.
    Schmid M.C., Risgaard-Petersen N., Vossenberg J. et al.,2007.Anaerobic ammonium oxidizing bacteria in marine environments:widespread occurrence but low diversity. Environ. Microbiol.9(6):1476-1484.
    Schubert C.J., Durisch-Kaiser E., Wehrli B. et al.,2006.Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol.8:1857-1863.
    Seitzinger S.,2008.Nitrogen cycle, out of reach. Nature 452:162-163.
    Shipin O., KoottatepT., Khanh N.T.T. et al.,2005.Integrated natural treatment systems for developing communities:low-tech N-removal through the fluctuating microbial pathways. Water Sci. Technol.51(12):299-306.
    Sinninghe D.J.S., Rijpstra W.I.C., Geenevasen J.A J. et al.,2005.Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox). FEBS 272(16):4270-4283.
    Sinninghe D.J.S., Strous M., Rijpstra W.I.C., Hopmans E.C. et al.,2002.Linearly concatenated cyclobutane lipids form a dense bacterial membrane. Nature 419:708-712.
    Smith V.H., Joye S.B., Howarth R.W.,2006. Eutrophication of freshwater and marine ecosystems. Limnology and Oceanography 51:351-355.
    Soetaert K., Herman P.M.J., Middelburg J.J. et al.,1999.Missing lithotroph identified as new planctomycete, Nature 400:446-449.
    Soetaert K., Herman P.M.J., Middelburg J.J.,1996.Dynamic response of deep-sea sediments to seasonal variations. A model. Limnol.Oceanogr.41:1651-1668.
    Sovik A.K., Augustin J., Heikkinen K. et al.,2006.Emission of the greenhouse gases nitrous oxide and methane from constructed wetlands in Europe. J. Environ. Qual.35(6):2360-2373.
    Stottmeister U., Wieβner A., Kuschk P. et al.,2003.Effects of plants and microorganisms in constructed wetlands for wastewater treatment. Biotechnol. Adv.22:93-117.
    Stramma L., Johnson G, Sprintall J. et al.,2008. Expanding oxygen-minimum zones in the tropical oceans. Science 320:655-658.
    Strous M., Gerven E., Kuenen J.G. et al.,1997.Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge, Appl. Env. Microbiol.63:2446-2448.
    Strous M., Kuenen J.G, Jetten M.S.M.,1999.Key physiology of anaerobic ammonium oxidation, Appl. Env. Microbiol.65:3248-3250.
    Sverdrup H.U., Johnson M.W., R.H. Fleming,1942.The Oceans:Their Physics, Chemistry, and General Biology, Prentice-Hall, New York.
    Thamdrup B., Dalsgaard T.,2000.The fate of ammonium in anoxic manganese oxide-rich marine sediment.Geochim. Cosmochim. Acta 64:4157-4164.
    Thamdrup B., Dalsgaard T.,2002.Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments.Appl. Environ. Microbiol.68:1312-1318.
    Trimmer,M. Nicholls J.C., Deflandre B.,2003.Anaerobic ammonium oxidation measured in sediments along the Thames estuary, United Kingdom,Appl. Environ. Microbiol. 69:6447-6454.
    Veuger B., Middelburg J.J., Boschker H.T. et al.,2005. Analysis of 15N incorporation into D-alanine:A new method for tracing nitrogen uptake by bacteria. Limnology and Oceanography:Methods 3:230-240.
    Whitmire S., Hamilton S.K.,2005. Rapid removal of nitrate and sulfate in freshwater wetland sediments. Journal of Environmental Quality 34:2062-2071.
    白洁,于江华,王晓东,等,2008.黄海北部夏季无机氮赋存形态及其与反硝化速率的关系研究.中国海洋大学学报38(6),975-979.
    鲍士旦主编.2000.土壤农化分析手册.北京:中国农业出版社,74-76.
    陈吉余主编.1988.上海市海岸带和滩涂资源综合调查报告.上海:上海科学技术出版社.
    陈沈良,张国安,杨世纶,虞志英.2004.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报.59(2),26-266.
    刘敏,许世远,侯立军,2007.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程.北京:科学出版社.
    刘巧梅,2004.长江口潮滩沉积物-水界面营养元素N的累积、迁移过程.
    沈志良,1999.渤海湾及其东部水域化学要素的分布.海洋科学集刊 41:51-59。
    沈志良,刘群,张淑美,等,2001.长江和长江口高含量无机氮的主要控制因素.海洋与湖沼32(5):465-473。
    石晓勇,王修林,韩秀荣,等,2003.长江口邻近海域营养盐分布特征及其控制过程的初步研究.应用生态学报14(7):1086-1092。
    徐徽,张路,商景阁,等,2009.太湖梅梁湾水土界面反硝化和厌氧氨氧化.湖泊科学21(6),775-781.
    徐继荣,王友绍,殷建平,等,2007.大亚湾海域沉积物中的硝化与反硝化作用.海洋与湖沼38(3),206-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700