用户名: 密码: 验证码:
冷分子囚禁新方案的理论研究与CH自由基的实验制备及光谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冷分子在科学领域有很多非常重要的应用,例如:高分辨光谱的研究、冷化学与冷碰撞的研究、量子计算与信息处理、基本物理常数的测量等。本文首先介绍了冷分子的制备方法、囚禁及其应用;然后提出了极性分子静电囚禁的两种新方案;接着介绍了一种可用于静电Stark减速与操控的重要分子(CH自由基分子),以及本实验采用的两种制备方法:直流脉冲放电和五倍频YAG激光器光解;最后对本文的研究工作进行了总结和展望。
     本文提出了用两个带电金属环和一个接地金属板实现一种可操控的、光学通道开放的、芯片表面的冷极性分子静电储存环。笔者数值计算了空间电场的分布情况,然后详细分析了势阱中心距离芯片表面高度与实验参数的关系,并以OH分子为例,采用经典蒙特卡洛方法模拟了分子在储存环中的运动情况。随后,我们分析了系统参数、分子束的初始分布等对分子的平动温度、囚禁效率的影响。模拟结果表明通过引入聚束功能可以显著提高分子波包在储存环中运行的圈数。
     我们提出了利用三个带电金属环和两个绝缘介质板来实现一种高效、可控的冷极性分子静电表面囚禁的新方案。作者计算了电场和重氨分子的|J,KM>=|1,-1>态的囚禁势,分析了有效阱深与系统参量的关系。蒙特卡洛数值模拟表明:该方案的冷分子装载效率高达90%,最后得到的分子波包平动温度为14mK左右。通过降低阱深我们数值模拟了绝热冷却过程。结果表明通过绝热冷却,被囚禁的分子的温度从34.5mK降低到5.8mK。
     我们开展了利用直流脉冲放电产生CH自由基的实验研究。通过将实验数据和LIFBASE软件模拟结果进行比对,给出了所产生的激发态CH(A2△)的振动和转动温度。我们进一步研究了CH(A2△)发射光谱强度和一些实验参量的关系,例如:放电持续时间、脉冲阀的触发与放电之间延迟时间以及放电电压等。利用共振增强多光子电离探测手段,我们获得了CH自由基的共振增强多光子电离谱线。
     最后,我们采用五倍频YAG激光器多光子解离四种不同样品((CH3)2CO,CH3NO2,CH2Br2和CHBr3)来分别产生CH(A2△)自由基分子。我们获得了CH(A2△→X2Π)的发射荧光光谱,并进行了分析。通过对荧光强度与激光单脉冲能量依赖关系的测量,分析了可能的解离渠道。我们研究了荧光强度和其他实验参数的关系,例如:束源温度、束源气压、脉冲阀的触发与激光器之间延迟时间等,并分析了载气在光解实验中所扮演的角色。通过实验数据和LIFBASE软件模拟结果的比对,我们获得了CH(A2△)的振动和转动温度。
Cold molecules have many important applications in the field of science, such as high-resolution spectrum, cold chemistry, cold collision, quantum computation, quantum information processing and the measurement of fundamental physical constants. In this thesis, methods of preparing cold molecules and trapping of neutral molecules are first reviewed, the applications of cold molecules are also introduced. Then two new schemes of trapping cold polar molecules are proposed. After that, an important molecule(CH radical) which can be used for Stark deceleration and manipulation is introduced. Two methods for CH radical production are used:the DC pulse discharge and the photodissociation using the fifth harmonic YAG laser. Summary and outlook are given in the end.
     Using two charged stainless steel rings and a grounded metal plate, an optically accessible and controllable electrostatic surface storage ring for cold polar molecules can be formed on a chip. The spatial distribution of the electrostatic fields is numerically calculated. Relationships between the height of the trap center above the chip surface and the setup parameters are investgated in detail. The motion of the molecules in the storage ring is numerically simulated with OH radical molecules as a tester. Dependencies of molecular translational temperature and their trapping efficiency on parameters of the trap setup and the initial distribution of cold molecules are analyzed. Numerical simulations indicate that the number of round trips a trapped molecular packet makes can be improved significantly by incorporating bunching function into the scheme.
     Another scheme of a controllable high-efficient electrostatic surface trap for cold polar molecules on a chip is also studied, which consists of three charged rings and two insulating substrates. The electric fields and corresponding trapping potential for ND3molecules of J, K M>=|1,-1> state are calculated. The dependence of the effective well depth on the system parameters is analyzed. Monte-Carlo simulation shows that the loading efficiency of molecules into the trap can as high as-90%with a translational temperature of cold molecules being-14mK. Adiabatic cooling is numerically simulated by decreasing the trap depth and the temperature of the trapped molecules drops from34.5mK to5.8mK.
     Experimental study of production of CH radicals is performed using the method of DC pulse discharge. Experimental data are compared to the simulated ones given by the LIFBASE software and the vibrational and rotational temperatures of CH(A2△) product are obtained. The relationships between the CH(A2Λ) emission spectrum intensity and the experimental parameters are studied, such as the discharge duration, the time delay between the trigger of the pulse valve and the discharge and the voltage of discharge.Using the tool of resonance enhanced multiphoton ionization(REMPI), we study the REMPI of CH radical.
     Finally, The fifth harmonic YAG laser is used to produce CH (A2△) by multiphoton dissociation of (CH3)2CO, CH3NO2, CH2Br2and CHBr3respectively. The emission spectrum of CH (A2△) is acquired and analyzed. The dependence of fluorescence intensity on pulse energy of the laser is studied and the probable dissociation channels are analyzed. The relationships between the fluorescence intensity and some parameters are studied, such as the temperature of the beam source, stagnation pressure and the delay between the trigger of pulse valve and the laser. The role that the carrier gases play during the photodissociation is analyzed. The vibrational and rotational temperatures of CH(A2△) are obtained by comparing experimental data to simulated ones from the LIFBASE program.
引文
[1]J. Van Veldhoven, J. Kupper, H. L. Bethlem, B. Sartakov, A. J. A. van Roij, and G Meijer, Eur. Phys. J. D 31,337-349(2004).
    [2]J. J. Gilijamse, S. Hoekstra, S. Y. T. vande Meerakker, G C. Groenenboom, G Meijer, Science 313,1617-1620 (2006).
    [3]S. Willitsch, M. T. Bell, A. D. Gingell, S. R. Procter, T. P. Softley, Phys.Rev. Lett. 100,043203 (2008).
    [4]R. Otto, J. Mikosch, S. Trippel, M. Weidemuller, R.Wester, Phys. Rev. Lett. 101,063201 (2008).
    [5]J. J. Hudson et al., Phys. Rev. Lett.89,023003(2002).
    [6]M. Tarbutt et al., Faraday Discuss.142,37(2009).
    [7]V. V. Flambaum and M.GKozlov, Phys. Rev. Lett.99,150801(2007).
    [8]D. DeMille et al., Phys. Rev. Lett.100,023003(2008).
    [9]D. DeMille et al., Phys. Rev. Lett.88,067901(2002).
    [10]S. G Karshenboim, Can. J. Phys.1%,639(2000).
    [11]J. P. Uzan, Rev. Mod. Phys.75,403(2003).
    [12]Eric R.Hudson, H. J. Lewandowski, Brian C. Sawyer, and Jun Ye, Phys. Rev. Lett 96,143004(2006).
    [13]S. Truppe, R. J. Hendricks, S. K. Tokunaga, H. J. Lewandowski, M. G. Kozlov, Christian Henkel, E. A. Hinds and M. R. Tarbutt, Nat.Commun.4,2600(20l3).
    [14]E. S. Shuman, J. F. Barry and D. DeMille, Nature 467,820-823(2010).
    [15]Matthew T. Hummon, Mark Yeo, Benjamin K. Stuhl, Alejandra L. Collopy, Yong Xia, and Jun Ye, Phys. Rev. Lett.110,143001(2013).
    [16]Jonathan D.Weinstein, Robert de Carvalho, Thierry Guillet, Bretislav Friedrich, and John M. Doyle, Nature 395,148-150(1998).
    [17]S.E.Maxwell, N.Brahms, R.deCarvalho, D.R.Glenn, J. S. Helton, S.V.Nguyen, D.Patterson, J.Petricka, D. DeMille, and J. M.Doyle, Phys. Rev. Lett.95,173201(2005).
    [18]Hsin-I Lu, Julia Rasmussen, Matthew J. Wright, Dave Patterson and John M. Doyle, Phys. Chem. Chem. Phys.13,18986-18990(2011).
    [19]S. A. Rangwala, T. Junglen, T. Rieger, P. W. H. Pinkse, and G. Rempe, Phys. Rev. A67,043406(2003).
    [20]Sebastiaan Y. T. van de Meerakker, Hendrick L. Bethlem, Nicolas Vanhaecke, and Gerard Meijer, Chem. Rev.112,4828-4878(2012).
    [21]Stephen D.Hogan, Michael Motsch and Frederic Merkt, Phys. Chem. Chem. Phys.13,18705-18723(2011).
    [22]E. Narevicius, A. Libson, C. G. Parthey, I.Chavez, J. Narevicius, U. Even and M. G Raizen, Phys. Rev. A77,051401(2008).
    [23]R. Fulton, A. I. Bishop, and P. F. Barker, Phys. Rev. Lett.93,243004(2004).
    [24]R. Fulton, A. I. Bishop, M. N. Shneider and P. F. Barker, Nature Physics. 2,465-468(2006).
    [25]Manish Gupta and Dudley Herschbach,J. Phys. Chem. A 103, 10670-10673(1999).
    [26]Jeremy M. Sage, Sunil Sainis, Thomas Bergeman, and David DeMille, Phys. Rev. Lett.94,203001(2005).
    [27]Elizabeth A. Donley, Neil R. Claussen, Sarah T. Thompson and Carl E. Wieman, Nature 417,529-533(2002).
    [28]Cindy A. Regal, Christopher Ticknor, John L. Bohn and Deborah S. Jin, Nature 424,47-50(2003).
    [29]王义遒.原子的激光冷却与陷俘[M].北京:北京大学出版社,2007:104.
    [30]印建平.原子光学-基本概念、原理、技术及其应用.上海交通大学出版社,2012:17-18.
    [31]Messer, J. K., De Lucia, F. C. Phys. Rev. Lett.53,2555(1984).
    [32]Yang Liu, Min Yun, Yong Xia, Lianzhong Deng and Jianping Yin, Phys.Chem.Chem.Phys.12,745-752(2010).
    [33]C.Sommer, M.Motsch, S.Chervenkov, L.D.van Buuren, M.Zeppenfeld, P.W.H.Pinkse, and GRempe, Phys.Rev.A82,013410(2010).
    [34]Hendrick L.Bethlem, Giel Berden, and Gerard Meijer, Phys. Rev. Lett.%3, 1558-1561(1999).
    [35]H. L. Bethlem, G. Berden, F. M. H. Crompvoets, R. T. Jongma, A. J. A. Van Roij, and G. Meijer, Nature 406,491(2000).
    [36]O.Bucicov, M. Nowak, S. Jung, G. Meijer, E. Tiemann, and C. Lisdat, Eur. Phys. J. D.46,463-469(2008).
    [37]J. R. Bochinski, E. R. Hudson, H. J. Lewandowski, G. Meijer, and J. Ye, Phys. Rev. Lett.91,243001(2003).
    [38]Sebastiaan Y T van de Meerakker, Irena Labazan, Steven Hoekstra, Jochen Kupper and Gerard Meijer, J. Phys. B:At. Mol. Opt. Phys.39, S1077-S1084(2006).
    [39]Eric R.Hudson, Christopher Ticknor, Brian C. Sawyer, Craig A. Taatjes, H. J. Lewandowski, J. R. Bochinski, J. L. Bohn and Jun Ye, Phys. Rev. A 73, 063404(2006).
    [40]S. K. Tokunaga, J. M. Dyne, E. A. Hinds and M. R. Tarbutt, New Journal of Physics.11,055038(2009).
    [41]Xingan Wang, Moritz Kirste, Gerard Meijer, Sebatiaan Y. T. van de Meerakker, Zeitschrift fur Physikalische Chemie.227,1595-1604(2013).
    [42]Samuel A Meek, Horst Conrad and Gerard Meijer, New Journal of Physics. 11,055024(2009).
    [43]Andreas Osterwalder, Samuel A.Meek, Georg Hammer,Henrik Haak, and Gerard Meijer, Phys.Rev.A81,051401(2010).
    [44]Hendrick L Bethlem, M.R. Tarbutt, Jochen Kupper, David Carty, Kirstin Wohlfart, E. A. Hinds and Gerard Meijer,J. Phys. B:At. Mol. Opt. Phys. 39, R263-R291(2006).
    [45]T. E. Wall, J. F. Kanem, J. M. Dyne, J. J. Hudson, B. E. Sauer, E. A. Hinds and M. R. Tarbutt, Phys. Chem. Chem. Phys.13,18991(2011).
    [46]Shunyong Hou, Shengqiang Li, Lianzhong Deng and Jianping Yin, J.Phys.B:At.Mol.Opt.Phys.46,045301(2013).
    [47]LP Parazzoli, N Fitch, D S Lobser and H J Lewandowski, New Journal of Physics.11,055031(2009).
    [48]S. D. Hogan, A. W. Wiederkehr, H.Schmutz and F. Merkt, Phys. Rev. Lett.101, 143001(2008).
    [49]E. Narevicius, A. Libson, G G. Parthey, I. Chavez, J. Narevicius, U. Even and M. G. Raizen, Phys. Rev. Lett.100,093003(2008).
    [50]A. Trimeche, M. N. Bera, J. Cromieres, J. Robert, N. Vanhaecke, Eur. Phys. J. D.65,263-271(2011).
    [51]Takamasa Momose, Yang Liu, Sida Zhou, Pavle Djuricanin and David Carty, Phys.Chem. Chem.Phys.15,1772-1777(2013).
    [52]Xiang Ji, Qi Zhou, Zhenxing Gu, and Jianping Yin, Optics Express.20, 7792(2012).
    [53]S. Jochim, M. Bartenstein, A. Altmeyer, G. Hendl, C. Chin, J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett.91,240402-1(2003).
    [54]K. Xu, T. Mukaiyama, J. R. Abo-Shaeer, J. K. Chin, D. E. Miller, and W. Ketterle, Phys. Rev. Lett.91,210402(2003).
    [55]T. Takekoshi, B. M. Patterson, and R. J. Knize, Phys. Rev. Lett.81,5105-5108(1998).
    [56]David DeMille and Eric R. Hudson, Nature Physics.4,911-912(2008).
    [57]T. Rieger, T. Junglen, S. A. Rangwala, P. W. H. Pinkse, and G. Rempe, Phys. Rev. Lett.95,173002(2005).
    [58]J. K leinert, C. Haimberger, P. J. Zabawa, and N. P. Bigelow, Phys. Rev. Lett.99,143002(2007).
    [59]Zhenxia Wang, Zhenxing Gu, Yong Xia, Xiang Ji, and Jianping Yin, J. Opt. Soc. Am. B.30,2348(2013).
    [60]Hendrick L. Bethlem, Jacqueline van Veldhoven, Melanie Schnell, and Gerard Meijer, Phys. Rev. A 74,063403(2006).
    [61]Samuel A.Meek, Hendrick L.Bethlem, Horst Conrad, and Gerard Meijer, Phys. Rev. Lett.100,153003(2008).
    [62]Hui Ma, Bei Zhou, Bin Liao, Jianping Yin, Chin. Phys. Lett.24,917-920 (2007).
    [63]Wang Qin, Li Sheng-Qiang, Hou Shun-Yong, Xia Yong, Wang Hai-Ling, and Yin Jian-Ping, Chin.Phys.B.23,013701(2014).
    [64]D. P. Katz, J. Chem. Phys.107,8491-8501(1997).
    [65]Floris M. H. Crompvoets, Hendrick L. Bethlem, Rienk T. Jongma, Gerard Meijer, Nature 411,174-176(2001).
    [66]F. M. H. Crompvoets, H. L. Bethlem, J. Kupper, A. J. A. van Roij and G. Meijer, Phys. Rev. A 69,063406(2004).
    [67]Cynthia E. Heiner, Gerard Meijer, and Hendrick L. Bethlem, Phys. Rev. A 78,030702(2008).
    [68]Peter C. Zieger, Sebastiaan Y. T. van de Meerakker, Cynthia E. Heiner, Hendrick L. Bethlem, Andre J. A. van Roij, Gerard Meijer, Phys. Rev. Lett.105, 173001(2010).
    [69]Lianzhong Deng, Yong Xia, and Jianping Yin, J. Opt. Soc. Am. B 27, A8 8-A92(2010).
    [70]Jonathan D. Weinstein, Robert deCarvalho, Thierry Guillet, Bretislav Friedrich and John M. Doyle, Nature 395,148-150(1998).
    [71]Brian C.Sawyer, Benjamin L.Lev, Eric R.Hudson,Benjamin K.Stuhl, Manuel Lara, John L.Bohn, and Jun Ye,Phys.Rev.Lett.98,253002(2007).
    [72]T. Takekoshi, B. M. Patterson, and R. J. Knize, Phys. Rev. Lett.81,5105-5108(1998).
    [73]Johann G Danzl et al, New Journal of Physics.11,055036(2009).
    [74]Benjamin K.Stuhl, Mark Yeo, Matthew T. Hummon and Jun Ye, Molecular Physics. 111,1798-1804(2013).
    [75]M. R. Tarbutt, J. J. Hudson, B. E. Sauer and E. A. Hinds, Faraday Discuss.142, 37-56(2009).
    [76]Sebastiaan Y. T. van de Meerakker, Nicolas Vanhaecke, Mark P.J. van der Loo, Gerrit C. Groenenboom, and Gerard Meijer, Phys. Rev. Lett.95,013003(2005).
    [77]Benjamin K. Stuhl, Matthew T. Hummon, Mark Yeo, Goulven Quemener, John L.Bohn and Jun Ye, Nature 492,396-400(2012).
    [78]Melanie Schnell and Gerard Meijer, "Cold Molecules:Preparation, Applications, and Challenges", Angew. Chem. Int. Ed,48,6010-6031(2009).
    [79]J. J. Gilijamse, S. Hoekstra, S. Y. T. van de Meerakker, G C. Groenenboom, G Meijer, "Near-Threshold Inelastic Collisions Using Molecular Beamswith a Tunable Velocity", Science 313,1617-1620(2006).
    [80]H. J. Loesch and B. Scheel, "Molecules on Kepler Orbits:An Experimental Study", Phys. Rev. Lett.85,2709-2712(2000).
    [81]T. Junglen, T. Rieger. S. A. Rangwala, P. W. H. Pinkse, and G Rempe, "Two-Dimensional Trapping of Dipolar Molecules in Time-Varying Electric Fields", Phys. Rev. Lett.92,223001(2004).
    [82]Min Sun and Jianping Yin, "Controllable electrostatic guiding for cold polar molecules on the surface of a chip", Phys. Rev. A 78,033426(2008).
    [83]Min Sun and Jianping Yin, "Controllable surface guiding for cold polar molecules with four charged wires", J. Opt. Soc. Am. B25,1214(2008).
    [84]S. A. Schulz, H.L. Bethlem, J. van Veldhoven, J. Kupper, H. Conrad, and G. Meijer, "Microstructured Switchable Mirror for Polar Molecules ", Phys. Rev. Lett.93,020406(2004).
    [85]H. L. Bethlem, F. M. H. Crompvoets, R.T. Jongma, S. Y. T. van de Meerakker and G Meijer, "Deceleration and trapping of ammonia using time-varying electric fields", Phys. Rev. A 65,053416(2002).
    [86]J. van Veldhoven, H. L. Bethlem, M. Schnell and G. Meijer, "Versatile electrostatic trap", Phys.Rev. A 73,063408 (2006).
    [87]S. A. Meek, H. Conrad, G. Meijer, "Trapping Molecules on a chip", Science 324, 1699(2009).
    [88]F. M. H. Crompvoets, H.L. Bethlem, R.T. Jongma, and G. Meijer, "A prototype storage ring for neutral molecules", Nature 411,174-176 (2001).
    [89]S. Y. Buhmann, M. R. Tarbutt, S. Scheel, and E. A. Hinds, "Surface-induced heating of cold polar molecules", Phys. Rev. A 78,052901 (2008).
    [90]Yong Xia, Yalin Yin, Haibo Chen, Lianzhong Deng, Jianping Yin, "Electrostatic Surface Guiding for Cold Polar Molecules:Experimental Demonstration", Phys. Rev. Lett.100,043003(2008).
    [91]Lianzhong Deng,Yan Liang, Zhenxing Gu, Shunyong Hou, Shengqiang Li,Yong Xia, and Jianping Yin, "Experimental Demonstration of a Controllable Electrostatic Molecular Beam Splitter", Phys. Rev. Lett.106,140401(2011).
    [92]S.D. Hogan, P. Allmendinger, H.Saβmannshausen, H. Schmutz, and F. Merkt, "Surface-Electrode Rydberg-Stark Decelerator", Phys. Rev. Lett.108,063008 (2012).
    [93]Lianzhong Deng, Yong Xia, and Jianping Yin, "Electrostatic surface storage ring for cold polar molecules", J. Opt. Soc.Am.5.27,88-92(2010).
    [94]M. Alagia, N. Balucani, P. Casavecchia, D. Stranges, and G G. Volpi, " Crossed beam studies of fouratom reactions:The dynamics of OH+D2", J.Chem. Phys.98,2459(1993).
    [95]P. Anderson, N. Aristov, D. Beushausen, and H. W. Lulf, "Λ-doublet substate specific investigation of rotational and fine structure transitions in collisions of OH with H2 and D2 "J. Chem. Phys.95,5763(1991).
    [96]D. M. Sonnenforth, R. G. Macdonald, and K. Liu, "Fine-structure selectivi ty in polyatomic reaction products:CN(X2∑+,v=0,N=0,1)+O2→NCO(X 2Π3/2,0010J,e/f)+O", J. Chem. Phys.93,1478(1990).
    [97]J. J. ter Meulen, W. L. Meerts, G W. M. van Mierlo, and A. Dymanus, "Observations of Population inversion between the A-Doublet States of O H", Phys. Rev. Lett.36,1031(1976).
    [98]M. C. van Beek and J. J. ter Meulen, "An intense pulsed electrical discharge source for OH molecular beams", Chem. Phys. Lett.337,237(2001).
    [99]H. J. Lewandowski, E.R. Hudson, J. R. Bochinski, and J. Ye, "A pulsed,low-temperature beam of supersonically cooled free radical OH molecules", Chem. Phys. Lett.395,53-57(2004).
    [100]J. R. Bochinski, Eric R. Hudson, H J. Lewandowski, and J. Ye, "Cold free-radical molecules in the laboratory frame", Phys. Rev. A 70,043410(2004).
    [101]Kirstin Wohlfart, Frank Filsinger, Fabian Gratz, Jochen Kupper,and Gerard Meijer, "Stark deceleration of OH radicals in low-field-seeking and high-field-seeking quantum states ", Phys. Rev. A 78,033421(2008).
    [102]Sebastiaan Y. T. van de Meerakker, Paul H.M. Smeets, Nicolas Vanhaecke, Rienk T. Jongma, and Gerard Meijer, "Deceleration and Electrostatic Trapping of OH Radicals", Phys. Rev. Lett.94,023004(2005).
    [103]H. R. Thorscheim, J. Weiner, P. S. Julienne, Phys. Rev. Lett.58,2420-2 423(1987).
    [104]P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratliff, S. L. Rolston, M. E.Wagshul, Phys. Rev. Lett.71,2200-2203 (1993).
    [105]J. D. Miller, R. A. Cline, D. J. Heinzen, Phys. Rev. Lett.71,2204-2207 (1993).
    [106]K.-K. Ni, S. Ospelkaus, M. H. G de Miranda, A. Peer, B. Neyenhuis, J. J. Zirbel, S. Kotochigova, P. S. Julienne, D. S. Jin, J. Ye, Science 322,231-235 (2008).
    [107]F. Lang, K. Winkler, C. Strauss, R. Grimm, J. Hecker Denschlag, Phys. Rev. Lett.101,133005 (2008).
    [108]J. G. Danzl, E. Haller, M. Gustavsson, M. J. Mark, R. Hart, N. Boulouf a,O. Dulieu, H.Ritsch. H.-C. Nagerl, Science 321,1062-1066 (2008).
    [109]W. C. Campbell, G C. Groenenboom, H.-I. Lu, E. Tsikata, J. M. Doyle, Phys. Rev. Lett.100,083003 (2008).
    [110]J. D. Weinstein, R. De Carvalho, T. Guillet, B. Friedrich, J. M. Doyle, Nature 395,148-150 (1998).
    [Ill]Y. Yamakita, S. R. Procter, A. L. Goodgame, T. P. Softley, F. Merkt, J. Chem. Phys.121,1419-1431 (2004).
    [112]N. Vanhaecke, U. Meier, M. Andrist, B. H. Meier, F. Merkt, Phys. Rev. A 75, 031402(2007).
    [113]S. D. Hogan, D. Sprecher, M. Andrist, N. Vanhaecke, F. Merkt, Phys Rev.A 76, 023412 (2007).
    [114]P. F. Barker, M. N. Shneider, Phys. Rev. A 66,065402 (2002).
    [115]M. S. Elioff, J. J. Valentini, D. W. Chandler, Science 302,1940-1943 (2003).
    [116]N.-N. Liu, H. Loesch, Phys. Rev. Lett.98,103002 (2007).
    [117]P. B. Moon, C. T. Rettner, J. P. Simons, J. Chem. Soc. FaradayTrans.,74, 630-643 (1978).
    [118]J. J. Gilijamse, S. Hoekstra, S. A. Meek, M. Metsala, S. Y. T. van de Meerakker, G. Meijer, and G C. Groenenboom.,J. Chem. Phys.127,221102 (2007).
    [119]A. Andre, D. DeMille, J. M. Doyle, M. D. Lukin, S. E. Maxwell, P. Rabl, R. J. Schoelkopf, and P. Zoller., Nature Phys.2,636 (2006).
    [120]M. Zachwieja, J.Mol.Specrosc.170,285(1995).
    [121]A. Kalemos and A. Mavridis,J. Chem. Phys.1111,9536(1999).
    [122]J. Luque, and D.R.Crosley, J. Chem. Phys.104,2146(1996).
    [123]T. Heurlinger and E. Hulthen, Z. Wiss. Photogr.Photophys.Photochem.18, 241(1919).
    [124]T. Heulinger, Ph.D.thesis, University of Lund,1918.
    [125]G. Herzberg and J. Shoosmith, Nature (London) 183,1801(1959).
    [126]G. Herzberg, Proc. R. Soc. London. Ser. A 262,291(1961).
    [127]G. Herzberg and J. W. C. Johns, Proc. R. Soc. London, Ser. A 295,107(1966).
    [128]G. Herzberg and J. W. C. Johns, Astrophys. J.158,399(1969).
    [129]Truppe, S.et al. Nat.Commun4,1-7(2013).
    [130]M. Kind, F. Stuhi, Yi-Ren Tzeng, Millard H. Alexander, and Paul J. Dagdigian, J. Chem. Phys.114,4479-4489 (2001).
    [131]D. A. Lichtin, M.R.Bermun, M. C. Lin, Chem.Phys.Lett.108,18(1984).
    [132]N. Nishiyama, H. Sekiya, S. Yamaguchi, M. Tsuji and Y. Nishimura, J.Phys.Chem.90,1491(1986).
    [133]A. J. Dean, R. K. Hanson and C. Bowman, J. Phys. Chem.95,3180(1991).
    [134]M. Takezaki, H. Ohoyama, T. Kasai and K. Kuwata, Laser Chem.15,11 3-121(1994).
    [135]K. Ikejiri, H. Ohoyama, Y. Nagamachi, T. Kasai, Chem. Phys. Lett.401, 465-469(2005).
    [136]K. J. Rensberger. M. J. Dyer and R. A. Copeland, Appl. Opt.27,3679 (1988)
    [137]J.L. Cooper and J.C.Whitehead, J. Chem. Soc. Faraday Trans.88,2323(1992).
    [138]Congxiang Chen, Qin Ran, Shuqin Yu and Xingxiao Ma, Chem. Phys. Lett.19, 307(1993).
    [139]Y. Nagamachi, H. Ohoyama, K. Yamakawa, T. Kasai, Chem. Phys. Lett.421,124-128(2006).
    [140]By Constantine Fotakis, Margarita Martin and Robert J. Donovan, J. Chem. Soc. Faraday Trans.2,78,1363-1371(1982).
    [141]Peng Zou, Jinian Shu, Trevor J. Sears, Gregory E. Hall, and Simon W. North,J. Phys.Chem. A 108,1482-1488(2004).
    [142]A. P. Baronavski and J. R. Mcdonald, Chem. Phys. Lett.56,369-372(1978).
    [143]S. V. Avtaeva, M. Z. Mamytbekov and D. K. Otorbaev, J. Phys. D:Appl. Phys. 30,3000-3007(1997).
    [144]C. Romanzin, S. Boye-Peronne and D. Gauyacq, Y. Benilan and M.-C. Gazeau, S.Douin, J. Chem. Phys.125,114312(2006).
    [145]David T. Anderson, Scott Davis, Timothy S. Zwier, David J.Nesbitt, Chem. Phys. Lett.258,207-212(1996).
    [146]Koichi Ohno, Naoki Kishimoto, and Hideo Yamakado,J. Phys. Chem.99, 9687-9693(1995).
    [147]J. E. Velazco, J. H. Kolts, and D. W. Setser, J. Chem. Phys.69, 4357-4373(1978).
    [148]LIFBASE:Database and spectral simulation for diatomic molecules, edited by J. Luque and D. R. Coquart, M. F. Merienne, and P. C. simon, Planet. Space Sci.37,1127(1989).
    [149]Michael N. R. Ashfold, Simon G. Clement, Jonathan D. Howe and Colin M. Western, J. Chem. Soc. Faraday. Trans.89,1153-1172(1993).
    [150]A. P. Baronavski and J. R. Mcdonald, Chem. Phys. Lett.56,369-372(1978).
    [151]C. Fotakis, M. Martin, K. P. Lawley and R. J. Donovan, Chem. Phys. Lett, 67,1-4(1979).
    [152]R.Gorden and P. Ausloos,J. Chem. Phys.46,4823(1967).
    [153]Peter. Chen, Joan B. Pallix, William A. Chupka, and Steven D. Closon, J. Chem. Phys.86,516-520(1986).
    [154]Jorg Lindner, Karsten Ermisch, Ralf Wilhelm, Chem. Phys.238, 329-341(1998).
    [155]Viktor Chikan, Frederic Fournier, and Stephen R. Leone, J. Phys. Chem.A.110, 2850-2857(2006).
    [156]L.J.Butler, D. Krajnovich, and Y. T. Lee,J. Chem. Phys.79,1708(1983).
    [157]Takashi NAGATA, Mutsumi SUZUKI, Kaoru SUZUKI, Tamotsu KONDOW and Kozo KUCHITSU, Chem. Phys.88,163-170(1984).
    [158]Shi-Xing Yang, Guang-Yi Hou, Jian-Hang Dai, Chih-Hsuan Chang, and Bor-Chen Chang,J. Phys. Chem. A.114,4785-4790(2010).
    [159]霍炳海,区镜添.大学物理.18,38(1999).
    [160]Giacinto Scoles, Atomic and Molecular Beam Methods(Oxford, New York,1988),pp 33-35.
    [161]Xia-Min Wang, Sai-Dan Yang, Yang-Qin Chen, Xiao-Hua Yang, ACTA OPTICA SINICA.26,1866-1870(2006).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700