用户名: 密码: 验证码:
转基因海带配子体的制备与高效增殖
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海带具有很高的营养价值和经济社会价值。自20世纪90年代以来,本实验室在借鉴高等植物基因工程原理和方法的基础上,根据海带自身特点,建立了海带遗传转化体系(海带孢子体表达系统),它的基本原理是利用基因枪法转化海带配子体,经孤雌或受精途径再生幼孢子体后,用氯霉素筛选幼孢子体获得转基因海带,然后进行海上安全栽培和转基因产品的检测与提取。目前该表达系统已成功实现报告基因(β-半乳糖苷酶基因,lacZ)和功能基因(乙肝表面抗原基因,HBsAg)的稳定表达。
     由于海带孢子体表达系统需经孢子体再生和海上栽培等阶段,周期较长,而且转基因安全性问题也在一定程度上制约其研究与应用。因此,我们在海带孢子体表达系统的基础上又建立和优化了海带配子体表达系统,并成功实现了报告基因(绿色荧光蛋白基因,GFP)的瞬间表达和功能基因(瑞替普酶基因,rt-PA)的稳定表达。虽然海带配子体表达系统能避免转基因安全性问题,周期较短,但在表达量和生物量积累方面,与孢子体表达系统相比还有较大差距。
     本文首先在海带配子体表达系统中成功实现了人酸性成纤维细胞生长因子基因(hafgf)和鲎素基因(tac)的稳定表达,制备了转基因海带配子体,然后将光生物反应器培养技术应用于转基因海带配子体的高效增殖,以期解决阻碍海带配子体表达系统发展的量的问题,并为转基因海带配子体的大规模培养提供试验依据和技术支持。
     本文的研究结果为:
     1、人酸性成纤维细胞生长因子基因和鲎素基因可以稳定整合到海带配子体基因组中,实现转基因产物的表达。
     2、根据转基因海带配子体的生长特点,研制开发了一套培养体积为300 ml的鼓泡式光生物反应器,它具有操作简便、成本低廉、适合海带配子体生长等特点。随后将培养体系扩大到2.5 L,并研究了光对转基因海带配子体生长的影响,试验结果显示,转基因海带配子体在光强为30μE m~(-2) s~(-1)时即可达到光饱和生长,最优光周期为14:10 LD,而且蓝光可促进转基因海带配子体的生长。
     3、在前期研究工作的基础上,为改善反应器内的传质条件,我们又设计研制了2.5 L气升式光生物反应器用于转基因海带配子体的高效增殖。研究发现,气升式光生物反应器较鼓泡式光生物反应器能明显地改善反应器内的传质状态,实现转基因海带配子体更高密度的培养(生物量可达到1,990 mg L~(-1)),是一套高密度悬浮培养转基因海带配子体的有效装置和设备。
Laminaria japonica Aresch (Laminariales, Phaeophyta) is one of the most important seaweeds in China because of its high nutritional value, good economic and social efficiency. It has a heteromorphic life cycle with an alternation between a macroscopic diploid sporophyte generation and a microscopic haploid gametophyte generation. An original kelp transformation model, named Laminaria japonica sporophytic expression system, has been established in our laboratory since 1990s. In this model, gametophytes were transformed using microprojectile bombardment, and young sporophytes were regenerated through the routes of parthenogenesis or inbreeding. After undergoing chloramphenicol screening, those surviving young sporophytes were cultivated in containers and harvested before maturation of sporangia. Then, products were detected and extracted from transgenic kelp. Currently, reporter gene lacZ and functional gene HBsAg have been stably expressed by this model.
     Considering that present transformation route included sporophytes regeneration and cultivation on the sea, which is a time-consuming procedure. Thus, L. japonica gametophytic expression system has been established and developed to avoid transgenic safety problems and shorten transformation time. Up to now, transient expression of reporter gene GFP and stable expression of functional gene rt-PA have been realized in L. japonica gametophytes. But the expression level and biomass accumulation rate of this new model are much less than that of sporophytic expression system.
     In this study, transformation, selection, detection and expression of human acidic fibroblast growth factor gene and tachyplesin gene were successfully realized in L. japonica gametophytes. To avoid problems of contamination of culturing transgenic marine plants in open systems, biochemical engineering technology including photobioreactor, an effective alternative to the commercial aquiculture of transgenic kelp, was utilized in the cultivation of transgenic gametophytes for rapid vegetative propagation to resolve problems of quality and quantity of this new model.
     The results of this dissertation were as follows:
     1、Human acidic fibroblast growth factor gene and tachyplesin gene were stably integrated into L. japonica gametophytes genome, and successfully expressed.
     2、A bubble-column photobioreactor with a working volume of 300 ml has been designed, constructed and applied in cultivation of transgenic L. japonica gametophytes. Results showed that the photobioreactor is very favorable to culture the transgenic L. japonica gametophytes, and it is compact, low cost and easy to operate monoseptically. And then, the culture system was scaled up to 2.5 L and effect of light regime on culture growth of these gametophytes was investigated. The culture growth of transgenic L. japonica gametophytes was light saturated when incident light intensity was more than 30μE m~(-2) s~(-1), and blue light could promote the culture growth.
     3、For improving mass transfer conditions of photobioreactor, a draft-tube internal-loop airlift photobioreactor with an effective cultivation volume of 2.5 L has been designed, manufactured and conducted to cultivate transgenic L. japonica gametophytes. Results demonstrated that the airlift photobioreactor could improve mass transfer conditions compared with bubble-column photobioreactor, and a higher dry cell density (1,990 mg L~(-1)) was obtained. Thus, a promising and powerful apparatus (airlift photobioreactor) has been established for cultivation of transgenic L. japonica gametophytes in laboratory.
引文
1. Acién Fernández FG, Fernández Sevilla JM, Sánchez Pérez JA, et al. Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chem. Eng. Sci. 2001, 56(8): 2721~2723.
    2. Ahn O, Petrell RJ and Harrison PJ. Ammonium and nitrate uptake by Laminaria saccharina and Nereocystis luetkeana originating from a salmon sea cage farm. J. Appl. Phycol. 1998, 10: 333~340.
    3. Baghdadli D, Tremblin G and Ducher M. The effects of light quality on growth, photosynthesis and development in cultivated thalli of Cystoseira barbata C. Ag. f. aurantia Giaccone. Bot. Mar. 1994, 37(1): 43~50.
    4. Barr PJ, Cousens LS, Lee-Ng CT, et al. Expression and processing of biologically active fibroblast growth factors in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 1988, 263: 16471~16478.
    5. Bates SS, Worms J and Smith JC. Effects of ammonium and nitrate on growth and domoic acid production of Nitzschia pungens in batch culture. Can. J. Fish. Aquat. Sci. 1993, 50: 1248~1254.
    6. Ben-Amotz A and Avron M. The biotechnology of cultivating the halotolerant alga Dunaliella. Tibtech. 1990, 8: 121~126.
    7. Bird KT, Dawes CJ and Romeo JT. Light quality effects on carbon metabolism and collection in Gracilaria verrucosa. Mar. Biol. 1981, 64(2): 219~223.
    8. Braga AC and Yoneshigue-Valentin Y. Nitrogen and phosphorus uptake by the Brazilian kelp Laminaria abyssalis (Phaeophyta) in culture. Hydrobiologia. 1996, 326/327: 445~450.
    9. Cao YH and Pettersson RF. Human acidic fibroblast growth factor over expressed in insect cells is not secreted into the medium. Growth Factors. 1990, 3(1): 1~13.
    10. Chaumont D. Biotechnology of algal biomass production: a review of system for outdoor mass culture. J. Appl. Phycol. 1993, 5: 593~604.
    11. Chen SY and Qi HS. Photolithotrophic cultivation of Laminaria japonica gametophyte cells in stirred tank photobioreactors: studies in diferent pulse feeding modes. China Biotechnol.2008, 28(1): 36~43.
    12. Contreras A, Garcia F, Molina E, et al. Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol. Bioeng. 1998, 60(3): 317~325.
    13. Cook PM. Large-scale culture of Chlorella. In: The culture of algae (Charles F, ed). Ohio: Kettering Foundation. 1950, pp: 53~57.
    14. Coutinho R and Zingmark R. Diurnal photosynthetic responses to light by macroalgae. J. Phycol. 1987, 23(2): 336~343.
    15. Dai JG, Xie HW, Jin G, et al. Preliminary study on high-level expression of tandem-arranged tachyplesin-encoding gene in Bacillus subtilis Wb800 and its antibacterial activity. Mar. Biotechnol. 2009, 11: 109~117.
    16. Dawes CJ著.厦门大学植物生态学研究室译.海洋植物学.厦门:厦门大学出版社. 1989, pp: 195~196.
    17. Dring MJ and Lüning K. Induction of two-dimensional growth and hair formation by blue light in the brown alga Scytosiphon lomentaria. Z. Pflanzenphysiol. 1975, 75(1): 107~117.
    18. Dring MJ and Lüning K. Photomorphogenesis of marine macroalgae. In: Encyclopedia of Plant Physiology, Vol. 16B (Shrosphire W and Mohr H, eds). Berlin: Springer-Verlag. 1983, pp: 545~569.
    19. Dring MJ. Photocontrol of development in algae. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39: 157~174.
    20. Dring MJ. Photoperiodism and phycology. In: Progress in Phycological Research, Vol. 3 (Round FE and Chapman DJ, eds). Bristol: Biopress. 1984, pp: 159~192.
    21. Fan LH, Zhang YT, Cheng LH, et al. Optimization of carbon dioxide fixation by Chlorella vulgaris cultivated in a membrane-photobioreactor. Chem. Eng. Technol. 2007, 30(8): 1094~1099.
    22. Gao JT, Zhang YC, Wang HH, et al. Suspension culture of gametophytes of transgenic kelp in a photobioreactor. Biotechnol. Lett. 2005a, 27: 1025~1028.
    23. Gao JT, Zhang YC, Zhang W, et al. Optimal light regime for the cultivation of transgenic Laminaria japonica gametophytes in a bubble-column bioreactor. Biotechnol. Lett. 2005b, 27: 1417~1419.
    24. Holdsworth ES. Effect of growth factors and light quality on the growth, pigments and photosynthesis of two diatoms, Thalassiosira gravida and Phaeodactylum tricornutum. Mar. Biol. 1985, 86(2): 253~262.
    25. Hu Q, Guterman H, Richmond A, et al. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnol. Bioeng. 1996, 51(1): 51~60.
    26. Huang YM and Rorrer GL. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor. Biotechnol. Prog. 2003, 19: 418~427.
    27. Huang YM and Rorrer GL. Dynamics of oxygen evolution and biomass production during cultivation of Agardhiella subulata microplantlets in a bubble-Column photobioreactor under medium perfusion. Biotechnol. Prog. 2002a, 18: 62~71.
    28. Huang YM and Rorrer GL. Optimal temperature and photoperiod for cultivation of Agardhiella subulata microplantlets in a bubble-column photobioreactor. Biotechnol. Bioeng. 2002b, 79: 135~144.
    29. Huang YM, Maliakal S, Cheney DP, et al. Comparison of development and photosynthetic growth for filament clump and regenerated microplantlet cultures of Agardhiella subulata (Rhodophyta, Gigartinales). J. Phycol. 1998, 34: 893~901.
    30. Jerlov NG. Seawater acts as a monochromator of blue light. In: Marine Optics (Jerlov NG ed). Amsterdam: Elsevier Science Publishers. 1976, pp: 52.
    31. Jiang P, Qin S and Tseng CK. Expression of hepatitis B surface antigen gene(HBsAg)in Laminaria japonica (Phaeophyta, Laminariales). Chinese Sci. Bull. 2002, 47: 1438~1440.
    32. Jiang P, Qin S and Tseng CK. Expression of the lacZ reporter gene in sporophytes of the seaweed Laminaria japonica (Phaeophyceae) by gametophyte-targeted transformation. Plant Cell Report. 2003, 12: 1211~1216.
    33. Johnson WS, Gigon A, Gulmon SL, et al. Comparative photosynthetic capacities of intertidal algae under exposed and submerged conditions. Ecology. 1974, 55(3): 450~453.
    34. J?rgensen EG. The adaptation of plankton algae. IV. Light adaptation in different algal species. Physiol. Plant. 1969, 22(12): 1307~1315.
    35. Kirk JTO. Light and photosynthesis in aquatic ecosystems. Cambridge: Cambridge University Press. 1986, pp: 401.
    36. Klagsbrun M. The fibroblast growth factor family: structural and biological properties.Progress in Growth Factor Research. 1989, 1(4): 207~235.
    37. Kohnert U, Rudolph R, Verheijen JH, et a1. Biochemical properties of the kringle 2 and protease domains are maintained in the refolded t-PA deletion variant BM 06.022. Protein Eng. 1992, 5(1): 93~100.
    38. Lee YK and Pirt SJ. Energetics of photosynthetic algal growth: influence of intermittent illumination in short (40 s) cycles. J. Gen. Microbiol. 1981, 124: 43~52.
    39. Lee YK, Ding SY, Low CS, et al. Design and performance of anα-type tubular photobioreactor for mass cultivation of microalgae. J. Appl. Phycol. 1995, 7(1): 45~52.
    40. Li DP, Zhou ZG, Liu HH, et a1. A new method of Laminaria japonica strain selection and sporeling raising by the use of gametophyte clones. Hydrobiologia. 1999, 398/399: 473~476.
    41. Li XJ, Cong YZ, Yang GP, et a1. Trait evaluation and trial cultivation of Dongfang No. 2, the hybrid of a male gametophyte clone of Laminaria longissima (Laminariales, Phaeophyta) and a female one of L. japonica. J. Appl. Phycol. 2007, 19(2): 139~151.
    42. Linemeyer DL, Kelly LJ, Menke JG, et al. Expression in Escherichia coli of a chemically synthesized gene for biologically active bovine acidic fibroblast growth factor. Nat. Biotechnol. 1987, 5: 960~965.
    43. Lobb RR, Harper JW and Fett JW. Purification of heparin-binding growth factors. Anal. Biochem. 1986, 154(1): 1~14.
    44. Lüning K and Dring MJ. Reproducing, growth and photosynthesis of gametophytes of Laminaria saccharina growth in blue and red light. Mar. Biol. 1975, 29(1): 195~200.
    45. Lüning K and Dring MJ. The influence of light quality on the development of the brown algae Pelatonia and Scytosiphon. Br. Phycol. J. 1973, 8(4): 333~338.
    46. Lüning K and Neushul M. Light and temperature demands for growth and reproduction of Laminaria gametophytes in southern and central California. Mar. Biol. 1978, 58(4): 297~309.
    47. Lüning K. Critical levels of light and temperature regulating the gametogenesis of three Laminaria species (Phaeophyceae). J. Phycol. 1980, 17: 1~15.
    48. Maliakal S, Cheney DP and Rorrer GL. Halogenated monoterpene production in regenerated plantlet suspension cultures of the macrophytic red alga Ochtodes secundiramea. J. Phycol. 2001, 37: 1010~1019.
    49. Mazzuca Sobczuk T, García Camacho F, Camacho Rubio F, et al. Carbon dioxide uptakeefficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnol. Bioeng. 2000, 67(4): 465~475.
    50. McLachlan J and Bidwell RGS. Effects of colored light on the growth and metabolism of Fucus embryos and apices in culture. Can. J. Bot. 1983, 61(12): 1993~2003.
    51. Merchuk JC, Gluz M and Mukmenev I. Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp. J. Chem. Technol. Biotechnol. 2000, 75(12): 1119~1126.
    52. Mergia A, Tischer E, Graves D, et al. Stucureal analysis of the gene for human acidic fibroblast growth factor. Biochem. Bioph. Res. Co. 1989, 164 (3): 1121~112.
    53. Miyata T, Tokunaga F, Yoneya T, et al. Antimicrobial peptides, isolated from horseshoe crab hemocytes, tachyplesin II, and polyphemusins I and II: Chemical structures and biological activity. J. Biochem. 1989, 106(4): 663~668.
    54. Morimoto M, Mori H, Otake T, et al. Inhibitory effect of tachyplesin II on the proliferation of human immunodeficiency virus in vitro. Chemotherapy. 1991, 37(3): 206~211.
    55. Mullikin RK and Rorrer GL. A tubular recycle photobioreactor for macroalgal suspension cultures. In: BioHydrogen (Zaborsky OR, ed). New York: Plenum Press. 1998, pp: 403~414.
    56. Muta T, Fujimoto T, Nakajima H, et al. Tachyplesins isolated from hemocytes of southeast Asian horseshoe crabs (Carcinoscorpius rotundicauda and Tachypleus gigas): Identification of a new tachyplesin, tachyplesin III, and a processing intermediate of its precursor. J. Biochem. 1990, 108: 261.
    57. Mutakami T, Niwa M, Tokunaga F, et al. Direct virus inactivation of tachyplesin I and its isopeptides from horseshoe crab hemocytes. Chemotherapy. 1991, 37(5): 327~334.
    58. Nakamura T, Furunaka H, Miyata T, et al. Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure. J. Biol. Chem. 1988, 263(32): 16709~16713.
    59. Ogbonna JC, Yada H and Tanaka H. Light supply coefficient: a new engineering parameter for photobioreactor design. J. Ferment. Bioeng. 1995, 80(4): 369.
    60. Oswald WJ. Current status of algae from wastes. Chem. Eng. Symp. Ser. 1969, 65: 87~92.
    61. Pellegrini L, Burke DF, von Delft F, et al. Crystal structure of fibroblast growth factors receptor ectodomain bound to Ligand and Heparin. Nature. 2000, 407(6807): 1029~1034.
    62. Pirt SJ, Lee YK, Walach MR, et al. A tubular bioreactor for photosynthetic production ofbiomass from carbon dioxide: design and performance. J. Chem. Tech. Biotechnol. 1983, 33(1): 35~58.
    63. Polzin JJ and Rorrer GL. Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion. Biotechnol. Bioeng. 2003, 82: 415~428.
    64. Porra RJ, Thompson WA and Kriedemann PE. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents. Biochim. Biophys. Acta. 1989, 975: 384~394.
    65. Porsch P, Merkelbach S and Gehlen J. The nonradioactive chloramphenicol acetyltransferase- enzyme-linked immunosorbent assay test is suited for promoter activity studies in plant protoplasts. Anal. Biochem. 1993, 211: 113~116.
    66. Prasher DC, Eckenrode VK, Ward WW, et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene. 1992, 111(2): 229~233.
    67. Qi H and Rorrer GL. Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a stirred-tank bioreactor. Biotechnol. Bioeng. 1995, 45: 251~260.
    68. Qin S, Jiang P and Tseng CK. Transforming kelp into a marine bioreactor. Trends Biotechnol. 2005, 23(5): 264~268.
    69. Qin S, Jiang P, Li XP, et al. A transformation model for Laminaria japonica (Phaeophyta, Laminariales). Chin. J. Oceanol. Limnol. 1998a, 16(Suppl.): 50~55.
    70. Qin S, Jiang P, Li XP, et al. The expression of lacZ in regenerated sporophytes of parthenogenetic Laminaria japonica. In: Proceedings of the 2nd Asia-Pacific Marine Biotechnology Conference and 3rd Asia-Pacific Conference Algal Biotechnology (Menasveta P and Tanticharoen M, eds). Bangkok: Biotech Press. 1998b, pp: 205~208.
    71. Ramos de Ortega and Roux JC. Production of Chlorella biomass in different type of flat bioreactors in temperature zones. Biomass. 1986, 10(2): 141~156.
    72. Richmond A, Boussiba S, Vonshak A, et al. A new tubular reactor for mass production of microalgae outdoors. J. Appl. Phycol. 1993, 5(3): 327~332.
    73. Richmond A. Microalgal biotechnology at the turn of the millennium: a personal view. J. Appl. Phycol. 2000, 12: 441~451.
    74. Richmond A. The challenge confronting industrial microagriculture: high photosyntheticefficiency in large-scale reactors. Hydrobiologia. 1987, 151/152(1~3): 117~121.
    75. Rorrer GL and Cheney DP. Bioprocess engineering of cell and tissue cultures for marine seaweeds. Aquacult. Eng. 2004, 32: 11~41.
    76. Rorrer GL and Mullikin RK. Modeling and simulation of a tubular recycle photobioreactor for macroalgal suspension cultures. Chem. Eng. Sci. 1999, 54: 3153~3162.
    77. Rorrer GL, Polne-Fuller M and Zhi C. Development and bioreactor cultivation of a novel semi-differentiated tissue suspension derived from the marine plant Acrosiphonia coalita. Biotechnol. Bioeng. 1996, 49: 559~567.
    78. Rorrer GL, Tucker MP, Cheney DP, et al. Bromoperoxidase activity in microplantlet suspension cultures of the macrophytic red alga Ochtodes secundiramea. Biotechnol. Bioeng. 2001, 74(5): 389~395.
    79. Rorrer GL, Zhi CX, Modrell J, et al. Bioreactor seaweed cell culture for production of bioactive oxylipins. J. Appl. Phycol. 1995, 7: 187~198.
    80. Sánchez Mirón A, Contreras Gómez A, García Camacho F, et al. Comparative evaluation of compact photobioreactors for large-scale monoculture of microalgae. J. Biotechnol. 1999, 70(1~3): 249~270.
    81. Sánchez Mirón A, García Camacho F, Contreras Gómez A, et al. Bubble-column and airlift photobioreactors for algal culture. AICHE J. 2000, 46(9): 1872~1887.
    82. Saunders GW. Gel purification of red algal genomic DNA: an inexpensive and rapid method for the isolation of polymerase chain reaction friendly DNA. J. Phycol. 1993, 29: 251~254.
    83. Senger H. Blue light responses: phenomena and occurrence in plants and microorganisms. Boca Raton: CRC Press Inc. 1987, pp: 160.
    84. Steemann Nielsen E and J?rgensen EG. The adaptation of plankton algae. I. General Part. Physiol. Plant. 1968, 21(4): 401~413.
    85. Steemann Nielsen E著.周百成,温宗存译.海洋光合作用.北京:科学出版社. 1979, pp: 36~45.
    86. Stephen P, Mayfield, Scott E, et al. Expression of human antibodies in eukaryotic micro-algae. Vaccine. 2005, 23: 1828~1832.
    87. Stevens DR and Purton S. Genetic Engineering of eukaryotic algae: progress and prospect. J. Phycol. 1997, 33: 713~722.
    88. Syrett PJ. Nitrogen metabolism of microalgae. Can. Bull. Fish. Aquat. Sci. 1981, 210: 182~210.
    89. Thomas WH, Hastings J and Fujita M. Ammonium input to the sea via large sewage outfalls. Part 2: effects of ammonium on growth and photosynthesis of southern California phytoplankton cultures. Mar. Environ. Res. 1980, 3: 291~296.
    90. Thompson CJ, Movva NR, Tizard R, et al. Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO Journal. 1987, 6: 2519~2523.
    91. Torzillo G, Carlozzi P, Pushparaj B, et al. A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol. Bioeng. 1993, 42(7): 891~898.
    92. Touchette BW and Burkholder JM. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Biol. Ecol. 2000, 250: 133~167.
    93. Tredici MR, Carlozzi P, Chini Zittelli G, et al. A vertical alveolar panel (VAP) for outdoor mass cultivation of microalgae and cyanobacteria. Bioresource Technol. 1991, 38(2): 153~159.
    94. Vince-Pure D. Photomorphogenesis. In: Encyclopedia of plant physiology, Vol. 16B (Shrop-shire W and Moht H, eds). Heidelberg: Springer-verlag. 1983, pp: 457~490.
    95. Voskresenskaya NP. Blue light and carbon metabolism. Ann. Rev. Plant Physiol. 1972, 23: 219~234.
    96. Wang KM, Jams H, Zhuang SH, et al. Photo1ithotrophic cultivation of Laminaria japonica gametophyte cells in bioreactor. J. Yantai Univer. 2001, 14(2): 135~141.
    97. Wang XH, Qin S, Li XP. High efficiency induction of callus and regeneration of sporophytes of Laminaria japonica (Phaeophyta). Chin. J. Oceanol. Limnol. 1998, 16(Suppl.): 67~74.
    98. Wang XL, Liu CL, Li XJ, et a1. Assessment of genetic diversities of selected Laminaria (Laminariales, Phaeophyta) gametophytes by inter-simple sequence repeat analysis. J. Integ. Plant Biol. 2005, 47(6): 753~758.
    99. Watanabe T, Seno M, Sasada R, et al. Molecular characterization of recombinant human acidic fibroblast growth factor produced in E. coli: Comparative studies with human basic fibroblast growth factor. Mol. Endocrinol. 1990, 4: 869~879.
    100. Wohlleben W, Arnold W, Broer I, et al. Nucleotide sequence of the phosphinothricin N-acetyltransferase gene from Streptomyces viridochromogenes Tü494 and its expression inNicotiana tabacum. Gene. 1988, 70(1): 25~37.
    101. Wu XF, Kamei K, Sato H, et al. High-level expression of human acidic fibroblast growth factor and basic fibroblast growth factor in Silkworm (Bombyx mori L.) using recombinant baculovirus. Protein Expres. Purif. 2001, 21: 192~200.
    102. Wu XP, Su ZJ, Li XK, et al. High-level expression and purification of a nonmitogenic form of human acidic fibroblast growth factor in Escherichia coli. Protein Expres. Purif. 2005, 42: 7~11.
    103. Yabu H. Early development of several species of Laminariales in Hokkaido. Memoirs of the Faculty of Fisheries, Hokkaido University. 1964, 12: 1~72.
    104. Zhang QS, Tang XX, Cong YZ, et a1. Breeding of an elite Laminaria variety 90-1 through inter-specific gametophyte crossing. J. Appl. Phycol. 2007, 19(4): 303~311.
    105. Zhang W, Gao JT, Zhang YC, et al. Optimization of conditions for cell cultivation of Porphyra haitanensis conchocelis in a bubble-column bioreactor. World J. Microb. Biot. 2006, 22(7): 655~660.
    106. Zhang X, Li DP, Zhang YP, et al. Comparison of photobioreactors for cultivation of Undaria pinnatifida gametophytes. Biotechnol. Lett. 2002, 24: 1499~1503.
    107. Zhao XM, Yeoh TK, Hiebert M, et al. The expression of acidic fibroblast growth factor (heparin–binding growth factor-1) and cytokine genes in human cardiac allografts and T cells. Transplantation.1993, 56(5): 1177~1182.
    108. Zhi CX and Rorrer GL. Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a bubble-column bioreactor. Enzyme Microbiol. Tech. 1996, 18: 291~299.
    109. Zou N, Zou BC, Li BJ, et al. Effects of cell density, light intensity and mixing on Undaria pinnatifida gametophyte activity in a photobioreactor. Biomol. Eng. 2003, 20: 281~284.
    110.白逢伟,秦松,李永祺.海带丝状雌配子体孤雌生殖的初步研究.海洋科学. 1998, 6: 32~35.
    111.陈峰,姜悦.微藻生物技术.北京:中国轻工业出版社. 1999, pp: 44~46.
    112.陈维胜,方宗熙.海带雌配子体对吲哚乙酸反应的初步观察.山东海洋学院学报. 1980, 10(3): 86~90.
    113.崔竞进,欧毓麟.弱光保存海带配子体的初步实验.山东海洋学院学报. 1979, 1: 133~137.
    114.戴继勋,崔竞进,韩宝芹等.海带雄配子体单性生殖叶状体的特性.海洋通报. 2000, 19(2): 20~23.
    115.戴继勋,崔竞进,欧毓麟等.海带孤雌生殖和染色体自然加倍的研究.海洋学报. 1992, 14(1): 105~107.
    116.戴继勋,方宗熙,欧毓麟.海带孤雌生殖的初步观察.遗传学报. 1976, 3(1): 32~38.
    117.戴继勋,欧毓麟,崔竞进等.海带雄配子体的发育研究.青岛海洋大学学报. 1997, 27(1): 41~44.
    118.戴继勋.用海藻细胞工程技术发展我国的海水养殖业.世界科技研究与发展. 2002, 24(3): 28~31.
    119.段发平,梁承邺,黎垣庆. Bar基因和转bar基因作物的研究进展.广西植物. 2001, 21(2): 166~172.
    120.范晓,张士璀,秦松等.海洋生物技术新进展.北京:海洋出版社. 1999, pp: 58~81.
    121.方宗熙,陈登勤,张学成.海带不同基因型的雌配子体对钼的反应.山东海洋学院学报. 1979, 1: 118~122.
    122.方宗熙,崔竞进,欧毓麟等.海带“单海1号”新品种选育:用海带单倍体材料培育新品种.山东海洋学院学报. 1983, 13(4): 63~70.
    123.方宗熙,戴继勋,崔竞进.海带雌性孢子体的首次记录.海洋文选. 1979, 2(1): 1~2.
    124.方宗熙,戴继勋.单倍体在海藻遗传研究中的应用.遗传学报. 1980, 7(1): 19~24.
    125.方宗熙,江乃萼.海带雌配子体对维生素C的反应.植物学报. 1974, 16(4): 333~340.
    126.方宗熙,李家骏.温度和遗传对海带雌雄配子体细胞数目和成熟速度的影响.海洋与湖沼. 1965, 7(4): 385~395.
    127.方宗熙,欧毓麟,崔竞进.海带杂种优势的研究和利用—“单杂10号”的培育.山东海洋学院学报. 1985, 15(1): 64~72.
    128.方宗熙,欧毓麟,崔竞进等.海带配子体无性繁殖系培育成功.科学通报. 1978a, 2: 115~116.
    129.方宗熙,欧毓麟,崔竞进等.海带单倍体遗传育种的实验.中国科学. 1978b, 2: 226~231.
    130.韩宝芹,崔竞进,刘涛等.植物激素对海带配子体附着的影响.青岛海洋大学学报. 2000, 30(4): 627~630.
    131.韩博平,韩志国,付翔.藻类光合作用机理与模型.北京:科学出版社. 2003, pp: 180~181.
    132.韩艳.中国鲎抗菌肽Tachyplesin I原核表达及其多克隆抗体的制备. 2007,吉林大学硕士学位论文.
    133.何培民,秦松,严小军等.海藻生物技术及应用.北京:化学工业出版社. 2007, pp: 133~162.
    134.洪水根,陈菲,李祺福等.中国鲎鲎素T-1抗人早幼粒白血病HL-60细胞活性研究.厦门大学学报(自然科学版). 1999, 38(3): 448~450.
    135.胡晓燕.褐藻配子体培养的应用研究及意义.海洋科学. 2002, 26(7): 30~31.
    136.黄鹤忠,易剑国.海带(Laminaria japonica Aresch)胚孢子萌发和配子体生长与光照波长间关系的研究.水产科技情报. 1998, 25(6): 265~269.
    137.黄健,唐学玺,段德麟等.不同光照条件下海带体内各种化合物的含量及光合作用和呼吸作用的变化.海洋科学. 2002, 26(4): 55~58.
    138.黄娜,陈思晔,齐瀚实.短期连续剪切对光生物反应器内海带配子体细胞生长及其恢复能力的影响.生物工程学报. 2007, 23(5): 935~940.
    139.江乃萼,阎祚美,方宗熙.硼对海带雌配子体生长的影响.山东海洋学院学报. 1980, 10(4): 70~73.
    140.姜鹏,秦松,曾呈奎.乙肝病毒表面抗原HBsAg基因在海带中的表达.科学通报. 2002, 47(14): 1095~1097.
    141.姜鹏.海带遗传转化模型的优化及目的基因的导入. 2003,中国科学院海洋研究所博士学位论文.
    142.姜颖,孙陆果,于永利.重组人aFGF的克隆、表达及活性测定.中国免疫学杂志. 2001, 17(10): 517~520.
    143.李大鹏,吴超元,刘晚昌等.海带单倍体无性繁殖系育苗技术的研究.海洋学报. 2003, 25(5): 141~145.
    144.李祺福,李长友,欧阳高亮等.中国鲎鲎素对人胃癌BGC-823细胞增殖的抑制作用.厦门大学学报(自然科学版). 2001, 40(1): 110~114.
    145.李祺福,欧阳高亮.中国鲎鲎素对人肝癌SMMC-7721细胞增殖的抑制作用.中国海洋药物. 2002, 2: 22~25.
    146.李师翁,李虎乾.玻璃管道光合生物反应器中小球藻大规模培养的研究.生物工程学报. 1997, 13(1): 93~97.
    147.李晓捷.海带配子体克隆培养技术研究. 2003,中国海洋大学硕士学位论文.
    148.李校堃,吴晓萍,郑青等.人酸性成纤维细胞生长因子的高效表达.华南理工大学学报(自然科学版). 2001, 29(12): 61~64.
    149.李新萍,秦松,曾呈奎.孤雌生殖海带对氯霉素和潮霉素的敏感性研究.海洋与湖沼. 1999, 30: 186~191.
    150.李新伟,朱仲嘉,刘凤贤.海藻学概论.上海:上海科学技术出版社. 1982, pp: 154~161.
    151.李玉玺.利用农杆菌真空渗透在烟草中瞬时表达人酸性成纤维细胞生长因子(haFGF). 2006,东北师范大学硕士论文.
    152.李志凌,张全胜,杨迎霞等.海带配子体克隆大规模培养技术的研究.齐鲁渔业. 2003, 5: 1~3.
    153.刘涛,崔竞进,戴继勋等.海带配子体克隆的培养及应用.青岛海洋大学学报(自然科学版). 2000, 30(2): 203~206.
    154.刘永定,范晓,胡征宇.中国藻类学研究.武汉:武汉出版社. 2001, pp: 223~235.
    155.柳端,费修绠.海带配子体和孢子体的致死光强研究.中国科学院实验海洋生物学重点实验室研究报告第40号. 80~87.
    156.缪国荣,陈家鑫,方宗熙. 4-碘苯氧乙酸影响海带配子体和幼孢子体生长发育的研究.山东海洋学院学报. 1986, 3(4): 610~615.
    157.缪国荣.我国海带育种的成果及其评价.齐鲁渔业. 1978, 2: 15~18.
    158.欧毓麟,崔竞进,方宗熙.海带雌雄配子体对连续光照的反应.山东海洋学院学报. 1979, 1: 128~131.
    159.潘双叶.光照、温度对坛紫菜自由丝状体生长的影响.河北渔业. 2006, 146(2): 17~20.
    160.秦松,张健,李文斌等.用基因枪将GUS基因导入褐藻细胞中表达.海洋与湖沼. 1994, 25(4): 353~356.
    161.秦松.海带雌性原生质体的分离与培养.海洋与湖沼增刊. 1995, 26(5): 126~128.
    162.沈国英,施并章.海洋生态学.北京:科学出版社. 2002, pp: 69~75.
    163.孙雄华,廖建民,孙石静等.瑞替普酶(reteplase)在海带中表达的鉴定分析.药物生物技术. 2006, 13(4): 265~270.
    164.王长海,鞠宝,董言梓等.光生物反应器及其研究进展.海洋通报. 1998, 17(6): 79~86.
    165.王飞久,刘涛,段德麟等.海带种质特征.海洋水产研究. 2004, 25(1): 48~51.
    166.王金霞.大型海藻微球体的生物反应器培养和应用基础研究. 2009,中国科学院海洋研究所博士学位论文.
    167.王金霞.利用藻类生物反应器生产试剂级藻蓝蛋白的研究. 2002,中国海洋大学硕士学位论文.
    168.王清印,方宗熙.铜对海带雌配子体和幼孢子体生长发育的影响.山东海洋学院学报. 1981, 11(1): 53~60.
    169.王仁厚.利用转基因番茄表达人类酸性成纤维细胞生长因子(haFGF). 2003,东北师范大学硕士学位论文.
    170.王素娟.海藻生物技术.上海:上海科学技术出版社. 1994.
    171.王莹,戴继勋.海带丝状体遗传多样性的比较研究.生物多样性. 1999, 7(3): 197~201.
    172.王莹,李效宇,徐存栓等.海带、裙带菜和紫菜蛋白酶谱的研究.植物学报. 1998, 40(10): 939~946.
    173.王宗诚,方宗熙.无机氮和磷对海带配子体生长发育的影响.山东海洋学院学报. 1980, 10(4): 74~77.
    174.吴顺章,李博文,赵扬等.坛紫菜转鲎素基因的初步研究.厦门大学学报(自然科学版). 2008, 47(4): 567~570.
    175.吴韵,邹立红,姜鹏等.孤雌生殖海带对草丁膦的敏感性.海洋与湖沼. 2001, 32: 19~22.
    176.吴韵. GUS基因在优化海带表达系统中的应用. 2001,中国科学院海洋研究所硕士学位论文.
    177.武建秋,秦松,邓田等.氯霉素乙酰转移酶(cat)基因在海带中的表达.海洋与湖沼. 1999, 30: 28~32.
    178.武建秋,王希华,秦松等.海带基因工程选择标记的研究.海洋科学. 1995, 5: 42~45.
    179.武建秋.海带基因工程选择标记的确立及外源基因在海带中的表达. 1996,中国科学院海洋研究所硕士学位论文.
    180.徐凯.草莓的光抑制特性及光质对其生长结果的影响. 2005,浙江大学博士学位论文.
    181.杨官品,李晓捷,从义周等.海带配子体无性繁殖(克隆)技术研究与应用进展.中国海洋大学学报(自然科学版). 2007, 37(4): 569~572.
    182.杨迎霞,罗世菊,解建祖等.光照强度对海带配子体克隆生长的影响.水产科技情报. 2002, 29(3): 114~116.
    183.于道展,杨玲玲,姜鹏等.裙带菜基因工程选择标记的研究.高技术通讯. 2003, 6: 74~77.
    184.岳国峰,戢勇骋,王建飞等.海带雌配子体对无机碳的利用.海洋科学. 2000, 24(6): 33~35.
    185.曾呈奎,吴超元,任国忠.温度对海带配子体生长发育的影响.海洋与湖沼. 1962, 4(1~2): 22~28.
    186.曾呈奎,吴超元.海带养殖学.北京:科学出版社. 1962, pp: 14~98.
    187.曾呈奎.海藻栽培学.上海:上海科学技术出版社. 1985, pp: 55~121.
    188.张超信.海带生长与光照的关系.中国水产. 1994, 6: 31~35.
    189.张春义,范云六.抗真菌鲎素基因在大肠杆菌中的表达.农业生物技术学报. 1998, 6(3): 211~216.
    190.张春义.抗真菌基因tac在酵母Pichia Pastoris和大肠杆菌中表达的研究. 1996,中国农业科学院博士学位论文.
    191.张全胜,唐学玺,张培玉等.海带配子体克隆育苗生产中采苗技术的研究.高技术通讯. 2005, 15(1): 89~92.
    192.张全胜.海带种质保存技术.中国水产. 2005, 9: 64~65.
    193.张栩,李大鹏,蔡昭铃等.气升式光生物反应器培养裙带菜配子体的初步研究.海洋科学. 2002, 26(6): 39~43.
    194.张栩.气升式藻类光生物反应器的特性及应用研究. 1999,中国科学院海洋研究所硕士学位论文.
    195.张栩.裙带菜无性繁殖系的生理特性及反应器培养. 2002,中国科学院过程工程研究所博士学位论文.
    196.张亦陈,高江涛,张喆等.草丁膦抗性基因(bar)在海带配子体中的稳定表达.高技术通讯. 2006, 16(9): 970~974.
    197.张亦陈.利用海带配子体营养增殖体系实现外源基因表达. 2005,中国科学院海洋研究所博士学位论文.
    198.张泽宇.海带属种间杂交育种的研究.大连水产学院学报. 1999, 14(4): 13~17.
    199.赵锐,陈思晔,张宝红等.氮、磷浓度对灌注搅拌式光生物反应器连续培养海带配子体细胞的影响.高技术通讯. 2005, 15(11): 91~95.
    200.周丽,宫庆礼,俞开康等.海带的病害.海洋湖沼通报. 1996, 4: 38~43.
    201.庄岩,戴继勋,崔竞进等.四种植物生长激素对海带雌配子体克隆生长发育的影响.青岛海洋大学学报. 1999, 29(2): 260~264.
    202.庄岩,戴继勋,潘洁等.三十烷醇对海带三个品系雌配子体克隆生长和发育的影响.海洋湖沼通报. 1998, 4: 39~42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700