用户名: 密码: 验证码:
大型海藻细胞光生物反应器培养重要工程参数的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型海藻是海洋里的原始植物,其体内含多种重要或具潜在药用价值的初级和次生代谢产物。陆生植物稀有的次生代谢产物在藻体内含量极低,化学结构相当复杂,使直接提取或者人工合成极为困难。光生物反应器所提供的可调控和工程优化的培养环境有望成为优化次生代谢物生物合成的有效手段。大型海藻细胞光生物反应器培养是较新的研究领域,受限于生物学研究手段,目前尚未分离得到大型海藻离体培养细胞,其体外培养载体仅限于配子体细胞和微繁殖体,并且前者形态更近似细胞。
     本文借助大型褐藻海带配子体细胞来模拟大型海藻细胞的生长,全面研究了光生物反应器培养涉及的各种培养条件,包括温度、光照强度、光周期、和通气方式,对藻体细胞生长和生理状态的影响;进一步在上述各适宜条件下,研究了氮磷营养盐的不同起始浓度和不同脉冲补料方式对生物量生产的影响;同时研究了细胞生长的不适环境,即搅拌曝气培养下,细胞在不同搅拌强度和搅拌时间下的响应情况,和相应的工程学和生物学解释。
     本文的创新点在于系统全面研究了大型海藻体外培养载体之一的配子体细胞,在光生物反应器中培养的各种培养条件;首次系统研究了不同保种培养体系对大型海藻细胞生长和生理状态的影响;首次将无泡硅橡胶膜运用到大型海藻细胞培养中;由于藻体细胞对氮磷物质有明显的储存倾向,本文合理巧妙运用脉冲补料方式快速扩增大型海藻体外繁殖系;此外,针对大型海藻体外繁殖系在不同搅拌剪切强度和剪切时间下的响应,其系统性研究也是本文的创新点。本实验的意义在于其中各项研究方法和实验结果是未来大规模培养大型海藻细胞收获生物量和次生代谢产物的重要基础。
     细胞的光合速率、色素增幅、损伤率、生长曲线、细胞形态、系统的气液传质系数等指标表明,本实验中海带配子体细胞生长的适宜温度和光周期为13℃和16 : 8 LD,其饱和光强为28μE m-2 s-1,表面曝气中的搅拌培养和摇床培养,以及鼓泡培养,系统的kLa和速率间均符合Y=aXb的多项式,在悬浮性较低(液体湍动程度不高)、气液传质速率适中的团聚状态下,海带配子体细胞生长状态良好并能获得高产生物量,如本实验膜供气培养下,生物量倍数较静止培养、鼓泡培养、搅拌培养,其增幅分别为103%、29%、69%;但低湍动条件下细胞快速生长易导致细胞聚集体过大,使其内部细胞受光照、营养和气体供应的限制,而低剪切环境可控制细胞聚集体大小,进而确保培养物持续稳定增殖,本实验验证了自行设计的改良型搅拌鼓泡式光生物反应器适宜培养海带配子体细胞。
     在该生物反应器中,随着APSW人工海水中起始硝酸盐和磷酸盐浓度的升高,海带配子体细胞的比生长速率渐增,延滞期渐短,但当其浓度超过1.189 mmol N L-1和0.0742 mmol P L-1后,生物量倍数渐少,高浓度氮磷的毒性渐显,故本实验培养液内最适氮磷浓度为0.594 mmol N L-1和0.0371 mmol P L-1,相应的生物量倍数为7.2;脉冲补料培养方式下,频繁少量补加氮磷有利于氮磷吸收间的同步性,补料起点过早或过迟都会破坏这种协同性,或使吸收的氮磷作储存之用,或严重影响细胞对氮磷的吸收,当细胞生长至对数中期开始频繁补加少量氮磷,即本实验中维持培养液内氮磷浓度在其起始值的1/3至1/2之间,对于细胞增殖非常有效,和批次培养相比,其生物量增幅高达76%。
     搅拌曝气式光生物反应器中60 h短期连续剪切海带配子体细胞的研究表明,培养物叶绿素含量、培养液内磷酸盐、磷酸盐浓度和细胞损伤率适宜作为细胞受剪切损伤程度的良好指标,适度的剪切利于生物量的积累和营养盐的吸收,过大剪切强度或过长剪切时间均会造成细胞生物量负增长、胞内氮池、磷池释放、细胞损伤率升高、细胞显微形态巨变等负面影响;此外,流体力学参数,即Kolmogoroff涡流尺寸、Kolmogoroff涡流速率和最大湍动力均可对这些差异作出较好的工程学解释;21 d长期连续剪切的研究表明,搅拌速率为90 rpm,即搅拌子线速率0.254 m s-1时,细胞生长状态最佳,120-270 rpm下细胞生长呈现先升后降再回升的三段态势,相应的细胞损伤率也先增后减,因为细胞壁含量在此期间先降后升或超出对照组,细胞壁含量的变化直接解释了细胞受到剪切损伤并逐步耐受剪切环境,细胞壁含量回升力度可反映细胞耐受剪切环境的程度。
Macroalgae, the primitive oceanic plants, contain numerous primary and secondary metabolites with important or potential pharmaceutical values. The extremely low content in the algae,and the complicated molecular structure of those rare secondary metabolic compounds, however, discourage the direct extraction and chemical synthesis. Photolithotrophic cultivation of macroalgal cells is an effective way to optimize culture conditions, especially those that are specifically important, in the stimulation of secondary metabolic biosynthesis, and to achieve future commercial production of relevant biochemicals. Till now, cultivation of macroalgal cells in photobioreactors is a great challenge. And because of the weak biological techniques, there are no macroalgal cells cultivated in vitro. Only gametophyte cells and microplantlets are chosen for macroalgal tissue or cell culture. And the former resemble much the real macroalgal cells.
     In this study, gametophyte cells of brown macroalgae Laminaria japonica were employed to stimulate macroalgal cell growth. Effects of all conditions involved in photobioreactor cultivation, such as temperature, light intensity, photoperiod, and aeration modes, on algal cell growth rates and cell physiological status, were comprehensively studied. Further research included the effects of different initial nutrient concentration and different pulse fed-batch modes on biomass production under the above optimal cultivation conditions. In addition, the influence of agitation intensity and agitation time on cell growth and cell injury was studied. Corresponding engineering and biology explanation was specifically elucidated.
     The innovation of this experiment is the comprehensive and systemic study on the key conditions of photobioreactor cultivation of the gametophyte cells. It is the first systemic study on cell growth rates and cell physiological status under different subcultural systems of macroalgal cells. Bubble-less silicone tubular membrane aeration mode for macroalgal cell culture is applied for the first time in this paper. Because algae will accumulate much more of nutrient than is required for normal metabolism, pulse fed-batch modes are felicitously applied in this research for macroalgal cell proliferation. Moreover, the systemic study on macroalgal clones’responses to different agitation intensity and the exposure time is another innovation of this experiment. This work has provided rational methods and important data for large-scale production of biomass and important secondary metabolites of macroalgal cells in the future.
     Photosynthetic rate, increment of chlorophyll a, cell injury ratio, cell growth curve, cell morphology, gas-liquid mass transfer co-efficient (kLa) indicated that the optimal temperature and photoperiod of Laminaria japonica gametophytic cells were 13℃and 16:8 LD, with the light saturation point of 28μE m-2 s-1. kLa of spinning, shaking and bubbling aeration modes versus input rates accorded well with the equation of Y=aXb. High biomass production with fine macroalgal cell physiological status was obtained under the environment of low suspension (low turbulence) and moderate gas-liquid transfer rates. In this experiment, compared with static, bubbling, and spinning mode, increase of biomass accumulation under membrane aeration mode was 103%, 29%, and 69%. However, larger cell aggregates formed because of quick cell growth under lower turbulence condition. The internal cells of the large aggregates were in lack of light, nutrient and gas delivery. Low shearing, on the other hand, could contribute to moderate aggregate size, and further the assurance of continuous cell proliferation. The self-designed modified stirred tank photobioreactors (with bubbling) were proved feasible for the cultivation of Laminaria japonica gametophyte cells.
     With the increase of initial nutrient concentration in the artificial Pacific seawater (APSW) medium, specific growth rate of gametophyt cells cultivated in the above photobioreactors increased gradually, its lag phase shortened step by step. When initial nutrient concentration exceeded 1.189 mmol N L-1 and 0.0742 mmol P L-1, biomass increasing times decreased, with the potential toxicity of high nutrient concentration emerged. The optimal nutrient concentration in this work was 0.594 mmol N L-1 and 0.0371 mmol P L-1,under which biomass increasing 7.2 times. As to the pulse fed-batch modes, the results showed that feeding the culture frequently with small nutrient quantity was beneficial for the synchronization between nitrate and phosphate absorption. Feeding when ambient nutrient was abundant or depleted would result in the divergence absorption between nitrante and phosphate, nutrient storage, or the decrease of nutrient absorpsion. Feeding nutrient frequently with small quantity from mid-exponential growth of macroalgal cells, that is maintaining medium nutrient concentration between 1/3 and 1/2 of its initial concentration in this study, was the most effective way for biomass production, with 76% increase of biomass accumulation compared with the batch mode.
     Results of short-term (60 h) continuous agitation on Laminaria japonica gametophytic cells under stirred tank photobioreactors (with surface aeration) indicated that chlorophyll content, medium nitrate and phosphate concentration, and cell injury ratio are suitable indicators for the evaluation of cell injuries under hydrodynamic agitation shear stress. Moderate shearing was beneficial for biomass accumulation and nutrient absorption. Greater shear stress or longer shearing time would lead to negative cell growth, the release of cellular N pool and P pool, the rise of cell injury ratio, and tremendous alteration of cell micro-morphology. In addition, hydrodynamic characteristics, such as Kolmogoroff eddy sizes, Kolmogoroff eddy velocity, and maximal turbulent stress were preferable engineering explanation for those differences under different agitation speeds. Results of long-term (21 d) continuous agitation on gametophytic cells showed that larger biomass accumulation and better cell physiological status were obtained under the agitation speed of 90 rpm (the stirrer tip speed of 0.254 m s-1). A three-phase of ascending, decending, and re-ascengding trend of cell growth was presented under the agitation speeds of 120-270 rpm. Corresponding cell injury ratio increased firstly, and then decreased. These results were due to the variation of cell wall fraction (CWF) during the agitation period. CWF under the agitation speeds of 120-270 rpm decreased, and then increased, even exceeded CWF under the control. These explained well cell injury and cell resistance to hydrodynamic shear stress.
引文
[1]吕惠敏,张侃.海藻的利用与开发[J].海洋食品, 1998, (6) : 29-30
    [2]俞俊棠,唐孝宣,邬行彦,李友荣,金青萍.新编生物工艺学(上册)[M].北京:化学工业出版社教材出版中心, 2003 : 312-314
    [3]黄知清,严兴洪.海藻研究开发的发展概述[J].海洋技术, 2002, 21 (3) : 22-25
    [4]张淑梅,李忠红.浅议中国海藻开发利用[J].水产科学, 2001, 20 (4) : 35-37
    [5]王素娟编.海藻生物技术[M].上海:上海科学技术出版社, 1981 : 1-2
    [6]戴继勋.用海藻细胞工程技术发展我国的海水养殖业[J].世界科技研究与发展, 2002, 24 (3) : 28-31
    [7]张经浩.论藻类植物的经济价值及其对人类的意义[J].安徽教育学院学报, 2000, 1 (3) : 79-80
    [8]赵焕登编.海藻养殖生物学[M].青岛:青岛海洋大学出版社, 1993 : 1-23
    [9] Radmer RJ. Algal diversity and commercial algal products [J]. Bioscience, 1996, 46 (4) : 263-270
    [10]Mayer AM, Hamann MT. Marine Pharmacology in 2000: Marine Compounds with Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antituberculosis, and Antiviral Activities; Affecting the Cardiovascular, Immune, and Nervous Systems and Other Miscellaneous Mechanisms of Action. Mar Biotechnol [J], 2004, 6 (1) : 37-52
    [11]钱风云,傅德贤,欧阳藩.海带多糖生物功能研究进展[J].中国海洋药物, 2003, 1 : 55-59
    [12]阮积惠.海藻主要药用成分的研究和展望[J].东海海洋, 2001, 19 (2) : 1-9
    [13]徐祖洪,李智恩,毕爱芳,宋国平,郭玉彩,师然新,王璐.治疗慢性肾衰的海洋新药FPS的研究[J].中国海洋药物, 1998, 17 (4) : 41-46
    [14]Zhao X, Xue Chang-Hu, Li Zhao-Jie, Cai Yue-Piao, Liu Hong-Ying, Qi Hong-Tao. Antioxidant and hepatoprotective activities of low molecular weight sulfated polysaccharide from Laminaria japonica [J]. J Appl Phycol, 2004, 16 (2) : 111-115
    [15]Eitsuka T, Nakagawa K, Igarashi M, Miyazawa T. Telomerase inhibition by sulfoquinovosyldiacylglycerol from edible purple laver (Porphyra yezoensis) [J]. Cancer Lett, 2004, 212 (1) : 15-20
    [16]Gerwick WH. Carbocyclic oxylipins of marine origin [J]. Chem.Rev, 1993,93 (5) : 1807-1823
    [17]Wasserman MA, Smith EF, Underwood DC, Barnette MA. Pharmacoloty and pathology of lipoxygenase products [C], In: Cooke ST, Wong A (eds). Lipoxygenases and Their Products. San Diego, CA : Academic Press, 1991: 1-50
    [18]王捷,刘凤龙.转基因蓝藻制备α型重组人肿瘤坏死因子衍生物[J].中国海洋药物, 1998, 17 (1) : 4-8
    [19]D'Aniello A, Lee JM, Petrucelli L, Di Fiore MM. Regional decreases of free D-aspartate levels in Alzheimer's disease [J]. Neurosci Lett, 1998, 250 (2) : 131-134
    [20]Vairappan CS, Suzuki M, Abe T, Masuda M. Halogenated metabolites with antibacterial activity from the Okinawan Laurencia species [J]. Phytochemistry, 2001, 58 (3) : 517-523
    [21]Zhu W, Ooi VEC, Chan PKS, Ang PO. Isolation and characterization of a sulfated polysaccharide from the brown alga Sargassum patens and determination of its anti-herpes activity [J]. Biochem Cell Biol, 2003, 81 (1) : 25-33
    [22]Ayyad SE, Abdel-Halim OB, Shier WT, Hoye TR. Cytotoxic hydroazulene diterpenes from the brown alga Cystoseira myrica [J]. 2003, 58 (1-2) : 33-38
    [23]Dorta E, Cueto M, Brito I, Darias J. New terpenoids from the brown alga Stypopodium zonale [J]. J Nat Prod, 2002, 65 (11) : 1727~1730
    [24]Tang H-F, Yi Y-H, Yao X-S, Xu Q-Z, Zhang S-Y, Lin H-W. Bioactive steroids from the brown alga Sargassum carpophyllum [J]. J Asian Nat Prod Res, 2002, 4 (2) : 95-101
    [25]Lim SN, Cheung PC, Ooi VE, Ang PO. Evaluation of antioxidative activity of extracts from a brown seaweed Sargassum siliquastrum [J]. J Agric Food Chem, 2002, 50 (13) : 3862-3866
    [26]Okai Y, Higashi-Okai K, Yano Y, Otani S. Identification of antimutagenic substances in an extract of edible red alga Porphyra tenera (Asakusa-nori) [J]. Cancer Lett, 1996, 100 (1-2) : 235-240
    [27]Gonzalez V, Platas G, Basilio A. Screening of antimicrobial activities in red, green and brown macroalgae from Gran Canaria (Canary Islands, Spain) [J]. Int Microbiol, 2001, 4 (1) : 35-40
    [28]Harada H, Yamashita U, Kurihara H. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga [J]. Anticancer Res, 2002, 22 (5) : 587-2590
    [29]Liu Ren-Shui, Yang Jia-Hua, Liu Wang-Yi. Isolation and enzymatic characterization of lamjapin, the first ribosome-inactivating protein from cryptogamic algal plant (Laminaria japonica A) [J]. Eur J Biochem. 2002, 269 (19) : 4746-4752
    [30]Moore JW. Inorganic Contaminants of Surface Water: Research and Monitoring Priorities [M]. New York: Springer-Verlag, 1991 : 178-210
    [31]Ewan KB, Pamphlett R. Increased inorganic mercury in spinal motor neurons following chelating agents [J]. Neurotoxicology, 1996, 17 (2) : 343-349
    [32]Malik A. Mental bioremediation through growing cells [J]. Environ Int, 2004, 30 : 261-278
    [33]Volesky B, May-Philips HA. Biosorption of heavy metals [J]. Biotechnol Prog 1995, 11 (3) :236-250
    [34]Ye Nai-Hao, Wang Guang-Ce, Tseng Cheng-Kui. Effect of heavy metals (Cd, Cu) on the gametophytes of Laminaria japonica Aresch [J]. J Integrative Plant Biology (Formely Acta Botanica Sinica), 2005, 47 (8) : 942-951.
    [35]Demetropoulos CL, Langdon CJ. Enhanced production of Pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: nitrogen, phosphorus, and trace metal nutrition [J]. Aquaculture, 2004, 235 (1-4) : 433-455
    [36]李德远,徐现波,熊亮.海带的保健功效及海带生理活性多糖研究现状[J].食品科学, 2002, 23 (7) : 151-154
    [37]Sajiki J, Kakimi H. Identification of eicosanoids in the red algae, Gracilaria asiatica, using high-performance liquid chromatography and electrospray ionization mass spectrometry [J]. J Chromatogr A, 1998, 795 (2) : 227-237
    [38]Dorta E, Darias J, San Martin A, Cueto M. New prenylated bromoquinols from the green alga Cymopolia barbata [J]. J Nat Prod, 2002, 65 (3) : 329-333
    [39]Souto ML, Manriquez CP, Norte M, Femandez JJ. Novel marine polyethers [J]. Tetrahedron, 2002, 58 (40) : 8119-8125
    [40]Xu Nian-Jun, Fan X, Yan Xiao-Jun, Li Xian-Cui, Niu Rong-Li, Tseng CK. Antibacterial bromophenols from the marine red alga Rhodomela confervoides [J]. Phytochemistry, 2003, 62 (8) : 1221-1224
    [41]朱西儒,雷光富.药用植物细胞培养代谢全能性及产物检测技术的研究进展[J].广西科学院学报, 1998, 14 (2) : 1-6
    [42]Chen F, Zhang Y, High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed batch system [J]. Enzyme Microb Technol, 1997, 20 (3) : 221-224
    [43]Sukenik A, Lery RS, Levy Y, Falkowski PG, Dubinsky Z. Optimizing algal biomas production in an outdoor pond: a simulation model [J]. J Appl Phycol, 1999, 3 (3) : 191-201
    [44]Fernandez Sevilla JM, Ceron Carcia MC, Sanchez Miron A, Hassan Belarbi E, Garcia Camacho F, Molina Grima E. Pilot-Plant-Scale outdoor mixotrophic cultures of Phaeodactylum tricornutum using glycerol in vertical bubble column and airlift photobioreactors: studies in fed-batch mode [J]. Biotechnol Prog, 2004, 20 (3) : 728-736
    [45]Rorrer GL, Modrell J, Zhi C, Yoo HD, Nagle DN, Gerwick WH. Bioreactor seaweed cell culture for production of bioactive oxylipins [J]. J Appl Phycol, 1995, 7 (2) : 187-198
    [46]Rorrer GL, Zhi C, Polne-Fuller M. Development and bioreactor cultivation of a novelsemidifferentiated tissue suspension derived from the marine plant acrosiphonia coalita [J]. J Eng Appl Sci, 1996, 49 (5) : 559-567
    [47]Zou N, Zhou Bai-Cheng, Li Bing-Jun, Sun Dong-Hong, Zeng Cheng-Kui. Effects of cell density, light intensity and mixing on Undaria pinnatifida gametophyte activity in a photobioreactor [J]. Biomol Eng, 2003, 20 (4-6) : 281-284
    [48]李志凌,张全胜,杨迎霞.海带配子体克隆大规模培养技术的研究[J].齐鲁渔业, 2003, 20 (5) : 1-4
    [49]Luning K. Critical levels of light and temperature regulating the gametogeneis of the three Laminaria species (Phaeophyceae) [J]. J Phycol, 1980, 16 (1) : 1-15
    [50]Luning K, Neushul M. Light and temperature demands for growth and reproduction of laminarian gametophytes in southern and central California [J]. Marine Biol, 1978, 45 (4): 297-309
    [51]Huang YM, Rorrer GL. Cultivation of microplantlets derived from the marine red alga Agardhiella subulata in a stirred tank photobioreactor [J]. Biotechnol Prog, 2003, 19 (2) : 418-427
    [52]Barahona LF, Rorrer GL. Isolation of halogenated monoterpenes from bioreactor-cultured microplantlets of the macrophytic red algae Ochtodes secundiramea and Portieria hornemanni [J]. J Nat Prod, 2003, 66 (6) : 743-751
    [53]Huang W, Fujita Y. Callus induction and thallus regeneration of the red alga Meristotheca papulosa (Rhodophyta, Gigartinales) [J]. Bot Mar, 1997, 40 (1) : 55-61
    [54]Huang YM, Maliakal S, Cheney DP, Rorrer GL. Comparison of development and photosynthetic growth for filament clumps and regenerated microplantlet cultures of Agardhiella subulata (Rhodophyta, Gigartinales) [J]. J Phycol, 1998, 34 (5) : 893-901
    [55]边黎明,施季森.植物生物反应器细胞悬浮培养研究进展[J].南京林业大学学报(自然科学版). 2004, 28 (4) : 101-104
    [56]王长海,鞠宝,董言梓,郭尽力.光生物反应器及其研究进展.海洋通报, 1998, 17 (6) : 79-86
    [57]Metting FB. Biodiversity and application of microalgae [J]. J Ind Microbiol Biot, 1996, 17 (5-6) : 477-489
    [58]Qi H, Rorrer GL. Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a stirred-tank bioreactor [J]. Biotechnol Bioeng, 1995, 45 (3) : 251-260
    [59]Molina E, Fernandez J, Acien FG, Chisti Y. Tubular photobioreactor design for algal cultures [J]. J Biotechnol, 2001, 92 (2) : 113-131
    [60]Rorrer GL, Mullikin RK. Modeling and simulation of a tubular recycle photobioreactor for macroalgal cell suspension cultures [J]. Chem Eng Sci, 1999, 54 (15-16) : 3153-3162
    [61]Huang YM, Rorrer GL. Optimal temperature and photoperiod for the cultuvation of Agardhiella subulata microplantlets in a bubble-column photobioreactor [J]. Biotechnol Bioeng, 2002, 79 (2) : 135-144
    [62]Coutinho R, Zingmark R. Diurnal Photosynthetic Responses to Light by Macroalgae [J]. J Phycol, 1987, 23 (2) : 336-343
    [63]王素娟.海藻生物技术[M].上海:上海科学技术出版社, 1994 : 105
    [64]杨迎霞,罗世菊,解建组,张壮志.光照强度对海带配子体克隆生长的影响[J].水产技术情报, 2002, 29 (3) : 114-116
    [65]刘春朝,王玉春,郑重,欧阳藩.剪切力对植物细胞悬浮培养的影响[J].化工冶金, 1998,19 (4) : 379-384.
    [66]Lidija Sajc, Dragan Grubisic, Gordana Vunjak-Novakovic. Bioreactors for plant engineering: an outlook for further research [J]. Biochem Eng, 2000, 4 (2) : 89–99
    [67]Nehring D, Czermak P, Vorlop J, Lubben H. Experimental Study of a Ceramic Microsparging Aeration System in a Pilot-Scale Animal Cell Culture [J]. Biotechnol Prog, 2004, 20 (6) : 1710-1717
    [68]Ilan A, Ziv M, Halevy AA. In vitro propagation in liquid culture and acclimatization of Brodiaea [J]. Scientia Hortic, 63 (1-2) : 101-112
    [69]Maliakal S, Cheney DP, Rorrer GL. Halogenated monoterpene production in regenerated plantlet cultures of Ochtodes seccundiramea (Rhodophyta, Cryptonemiales). J Phycol, 2001, 37 (6) : 1010~1019
    [70]邓斐,朱文婷.生物膜法新工艺—无泡曝气膜生物反应器[J].工业用水与废水, 2004, 35 (3) : 11-14
    [71]顾国维,何以亮.膜生物反应器—在污水处理中的研究和应用[M].北京:科学工业出版社, 2002 : 32
    [72]Winston W, Caram Hugo S, Humphrey AE. Optimal Design of the Tubular Microporous Membrane Aerator for Shear-Sensitive Cell Cultures [J]. Biotechnol Prog, 1992, 8 (1) : 19-24
    [73]沈志松,钱国芬,朱晓慧,王猛.无泡式中空纤维膜发酵供氧的初步研究[J].膜科学与技术, 1998 ,18 (6) : 42-46
    [74]虞星炬.膜生物反应器研究进展[J].化工进展, 1993 , 1 : 11 - 16
    [75]Voss MA, Ahmed T, Semmens MJ. Long-term performance of paralled-flow, bubbleless, hollow-fiber-membrane aerators [J]. Water Environ Res, 1999 , 71 (1) : 23-30
    [76]Kilburn DG, Morley MA. Method for controlling dissolved oxygen tension and measuringrespiration rate in suspension cultures of animal cella [J]. Biotechnol Bioeng, 1972, 14 (3) : 499-504
    [77]Eberhard U, Schugerl K. Investigations of reactors for insect cell culture [J]. Dev Biol Stand, 1987, 66 : 325-330
    [78]刘静雯,董双林.海藻的营养代谢及其对主要营养盐的吸收动力学[J].植物生理学通讯, 2001, 37 (4) : 325-330
    [79]Martinez ME, Jimenez JM, Yousfi FE. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus [J], Bioresour Technol, 1999, 67 (3) : 233-240
    [80]South GR, Whittick A. Introduction to phycology [M]. United Kingdom: Blackwell Scientific Publications, 1987 : 341
    [81]Rausch C, Bucher M. Molecular mechanisms of phosphate transport in plants [J]. Planta, 2002, 216: 23-37
    [82]Zhi C, Rorrer GL. Photolithotrophic cultivation of Laminaria saccharina gametophyte cells in a bubble-column bioreactor [J]. Enzyme Microb Tech, 1996, 18 (4) : 291-299
    [83]Polzin JP, Rorrer GL. Halogenated monoterpene production by microplantlets of the marine red alga Ochtodes secundiramea within an airlift photobioreactor under nutrient medium perfusion [J]. Biotechnol Bioeng, 2003, 82 (4) : 415-428
    [84]Naldi M, Wheeler PA. Changes in nitrogen pools in Ulva fenestrate (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment [J]. J Phycol, 1999, 35 (1) : 70-77
    [85]McGlathery KJ. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta) [J]. J Phycol, 1996, 32 (3) : 393-401
    [86]Taylor MW, Rees TAV. Kinetics of ammonium assimilation in two seaweeds, Enteromorpha sp. (Chlorophyceae) and Osmundiria colensoi (Rhodophyceae) [J]. J Phycol, 1999, 35 (4) : 740-746
    [87]Mcglathery KJ, Pederson MF, Borum J. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta) [J]. J Phycol, 1996, 32 (3) : 393-401
    [88]Liu J-W, Dong S-L. Comparative studies on utilizing nitrogen capacity between two macroalgae Gracilaria tenuistipitata var. liui (Rhodophyta) and Ulva pertusa (Chlorophyta):Ⅱ. Feedback controls of intracellular nitrogen pools on nitrogen uptake [J]. J Enviro Sci, 2001, 13 (3) : 323-327
    [89]Dortch Q. Effect of growth conditions on accumulation of internal pools of nitrate, ammonium, amino acids, and protein in three marine diatoms [J]. J Exp Mar Biol Ecol, 1982, 61 (3) : 243-307
    [90]Harrison PJ, Parslow JS, Conway HL. Determination of nutrient uptake kinetic parameters: acomparison of methods [J]. Mar Ecol Prog Ser, 1989, 52 : 301-313
    [91]Pedersen MF, Transient ammonium uptake in the macroalga Ulva la L. (Chlorophyta) : nature, regulation and the consequences for choice of measuring technique [J]. J Phycol, 1994, 30 (3) : 518-541
    [92]Yang S, Wang J, Cong W, Cai Z, Ouyang F, Utlization of nitrite as a nitrogen source by Botryococcus braunii [J]. Biotechnology Letters, 2004, 26 (3) : 239-243
    [93]Tyler AC, Mcglathery KJ. Uptake and release of nitrogen by the macroalgae Gracilaria vermiculophylla (Rhodophyta) [J]. J Phycol, 2006, 42 (3) : 515-525
    [94]Davies AG. Nutrient interactions in the marine environment [C]. In: Rogers D, Gallon J[Eds.] Biochemistry of the Algae and Cyanobacteria. Proceedings of the Phytochemistry Society of Europe, Oxford : Oxford University Press, 1988 : 241-297
    [95]Lee T-M, Tsai P-F, Shyu Y-T, Sheu F. The effects of phosphate on phosphate starvation of responses of Ulva lactuca (Ulvales, Chlorophyta) [J], J Phycol, 2005, 41 (5) : 975-982
    [96]Cole JA, Huges DE. The metabolism of polyphosphates in Chlorobium thiosulfatophikum [J]. J Gen Microbiol, 1965, 38 : 65-72
    [97]Kulaev IS, Vagabov UM. Polyphosphate metabolism in micro-organisms [J]. Adv Microbiol Physiol, 1983, 24 : 83-171
    [98]Lundberg P, Weich RG, Jensen P, Vogen HJ, Phosphorus-31 and nitrogen-14 NMR studies of the uptake of phosphorus and nitrogen compouds in the marine macroalgae Ulva lactuca [J]. Plant Physiol, 1989, 89 (4) : 1380-1387.
    [99]Watanbe M, Konata K, Kunugi M, 31P Nuclear magnetic resonance study of intracellular phosphate pools and polyphosphate metabolism in Heterosigma akashiwo (hada) Hada (Raphidophyceae) [J]. J Phycol, 1987, 23 (1) : 54-62
    [100]Martinez B., Rico J.M., Seasonal variation of P content and major N pools in Palmaria palmate (Phodophyta) [J]. J. Phycol. 2002, 38 (6) : 1082-1089
    [101]Alberto Vieira Costa J, Maria Colla L, Fernando Duarte Filho P. Improving Spirulina platensis biomass yield using a fed-batch process [J]. Biores Technol, 2004, 92 (3) : 237-241
    [102]王军,丛威,杨素玲,蔡昭铃.产烃葡萄藻在气升式光生物反应器中的分批补料培养[J].过程工程学报, 2003, 3 (4) : 365-370
    [103]Zhang XW, Chen F, Johns MR. Kinetic models for heterotrophic growth of Chlamydomonas reinhardtii in batch and fed-batch cultures [J]. Process Biochem, 1999, 35 (3-4) : 385-389
    [104]Shi XM, Jiang Y, Chen F. High-Yield Production of Lutein by the Green Microalga Chlorella protothecoides in Heterotrophic Fed-Batch Culture [J]. Biotechnol Prog, 2002, 18 (4) : 723-727
    [105]Sanchez-Luna LD, Converti, A, Tonini, GC, Sato, S, Carvalho, JCM. Continuous and pulse feedings of urea as a nitrogen source in fed-batch cultivation of Spirulina platensis [J]. Aquac Eng, 2004, 31 (3-4) : 237-245
    [106]Rangel-Yagui CO, Danesi EDG., Carvalho JCM, Sato S. Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process [J]. Bioresour Technol, 2004, 92 (2) : 133-141
    [107]Soletto D, Binaghi L, Lodi A, Carvalho JCM, Converti A. Batch and fed-batch cultivations of Spirulina platensis using ammonium sulphate and urea as nitrogen sources [J]. Aquaculture, 2005, 243, 217-224
    [108]Tanaka H, Semba H, Jitsufuhci T.Harada, H. The effect of physical stress on plant cells in suspension cultures [J]. Biotechnol Lett, 1988 , 10 (7) : 485-490
    [109]Meijer JJ. Effects of hydrodynamic and chemical/osmotic stress on plant cells in a stirred bioreactor [D]. The Netherlands: Technical University Delft, 1989
    [110]Wagger J, Vogelmann H. Plant Tissue Culture and Its Biotechnological Application [M]. Berlin: Sprnger-Verlag, 1977 : 245-255
    [111]Hejazi MA, Andrysiewicz E, Tramper J, Wijffels RH. Effect of Mixing Rate on B-Carotene Production and Extraction by Dunaliella Salina in Two-Phase Bioreactors [J]. Biotechnol Bioeng, 2003, 84 (5) : 591-596
    [112]Machey BM. In: Russel AD, Andrews MHE (Eds). Revival of Injured Microbes [C]. London : Academic Press, 1980 : 45-75
    [113]Hooker BS, Lee JM, An G. Response of plant tissue culture to a high shear environment [J]. Enzyme Microbiol Technol., 1989, 11 (8) : 484-490 [114Tanaka H. Technological problems in cultivation of plant cells at high density [J]. Biotechnol Bioeng, 1981, 23 (6) : 1203-1218
    [115]Cruz PE, Cunha A, Peixoto CC, Clemente J, Moreira JL, Carrondo MJ. Optimization of the production of virus-like particles in insect cells [J]. Biotechnol Bioeng, 1998, 60 (4) : 408-418
    [116]钟建江,俞俊棠.有关剪切对紫苏植物细胞存活率的影响的定量分析[J].化学反应工程与工艺, 1994, 10 (4) : 392-396
    [117]Scragg AH, Allan EJ, Leckie F. Effect of shear on the viability of plant cell suspensions [J]. Enzyme Microbiol Technol [J], 1988, 10 (6) : 361-367
    [118]Leckie F, Scragg AH, Cliff KR. Effect of bioreactor design and agitator speed on the growth and alkaloid accumulation by cultures of Catharanthus roseus [J]. Enzyme Microbio Technol, 1991, 13 (4) : 296-305
    [119]Wagner F, Volgelmann H. Plant Tissue Culture and Its Biotechnological application [M]. Berlin: Springer– Verlag, 1977 : 245-255
    [120]韩荣斌,施中东,杨文莉,元英进.剪切力对南方红豆杉细胞悬浮培养的影响[J].过程工程学报, 2003, 2 (3) : 135-140
    [121]Camacho FG, Grima EM, Miron AS, Pascual VG, Chisti Y. Carboxymethyl cellulose protects algal cells against hydrodynamic stress [J]. Enzyme Microbio Technol, 2001, 29 (10) : 602-610
    [122]Rorrer GL, Yoo Hye-Dong, Huang Y-M, Hayden C, Gerwick WH. Production of hydroxyl fatty acids by cell suspension cultures of the marine brown alga Laminaria saccharina [J]. Phytochemistry, 1997, 46 (5) : 871-877
    [123]Borowitzka MA, Larkum AWD. Calcification in Green Alga-Halimeda .2. Exchange of Ca2+ and Occurrence of Age Gradients in Calcification and Photosynthesis [J]. J Exp Botany, 1976, 27 (100) : 864-878
    [124]Strickland JDH, Parsons TR. A Practical Handbook of Seawater Analysis [M]. Ottawa: Fisheries Research Board of Canada, 1968 : 49-56
    [125]Jeffrey SW, Humphrey GF. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher-plants, algae and natural phytoplankton [J]. Biochemie und Physiologie der Pflanzen, 1975, 167 (2) : 191-194
    [126]Miron AS, Garciia MCC, Gomez AC, Camacho FG, Grima EM, Chisti Y. Shear stress tolerance and biochemical characterization of Phaeodactylum tricornutum in quasi steady-state continuous culture in outdoor photobioreactors [J]. Biochem Eng J, 2003, 16 (3) : 287-297
    [127]Luo Zhi-Bin, Calfapietra C, Liberloo M, Scarascia-Mugnozza G, Polle A. Carbon partitioning to mobile and structural fractions in poplar wood under elevated CO2 and N fertilization [J]. Global Change Biol, 2006, 12 (2) : 272-283
    [128]Baquerisse D, Nouals S, Isambert A, Santos PF, Durand G. Modelling of a continuous pilot photobioreactor for microalgae production. J Biotechnol. 1999, 70 (1-3) : 335~342
    [129]Wang DIC, Cooney CL, Demain AL, Dunnil P, Humphrey AE, Lilly MD. Fermentation and enzyme technology, New York : John Wiley & Sons Inc, 1979 : 17-175
    [130]Raven JA. Engergetics and Transport in Aquatic Plants. New York: Alan R. Liss, 1984 : 190-191
    [131]徐明芳,吴青.在光生物反应器培养螺旋藻中pH值的调控作用分析[J].食品与发酵工业, 2001, 27 (2) : 8-12
    [132]Ston J, Kosakowska A, Lotocka M. Pigment composition in relation to phytoplankton community structure and nutrient content in the Baltic Sea [J]. Oceanologia, 2002, 44 (4) : 419-437
    [133]Tang Ya-Jie, Zhong Jian-Jiang. Role of oxygen supply in submerged fermentation of Ganodermalucidum for production of Ganoderma polysaccharide and ganoderic acid [J]. Enzyme Microbio Technol, 2003, 32 (3-4) : 478-484
    [134]Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures [J]. J Appl Phycol, 1999, 11 (2) : 179-184
    [135]Cabello-Pasini A, Figueroa FL. Effect of nitrate concentration on the relationship between photosynthetic oxygen evolution and electron transport rate in Ulva rigida (Chlorophyta) [J].J Phycol, 2005, 41 (6) : 1169-1177
    [136]Montaini E, Zittelli GC, Tredici MR, Molina Grima E, Fernandez Sevilla JM, Sanchez Perez JA. Long-Term Preservation of Tetraselmis-Suecica: Influence of Storage on Viability and Fatty-Acid Profile [J]. Aquaculture, 1995, 134 (1-2) : 81-90
    [137]Rorrer GL, Tucker MP, Cheney DP, Maliakal S. Bromoperoxidase activity in microplantlet suspension cultures of the macrophytic red alga Ochtodes secundiramea [J]. Biotechnol Bioeng, 2001, 74 (5) : 389-395
    [138]Ozaki A, Mizuta H, Yamamoto H. Physiological differences between the nutrient uptake of Kjellmaniella crassifolia and Laminaria japonica (Phaeophyceae) [J]. Fish Sci, 2001, 67 (3) : 415-419
    [139]岳国峰,王金霞,王建飞,周百成,曾呈奎.海带幼孢子体的光合碳利用[J].海洋与湖沼, 2001, 32 (6) : 647-652
    [140]Dring MJ. Photoperiodism and phycology [J]. Prog Phycol Res, 1984, 3 : 159-192
    [141]Powles SB. Photoinhibition of photosynthesis induced by visible light [J]. Annu Rev Plant Physiol, 1984, 35 : 15-44
    [142]Masuda T, Polle JEW, Melis A. Biosynthesis and distribution of chlorophyll among the photosystems during recovery of the green alga Dunaliella salina from irradiance stress [J]. Plant Physiol, 2002, 128 : 603-614
    [143]Finn RK. Agitation-aeration in the laboratory and in industry [J]. Bact Rev, 1954, 18 (4) : 254-274
    [144]Roberts PV, D?ndliker, PG. Mass transfer of volatile organic contaminants from aqueous solution to the atmosphere during surface aeration [J]. Environ Sci Technol, 1983, 17 (8) : 484-489
    [145]Cooper CM, Fernstrom GA, Miller SA. Performance of agitated gas-liquid contactors [J]. Ind Eng Chem, 1944, 36 (6) : 504-509
    [146]Richards JW. Studies in aeration and agitation [J]. Prog Ind Micro, 1961, 3 : 141-172
    [147]Garcia-Garibay M, Torres J, Lopez-Munguia-Canales A, Casas LT. Influence of oxygen transfer rate on galactosidase production from Kluyveiomyces mrixianus [J]. Biotechnol Lett, 1987, 9 (6) :417-420
    [148]Doig SD, Boam AT, Leak DI, Livingston AG, Stuckey DC. Membrane bioreactor for biotransformations of hydrophobic molecules [J]. Biotechnol Bioeng, 1998, 58 (6) : 587-594
    [149]Chang CC, Tseng SK, Chang CC, Ho CM. Reductive dechlorination of 2-chlorophenol in a hydrogenotrophic, gas-permeable, silicone membrane bioreactor [J]. Bioresour Technol, 2003, 90 (3) : 323-328
    [150]Chung WC, Sun TH. Continuous membrane fermentor separator for ethanol fermentation [J]. J Memb Sci, 1991, 57 (1) : 21-42
    [151]Brindle K, Stephenson T. Application of membrane biological reactors for the treatment of wastewaters [J]. Biotechnol Bioeng, 1996, 49 (6) : 601-610
    [152]Casey E, Glennon B, Hamer G. Oxygen mass transfer characteristics in a membrane-aerated biofilm reactor [J]. Biotechnol Bioeng, 1999, 62 (2) : 183-192
    [153]Su WW, Caram HS, Humphrey AE. Optimal design of the tubular microporous membrane aerator for shear-sensitive cell cultures [J]. Biotechol Prog, 1992, 8 (1) : 19-24
    [154]Qi HN, Goudar CT, Michaels JD, Hans-Jugen H, Jovanovic GN, Konstantinov KB. Experimental and theoretical analysis of tubular membrane aeration for mammalian cell bioreactors [J]. Biotechnol Prog, 2003, 19 (4) : 1183-1189
    [155]Hvoslef-Eide AL, Olsen OA, Lyngved R, Munster C, Heyerdahl PH. Bioreactor design for propagation of somatic embryos [J]. Plant Cell Tissue Organ Cul, 2005, 81 (3) : 265-276
    [156]Atkinson MJ, Smith SV. C:N:P ratios of benthic marine plants [J]. Limnol Oceanogr, 1983, 28 (3) : 568-574
    [157]Wikfors GH. Altering growth and gross chemical composition of two microalgal molluscan food species by varying nitrate and phosphate [J]. Aquaculture, 1986, 59 (1) : 1-14
    [158]Rai LC, Gaur JP. Algal adaption to environmental stresses: Physiological, biochemical and molecular mechanisums [M]. Berlin and Heidelgerg: Springer-Verlag Publications, 2001 : 45-110
    [159]Tonegawa I, Okada S, Murahiro M, Yamaguchi K. Pigment composition of the green microalga Botryococcus braunii Kawaguchi-1[J]. Fish Sci 1998, 64 (2) : 305-308
    [160]Weetal HH. Studies on nutritional requirements of the oil producing alga Botryococcus Braunii [J]. Appl Biochem Biotechnol, 1985, 11 (5) : 377-391
    [161]Casadevall E, Dif D, Largeau C. Studies on batch and continuous cultures of Botryococcus braunii [J]. Biotechnol Bioeng, 1985, 27 (3) : 286-295
    [162]Costa JAV, Colla L , Filho PFD. Improving Spirulina platensis biomass yield using a fed-batch process. Bioresour Technol, 2004, 92 (3) : 237-241
    [163]Lobban CS, Harrison PJ. Seaweed ecology and physiology [M]. Cambridge: CambridgeUniversity Press, 1994 : 163-209
    [164]Demetropoulos CL, Langdon CJ. Enhanced production of pacific dulse (Palmaria mollis) for co-culture with abalone in a land-based system: nitrogen, phosphorus, and trace metal nutrition [J]. Aquaculture, 2004, 235 (1-4) : 433-455
    [165]Joshi JB, Elias CB, Patole MS. Role of hydrodynamic shear in the cultivation of animal, plant and microbial cells [J]. Chem Eng J, 1996, 62 (2) : 121-141
    [166]陈敏恒,丛德滋,方图南,齐鸣斋编.化工原理(上册)[M].北京:化学工业出版社, 1999 : 146
    [167]Veloso V, Reis A, Gouveia L, Fernandes, HL, Empis JA, Novais JM. Lipid production in Phaeodactylum tricornutum [J]. Bioresour Technol, 1991, 38 (2-3): 115-119
    [168]Torre AI, Gil MN, Esteves JL. Nutrient uptake rates by the alien alga Undaria pinnatifida (Phaeophyta) (Nuevo Gulf, Patagonia, Argentina) when exposed to dilute sewage effluent [J]. Hydrobiologia, 520 (1-3) : 1-6
    [169]Maranga L, Cunha A, Clemente J, Cruz P, Carrondo MJT. Scale-up of virus-like particles production: effects of sparging, agitation and bioreactor scale on cell growth, infection kinetics and productivity [J]. J Biotechnol, 2004, 107 (1) : 55-64
    [170]Camacho FG, Grima EM, Miron AS, Pascual VG, Chisti Y. Carboxymethyl cellulose protects algal cells against hydrodynamic stress [J]. Enzyme Microbio Technol, 2001, 29 (10) : 602-610
    [171]Chen S Y, Huang SY. Shear stress effects on cell growth and L-DOPA production by suspension culture of Stizolobium hassjoo cells in an agitated bioreactor [J]. Bioprocess Biosyst. Eng, 2000, 22 (1) : 5-12
    [172]陈云弟,秦俊法.海带细胞壁及细胞壁多糖中Sr, Ca, Mg, P分布[J].广东微量元素科学, 1996, 3 (11) : 63-65
    [173]Lamb C, Dixon RA. The oxidative burst in plant disease resistance [J]. Ann Rev Plant Physiol. Plant Mol Biol, 1997, 48 (1) : 251-275
    [174]Brisson LF, Tenhaken R, Lamb CJ. Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance [J]. Plant Cell, 1994, 6 (12) : 1703-1712
    [175]Apostol I, Heinstein PF, Low PS. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells [J]. Plant physiol, 1989, 90 (1) : 109-116
    [176]Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D. Elicitor-stimulated ion fluxes and O2- from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley [J]. Proc Natl Acad Sci USA, 1997, 94 (9) : 4800-4805

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700