用户名: 密码: 验证码:
毒死蜱农药降解菌及其降解特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前,韭菜地下害虫韭蛆的肆虐,迫使菜农在韭菜生产中大量使用化学杀虫剂。毒死蜱是常用的有机磷杀虫剂之一,虽然具有高效、低毒、广谱、低残留和低抗药性等优点,但大量使用造成了韭菜农药残留超标,严重危害了人类健康并造成了土壤生态环境的日益恶化。众所周知,微生物在降低作物及土壤农药残留中发挥了重要作用,许多农药降解微生物已得到开发应用。针对上述现状,本文从韭菜植株和韭菜根际土壤中分离并筛选具有毒死蜱降解能力的生防菌株,对于韭菜的无公害生产具有重要的现实意义和实践意义。具体结果如下:
     1.从新鲜韭菜的根中分离到一株对多种蔬菜病原真菌有抑制作用的优势内生细菌W7,其拮抗机制与已报道的其它生防细菌不同,其胞外代谢物对病原真菌无抑制作用,而菌体经超声波破碎及有机溶剂沉淀得到的菌体多糖粗提液可明显抑制病原菌菌丝生长。而且,该菌能以100mg/L高效氯氰菊酯为唯一碳源生长,7d的降解率为51.3%,但不能降解毒死蜱。通过对其形态特征、生理生化及16S rDNA同源性序列分析,将其鉴定为类芽孢杆菌(Paenibacillus spp.)。
     2.从受农药污染的韭菜根际土壤中获得了一株高效毒死蜱降解细菌D10,该菌能以毒死蜱为唯一碳源生长,6d内对100mg/L的毒死蜱降解率达59.7%。通过形态特征、生理生化及16S rDNA同源性序列分析,鉴定该菌为不动杆菌(Acinetobacter.spp)。
     3.为进一步研究毒死蜱降解菌D10的降解特性,测定了外加碳源浓度、pH、温度、接种量及毒死蜱浓度对菌株降解率和生长量的影响。结果表明,当pH为8.0,温度为30~35℃,接种量在5%,毒死蜱浓度为200mg/L以下时,菌株D10的降解效果较好;在pH为8.0以上,外加碳源1%以上,温度为35℃,接种量10%,毒死蜱浓度为200mg/L以下时,菌株D10的生长量最大。
     4.采用超声波破碎、有机溶剂沉淀等方法从菌株D10中提取粗酶液,用于研究毒死蜱降解酶在细胞中的定位和性质。结果表明:毒死蜱降解酶主要位于胞内。该酶对毒死蜱的酶促降解最适pH为8.0,在碱性条件下相对稳定;最适温度为30℃,且具有较好的热稳定性。
     5.实验室模拟受污染土壤,研究菌株D10在土壤中的实际降解效果。结果表明,在添加了菌株D10的未灭菌土壤中,20d降解率达82.5%,而未灭菌土壤的自然降解率仅有26.7%,表明在土壤中添加菌株D10可明显降低土壤中的毒死蜱残留。
     6.由于韭菜优势内生细菌W7不能降解毒死蜱,为使其今后能通过转基因的方式获得毒死蜱降解能力,对菌株D10的毒死蜱降解酶基因进行初步研究。目前,已报道的有机磷降解酶基因位于质粒或者基因组DNA上。本研究对菌株D10多次进行质粒提取,电泳检测无质粒条带,从而可以判断菌株降解毒死蜱的相关基因位于基因组DNA上。根据已报道的甲基对硫磷降解酶(mpd)基因的编码区设计引物,PCR得到一条约900bp的片段。
For preventing chive maggot flooding, peasent have to use lots of chemical pesticides during production. Chlorpyrifos is one of organophosphate pesticides, which has many advantages such as high efficiency, low toxicity, broad-spectrum, low-residue, low resistance over other insecticides. But exceeded using of chlorpyrifos caused pesticide residues over normal upper limit of leek, which greatly threatened human health and resulted in deterioration of eco-environment. It is well known that microorganisms play an important role in reducing pesticide residues of crop and soil, and a large number of pesticide-degrading microorganisms have developed and applied. Thus, we isolate the chlorpyrifos-degrading bacteria from leek and its rhizosphere soil. It is certain to contribute to pollution-free production of leek. The specific results are as follows:
     1.One dominant endophytic bacterial strain W7 was isolated from the root of fresh leek,which had a broad inhibition spectrum against several vegetable pathogenic fungi. Its antagonistic mechanism was different from those of other biocontrol bacteria reported previously. The extracellular metabolites of strain W7 had no effect on pathogenic fungi, but the somatic polysaccharose which obtained from cells by ultrasonic disruption and organic solvent precipitation could inhibit the growth of mycelium. And also, strain W7 was found to be capable of utilizing beta-cypermethrin as the sole source of carbon for growth, and its degradation rate at initial concentration of 100mg/L was 51.3% within 7 days. Strain W7 was identified as Paenibacillus spp. based on morphological, physiological-biochemical properties and 16S rDNA sequence analysis.
     2. A chlorpyrifos-degrading bacteria strain D10 was isolated from rhizosphere soil of leek. It was capable of utilizing chlorpyrifos as the sole source of carbon for growth, and the degradation rate was 57.9% (100mg/L) within 6 days. By morphological, physiological, biochemical and 16S rDNA sequence homology analysis, it was identified as Acinetobacter spp.
     3. In order to research the degradation characteristics of D10, the effects of carbon source concentration, pH, temperature, inoculum size and chlorpyrifos concentration on degradation and growth was determined. The results indicated that the optimal conditions for degradation were pH 8.0, temperature 30~35℃, inoculum size 5%, chlorpyrifos concentration below of 200mg/L; The optimal conditions for growth were pH 8.0 and above, more than 1% carbon, temperature 35℃, inoculum 10%, chlorpyrifos concentration below of 200mg/L.
     4. The location and property of pesticide-degrading enzyme which obtained from strain D10 by ultrasonic disruption and organic solvent precipitation was studied. The result showed that endoenzyme had higher velocity than ectoenzyme. The pH optimum was 8.0 for enzymatic degradation of chlorpyrifos, and enzyme activity was relatively stable under alkaline conditions. The optimum temperature was 30℃, and had the stability of endure for temperature.
     5. To measure practical degrading rate of D10 in soil, the contaminated soil was simulated under laboratory conditions. The results showed that the degradation rate was 82.5% in non-sterilized soil added strain D10 within 20 days but 26.7% in control, so strain D10 could effectively decrease chlorpyrifos residues of soil.
     6. As the dominant endophytic bacteria W7 couldn’t degrade chlorpyrifos, the degrading enzyme gene of D10 was studied in order to make strain W7 to obtain chlorpyrifos-degrading ability by transgene. It was reported that organophosphate hydrolase gene located in plasmid or genomic DNA. But after several plasmid extraction of strain D10, plasmid bands were not detected, so the gene encoding chlorpyrifos degrading enzyme was regarded on the genomic DNA. Acoording to coding region of previous reported mpd gene, designed primers and obtained a 900bp fragments by PCR.
引文
[1]吴莉,张平.气-质联用法检测韭菜中香味成分的研究[J].广东化工,2005( 7) : 67-68.
    [2]党志红,董建臻,高占林等.不同种植方式下韭菜迟眼蕈蚊发生为害规律的研究[J].河北农业大学学报.2001,24(4):65-68.
    [3]高占林,党志红,潘文亮等.河北省不同地区韭蛆(韭菜迟眼蕈蚊)对杀虫剂的敏感性[J].农药学学报.2000,2(4):88-90.
    [4]唐国文,龚信文,孟国玲.武汉地区蔬菜蓟马种类研究[J].2002,21(1):5-9
    [5]王焕民,张子明.新农药手册.农业部农药检定所.北京:中国农业出版社,1989.3.
    [6] Racke K D.The environmental fate of chlorpyrifos[J].Rev Environ Contam Toxicol,1993,131:1-154
    [7] Tomlin C.The pesticide manual:a world compendium[M].British Crop Protection Council,Cambridge.UK:Royal Society of Chemistry,1994
    [8] Sun F, Lin F Y, Wong S S, et al. Accumulation of chlorpyrifos by the Cyprinus carpio in different aquaria[J].Plant Protection Bulletin Taipei,1999,41(3):155-164.
    [9]王强,韩丽娟,黄祥麟,等.毒死蜱和甲基毒死蜱防治稻纵卷叶螟[J].农药,1995,34(2):31.
    [10]张一宾,张怿主编.农药[M].北京:中国物资出版社,1997:83-85
    [11] Gonzalez R H. Management of kiwifruit pests in Chile: Degradation of residues of the insecticides chlorpyrifos and phosmet[J]. Revista Fruticola, 1989, 10(2):35-43.
    [12] Maghraby E S. Bioavailability and toxicologyical to rats of bound 14C-chlorpyrifos residues in soybeans[J]. Bulletin of the National Research Centre Cairo, 2000, 25(3): 259-268. [ 13 ] Jin H, Webster G R B. Persistence,Penetration and Surface Availability ofChlorpyrifos, Its Oxon and 3,5,6-Trichloro-2-pyridinol in Elm Bark[J].Agric.Food Chem,1997,45:4871-4876.
    [14]冯明祥,陈振德,袁玉伟等.几种常用杀虫剂在洋葱上的残留降解动态[J].农药,2006,45(5):337-339.
    [15] Getzin L W. Degradation of chlorpyrifos in soil: influence of autoclaving, soil moisture and temperature[J].Econ. Entomol, 1981,74: 158-162.
    [16] Racke K D, Coats J R, Titus K R. Degradation of chlorpyrifos and its hydrolysis products 3,5,6-trichloro-2-pyridinol,in soil[J].Environ Sci Health B,1988,23:527-539.
    [17] Chapman R A, Chapman P C. Persistence of granular and EC formulation of chlorpyrifos in a mineral and an organic soil incubated in open and closed containers[J]. Environ.Sci.Health B, 1986, 21: 447-456.
    [18] Yen J H, Law F H, Wang Y S, et al. Dissipation of organophosphorus insecticide chlorpyrifos in soil[J].Journal of the Chinese Agricultural Chemical Society,1997,35(3):310-318.
    [19] Menon P, Gopal M, Prasad R. Dissipation of Chlorpyrifos in Two Soil Environments of Semi-Arid India[J]. Environ Sci Health B, 2004, 39(4): 517-531.
    [20]黄素芳,朱育菁,林抗美,等.毒死蜱在蕹菜及土壤中的残留和消解动态研究[J].农业环境科学学报,2006,25(增刊):269-271.
    [21]李莹,高成仁,吴剑英,等.40%毒死蜱乳油在稻田土壤中的消解动态[J].农药,2000,39(6):25-27.
    [22]刘新,尤民生,廖金英,等.土壤中毒死蜱和微生物相互作用的研究[J].应用生态学报,2004,15(7):1174-1176.
    [23] Racke K D, Steele K P, Yoder R N, et al. Factors affecting the hydrolytic degradation of chlorpyrifos in soil[J]. J Agric Food Chem, 1996, 44:1582-1592.
    [24] Racke K D. Environmental fate of chlorpyrifos[M]. Rev. Environ. Contam. Toxicol. 1993, 131: 1-154.
    [25] Singh B K, Walker A. Microbial degradation of organophosphorus compounds[J]. FEMS Microbiol Rev, 2006,30(3):428-471
    [26] Sikora L J, Kaufman D, and Hornog L C. Enzyme activity in soils showing degradation of organophosphosphate insecticides[J]. Biology and Fertility of Soils,1990, 9(1): 14-18.
    [27] Racke K D, Robbins S T. Factors affecting the degradation of 3,5,6-trichloro-2-pyridinol in soil[J]. ACS Symposium Series, 1991, 459: 93-107.
    [28] Andrew M F, Olli H. Micobiological degradation of pesticides in yard waste composting[J]. Microbiol Rev, 1991. 55(2): 225-233.
    [29] Handelsamn J, Lawrence P W. Microbial diversity-sustaining the earth and industry[J]. Current Opinion Microbio1, 2002, (5): 237-239.
    [30] Shelton D R. Doherty M A. A model describing pesticide bioavailability and biodegradation in soil[J]. Soil Sci Soc Am J, 1997, (4): 1078-1084.
    [31]张杰,刘永生. PAH降解菌的分离与鉴定[J].应用生态学报, 2003, 14(10) : 1783-1786 .
    [32] Sethunathan N, Yoshida T. A Flavobacterium that degrades diazinon and parathion[J].Can J Microbiol, 1973, 19:873-875.
    [33] Misra D,Bhuyan S,Aehya T K, et al. Accelerated degradation of methyl parathion, parathion and fenitrothion by suspensions from methyl parathion and p-nitrophenol-treated soils[J]. Soil Biol.Biochem, 1992, 24: 1035-1042.
    [34]虞云龙,宋凤鸣,郑重等.一株广谱性农药降解菌(Alcaligenes sp.)分离与鉴定[J].浙江农业大学学报,1997,23(2):111-115.
    [35] Mallick K, Bharati K, Banerji A, et al. Bacterial degradation of chlorpyrifos in pure cultures and in soil[J]. Bull Environ Contam Toxicol, 1999, 62 (1): 48-54.
    [36] Chapman R A, Harris C R. Factors influencing the development and effects of enhanced microbial activity[M]. Enhanced biodegradation of pesticides in theenvironment, 1990: 82-96.
    [37] Racke K D, Fontaine D D, Yoder R N, et al. Chlorpyrifos degradation in soil at termiticidal application rates[J]. Pestic.Sci, 1994, 42: 43-51.
    [38] Feng Y C, Racke K D, Bollag J M, et al. Isokation and characterization of a chlorinated-pyridinol-degrading bacterium[J]. Appl Environ Microbiol,1997,63(10):4096-4098.
    [39] Serdar C M, Gibson D T, Munnecke D M. Plasmid involvement in parathion hydrolysis by Pseudomonas diminuta[J]. Appl.Environ.Microbiol, 1982, 44: 246-249.
    [40] Mallick B K, Banerji A, Shakil N A, et al. Bacterial degradation of chlorpyrifos in pure culture and in soil[J].Bull.Environ.Contam.Toxicol.,1999,62:48~55.
    [41] Singh B K, Walker A, Morgan J A W, et al. Biodegradation of Chlorpyrifos by Enterobacter Strain B-14 and Its Use in Bioremediation of Contaminated Soils[J]. Appl Environ Microbiol, 2004, 70(8): 4855-4863.
    [42]杨丽,赵宇华,张炳欣等.一株毒死蜱降解细菌的分离鉴定及其在土壤修复中的应用[J].微生物学报, 2005,45(6): 905-909. [ 43 ] Chao Yang, Na Liu, Xinmin Guo, et al. Cloning of mpd gene from a chlorpyrifos-degrading bacterium and use of this strain in bioremediation of contaminated soil[J]. FEMS Microbiol Lett, 2006, 265: 118-125.
    [44]李晓慧,贾开志,何健等.一株毒死蜱降解菌株Sphingomonas sp.Dsp-2的分离鉴定及降解特性[J].土壤学报, 2007,44(4):734-739.
    [45]王晓,楚小强,虞云龙,等.毒死蜱降解菌株Bacillus latersprorus DSP的降解特性及其功能定位[J].土壤学报,2006,43(4):648-854.
    [46]吴祥为,花日茂,操海群,等.毒死蜱降解菌的分离鉴定与降解效能测定[J].环境科学学报,2006,26(9):1433-1439.
    [47]周淑云.毒死蜱高效降解菌的分离鉴定及其生物学特性研究[D].西南大学,2006.
    [48]张德咏,谭新球,罗香文,等.一株能降解有机磷农药甲胺磷的光合细菌的分离及生物学特性的研究[J].生命科学研究,2005,9(3):247-253.
    [49] Siciliano S, Fortin N, Himoc N, et al. Selection of specific endophytic bacterial genotypes by plants in response to soil contamination [J]. Appl Environ Microbiol, 2001, 67: 2469-2475.
    [50] Van Aken B, Peres C, Doty S, Yoon J & Schnoor J. Methylobacterium populi sp. nov., a novel aerobic, pinkpigmented, facultatively methylotrophic, methane-ultilising bacterium isolated from poplar trees (Populus deltoides x nigra DN34)[J]. Evol Microbiol, 2004,54: 1191-1196.
    [51] Germaine K, Liu X, Cabellos G, Hogan J, Ryan D & Dowling DN. Bacterial endophyte-enhanced phyto-remediation of the organochlorine herbicide 2,4-dichlorophenoxyacetic acid[J]. FEMS Microbiol Ecol, 2006, 57: 302-310.
    [52] Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H & van der Lelie D. The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant[J]. Int J Phytoremediation, 2001, 3: 173-187.
    [53] Barac T, Taghavi S, Borremans B, Provoost A, Oeyen L, Colpaert JV, Vangronsveld J & van der Lelie D. Engineered endophytic bacteria improve phyto-remediation of watersoluble, volatile, organic pollutants [J]. Nat Biotechnol, 2004, 22:583-588.
    [54] Newman L & Reynolds C. Bacteria and phyto-remediation: new uses for endophytic bacteria in plants[J]. Trends Biotechnol, 2005 ,23: 6-8.
    [55] Chaudhry G R, Ali A N, Wheeler W B. Isolation of methyl parathion-degradation Pseudomonas sp. That possesses DNAhomologous to the opd gene from a Flavobacterium sp[J]. Appl Environ Microbiol,1988,54(2):288-293.
    [56] Somara S,Manavathi B,Tebbe C C,et al. Localisation of identieal organophosphorus pesticide degrading(opa) genes on genetically dissimilar indigenous plasmids of soil baeteria: PCR amplifieation , cloning and sequencing of opa gene from Flavobacterium balustinum[J]. Indian J Exp Biol,2002,40: 774-779.
    [57] Home I,Sutherland T D,Harcourt R L,et al. Identifieation of an opd gene in an Agrobacterium sp isolated [J]. Appl Environ Microbiol,2002,68(7):3371-3376.
    [58] Mu1bry W W. The aryldialkylphosphatase-encoding adpB from Noeardia sp.strain B-l:cloning,sequeneing and expression in Escherichia coli[J]. Gene,1992,121:149-153.
    [59] Cui Z L, Li S P, Fu G P. Isolation of methyl parathion degrading strain M6 and cloning of the methyl parathion hydrolase gene[J]. Appl Environ Microbiol 2001, 67:4922-4925.
    [60] Xiaohui Li, Jian He, Shunpeng Li. Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene[J]. Research in Microbiology 2007,158:143-149.
    [61] Ohshiro K,Kakuta J,Nikaidou N,et al. Molecular cloning and nucleotide SequeneingOf organophosphorus insectieide hydrolase gene from Arthrobacters sp.StrainB-5[J].J Biosci Bioeng, 1999,87:531-534.
    [62] Home I,Harcourt R I,Sutherland T D,et al. Isolation of a Pseudomon monteilli strain with a novel phosphtriesterase[J]. FEM S Microbios Lett,,2002,206(1):51-55.
    [63]田健,伍宁丰,邓敏捷,等.甲基对硫磷水解酶OPHC2的序列分析及结构预测[J].生物信息学,2006,4(2):49-52.
    [64] Cheng T C,Harvey S P,Chen G L. Cloning and expression of a gene eneoding a baeterial enzyme for decontamination of organophosphorus nerve agents and nucleotide sequence of the enzyme[J]. Appl Environ Microbiol , 1996 ,62(5):1636-1641.
    [65]沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999, 80-89.
    [66]王兆守,林淦,尤民生,等.茶叶上拟除虫菊酯类农药降解菌的分离及其特性[J].生态学报,2005, 25( 7):1824-1827.
    [67]谢慧,朱鲁生,王军,等.真菌WZ-3对有机磷杀虫剂毒死蜱的酶促降解[J].环境科学,2005 ,26 (6) :164-168.
    [68]邢介帅,李然,赵蕾,等.产蛋白酶生防细菌的筛选及其对病原真菌的拮抗作用[J].西北农业学报,2008,17(1):106-109.
    [69]位增辉,罗丽,王远路,等.辣椒内生细菌的分离与拮抗菌株的筛选[J].青岛农业大学学报. 2007, 24(3):182-184.
    [70]张燕,李轻舟,杜连祥,等.肺炎克雷伯氏菌荚膜多糖的提取纯化及其对细胞免疫活性的影响[J].生物工程学报,2005,21(3):461-465.
    [71] Alfonso R B, Maria J V, Encarnacion M, et al. Biological Response Modifier Activity of an Exopolysaccharide from Paenibacillus jamilae CP-7[J]. Clinical and Diagnostic Laboratory Immunology,2001,8(4):706-710.
    [72]李平作,徐柔,章克昌.灵芝菌丝体胞内多糖提取工艺的优化[J].无锡轻工大学学报,1999,18(4):38-41.
    [73]邢介帅,李然,赵蕾,等.生防芽孢杆菌T2胞外蛋白酶的纯化及其抗真菌作用[J].植物病理学报,2008,38 (4):377-381.
    [74]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001,57-61.
    [75] J.萨姆布鲁克, D. W.拉塞尔.分子克隆实验指南(第三版)[M].科学出版社,2003,27-35.
    [76] Weisburg W G,Bams S M,Pelletier D A,et a1.16S ribosomal DNA amplification for phylogenetic study[J].Journal of Bacteriology,1991,173(2):697-703.
    [77]洪永聪,辛伟,来玉宾,等.茶树内生防病和农药降解菌的分离[J].茶叶科学,2005,25(3):183-188.
    [78]王兆守,林淦,李秀仙,等.拟除虫菊酯降解菌的分离、筛选及鉴定[J].福建农林大学学报(自然科学版),2003,32(2):176-180.
    [79] Opp E, Akhtar M H I. Dentification and characterization of a pseudomonas strain capable of metabolizing phenoxybenzoates[J]. Applicated and EnvironmentalMicrobiology,1991,57(5):1249-1300.
    [80]丁海涛,李顺鹏,沈标,等.拟除虫菊酯类农药残留降解菌的筛选及其生理特性研究[J].土壤学报, 2003,40(1):123-129.
    [81]宋永燕,李平,郑爱萍,等.生防细菌LM-3的鉴定及其抗菌蛋白的研究[J].四川大学学报(自然科学版),2006,43(5):1110-1115.
    [82]王智文,袁士涛,何亮.多粘类芽孢杆菌Cp-S316抗真菌活性物质的提取及其部分性质研究[J].农业环境科学学报,2007,26(4):1464-1468.
    [83] Selim S, Negrael J, Govaerts C, et al. Isolation and partial characterization of antagonistic peptides produced by Paenibacillus sp. Strain B2 isolated from the Sorghum mycorrhizosphere [J]. Applied and Environmental Microbiology,2005,71 (11):6501-6507.
    [84]陈雪丽,郝再彬,王光华,等.多粘类芽孢杆菌BRF-1抗菌蛋白的分离纯化[J].中国生物防治,2007,23 (2):156-159.
    [85]沈萍,范秀容,李广武.微生物学实验(第三版)[M].北京:高等教育出版社,1999,70-72.
    [86]钱博,朱鲁生.毒死蜱降解细菌XZ-3的分离及降解特性研究[J].环境科学,2007,(28)12:2828-2832.
    [87] Cohen S N. Transposable genetic elements and plasmid evolution[J]. Nature, 1976, 263: 731-738.
    [88]王文东,陈文峻,罗如新,蒯本科.邻单胞菌邻苯二酚1,2-双加氧酶基因(tfdC)在拟南芥中表达的初步研究[J].复旦学报(自然科学版),2002,41(1):16-20.
    [89] Allan W. Enhanced degradation of iprodione and vinclozolin in soil:A simple colorimetric test for identification of rapid-degrading soils[J].Pesticide Science 1987,21:233-240.
    [90] Grosser R J. Indigenous and enhanced mineralization of pyrene, benzo(a)pyrene and carbozole in soils[J]. Appl.Environ.Microbio1, 1991, 57: 3462-3469.
    [91]王金花,朱鲁生,王军,等. 3株真菌对毒死蜱的降解特性[J].应用与环境生物学报,2005,11(2):211-214.
    [92]刘新,尤民生,魏志英,等.木霉Y对毒死蜱和甲胺磷的降解作用[J].福建农林大学学报(自然科学版),2002,31(4):455-458.
    [93]王金花.毒死蜱降解微生物的筛选及其降解特性研究[D].山东农业大学,2004.
    [94]钱博.毒死蜱高效降解细菌的筛选及其降解特性研究[D].山东农业大学,2007
    [95]焦振泉,刘秀梅.分类与鉴定的新热点:16S-23S rDNA间区[J].微生物学通报,2001,28(1): 85-89.
    [96] Peplies J, Glockner F O, Amann R. Optimization strategies for DNA microarray-based detection of bacteria with 16S rRNA-targeting oligonucleotide probes[J]. Apple Environ Microbiol,2003,69(3):1397-1407.
    [97] Lynch J M.The Rhizosphere.ed.New York:John Wiley& Sons,1990,458.
    [98] Kent A D, Triplett E W. Microbial communities and their interactions in soil and rhisosphere ecosystems[J]. Annu Rev Microbiol,2002,56:21l-236.
    [99] Sato K. Effect of nutrients on interaction between pesticide pentachlorophenol microorganisms in soil. Bioremediation through rhizosphere technology[M]. Washington, D C(USA). American Chemical Society,1994,43-55.
    [100] Wall A J, Stratton G W. Copper toxicity towards a pentachlorophenol-degrading flavobacterium. sp[J].Bulletin of Environment Contamination and Toxicology, 1994, 52(4):590-597.
    [101]方玲.降解有机氯农药的微生物菌株分离筛选及应用效果[J].应用生态学报,2000,11(2):249-252.
    [102]田芹,周志强,江树人等.毒死蜱在环境水体中降解的研究[J].农业环境科学学报,2005,24(2):289-293.
    [103] Singh B K, Walker A, Morgan J A W, et al. Effects of soil pH on the biodegradation of Chlorpyrifos and a chlorpyrifos-degrading bacterium[J].Appl Environ Microbial,2003, 69(9):5198-5206.
    [104]张锡辉,Baipai R.以关健酶为基础共代谢模型的建立[J].环境科学学报,2000,20(5):558-562.
    [105] Harris C R,Chapman R A,Tolman J H,et al. A comparison of the persistence in a clay loam of single and repeated annual applications of seven granular insecticides used for corn rootworm control[J]. J Environ Sci Health B, 1988, 23: 1-32.
    [106] Yang L, Zhao Y, Zhang B, et al. Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium[J]. FEMS Microbiology Letters, 2005, 251: 67-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700