用户名: 密码: 验证码:
基于FRET原理构建金纳米猝灭的荧光探针实现活细胞中葡萄糖的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体纳米粒子或量子点具有独特的光物理学特点,比如量子点的发射波长可通过控制它的大小和组成来调谐,高的荧光量子产率,抗光漂白能力强等。正是由于这些优点,量子点被广泛的应用于生物传感中的荧光标记。将生物材料修饰在纳米颗粒的表面上就可以合成新型的多功能纳米生物复合物。纳米荧光探针作为一种新型的探针,它所特有的量子尺寸效应和小的颗粒尺寸使之呈现出许多与同质单个分子或大块物体不同的光学性质,已经被成功应用于生物样品检测及活体细胞成像中。最近,由蛋白质修饰的纳米颗粒组装的生物纳米传感器已经引起了广泛的关注,例如,半导体量子点已经被作为一种极好的材料用于酶反应的生物分析和应用当中。因此,设计具有良好性能的新型荧光纳米生物传感器用来实现生物活性分子或细胞内活性物质的分析和检测已经成为科学工作者的巨大挑战。
     荧光共振能量转移(FRET)作为重要的光物理技术已广泛应用于生物大分子之间距离的定性、定量检测。荧光共振能量转移的效率决定于供体受体之间的距离及其光谱重叠程度。其中,能量给予者为供体(donor),荧光素量子产率高,是最常用的供体分子。能量接受者为受体(acceptor),受体可发射自己的特征荧光(荧光增强),也可作为猝灭剂不发荧光(荧光猝灭),不产生荧光的受体其优势在于能够减少可能由受体本身直接产生的荧光背景的干扰。
     作为一种荧光猝灭剂,金纳米颗粒可以有地猝灭荧光团的荧光。纳米金具有比较宽的猝灭范围、对荧光试剂高的猝灭效率以及良好的稳定性,可以提高FRET过程的灵敏度和特异性,使其成为一个研究和应用的热点。与传统的有机猝灭剂相比,金纳米粒子具有特殊的结构特征和光学性质,低的毒性以及好的生物相容性,所以金纳米作为一种极好的猝灭剂已经开拓了高灵敏度检测生物活性分子的前景
     葡萄糖是一种重要的生物活性物质,对细胞的健康生长起着非常重要的作用。葡萄糖的缺乏或过量都会对体内的新陈代谢产生不利的影响。目前有很多报道发现相对于正常细胞来说癌变细胞的代谢要消耗更多的葡萄糖。这其中的原因到目前为止还不是很清楚,但是癌细胞的糖代谢旺盛这一点是大家普遍认同的。目前,已经报道许多种有关葡萄糖含量的检测方法。其中,基于右旋糖酐、葡萄糖与葡萄糖氧化酶的竞争性结合的荧光检测方法由于其具有良好的选择性和较低的损伤度已经被广泛地应用于葡萄糖的检测当中。但是这些方法的检测限一般不高,而且毒性问题依然存在,限制了生物样品葡萄糖含量的直接检测,从而限制了细胞信号转换及细胞成像等方面的应用,所以设计一种稳定的高选择性的纳米荧光探针用于活细胞中葡萄糖的成像是非常有意义的。本文主要开展了以下两部分的研究工作:
     (一)基于荧光共振能量转移原理(FRET)设计了一种简单的有效的荧光纳米探针用于葡萄糖的检测。探针的思路源于葡萄糖与apo-葡萄糖氧化酶(apo-GOx)是特异性结合的,其结合力大于右旋糖酐(Dextran)与apo-GOx的结合力。探针选择apo-GOx-Dextran作为发生FRET的载体,FITC-Dextran作为能量供体,apo-GOx修饰的金纳米颗粒(AuNPs)作为能量的受体。在体系中不存在葡萄糖的时候,由于apo-GOx与Dextran之间具有结合力,使得Dextran-FITC与AuNPs-apo-GOx相互靠近,满足能量共振转移的条件,在FITC的激发波长下激发时,FITC发射的荧光被金纳米粒子吸收,显示为荧光猝灭。当加入葡萄糖时,葡萄糖会与Dextran竞争与apo-GOx结合,使得FITC-Dextran与AuNPs-apo-GOx远离,能量转移消失,FITC的荧光信号恢复。实验结果显示在优化的实验条件下,荧光光谱分析表明荧光强度随葡萄糖浓度的逐步增大而成线性增强,线性范围为20 nM - 0.2μM。同时,该探针具有高的灵敏度和选择性,检测限为5 nM。细胞中存在的其它糖类和大多数生物物种不会对它的测定产生影响,该纳米探针成功应用于活细胞中葡萄糖的成像。
     (二)基于两种不同尺度的金纳米构建的荧光探针实现活细胞中葡萄糖的检测。2 nm的巯基十一酸修饰的金纳米(LAuND)修饰上apo-GOx作为供体,10 nm的Dextran修饰的金纳米颗粒(Dex-Au-NP)作为受体。由于葡萄糖和Dextran与apo-GOx的竞争性结合,当葡萄糖存在时,葡萄糖与apo-GOx特异性结合竞争下来Dextran,导致LAuND荧光的恢复。根据荧光强度的变化来检测葡萄糖,进而实现活细胞中葡萄糖的成像。
Semiconductor nanoparticles (NPs) or quantum dots (QDs) have unique photophysical properties such as size-controlled fluorescence, have high fluorescence quantum yields, and stability against photobleaching, which offer significant advantages as optical labels for biosensing.The integration of nanoparticles with biomaterials yields novel hybrid nanobiomaterials of synergetic properties and functions.The new type of fluorescent nanoprobe with its special quantum size effects and small dimension effects exhibits many different optical characteristics compared to the homogeneous single-molecule or large object and has been successfully applied in the detection of biological samples and cell imaging. Recently, biological assembly of nanosensor with protein-modified nanoparticles applied in biosensing and biodetection has atrracted extensive attention. For example, QDs have been used as a wonderful material in enzyme-based biological analyses and applications. Therefore, the design of elegant new assembled nanobiosensor for realizing the analysis and determination of bioactive molecules in vivo or in vitro has become a great challenge to scientific workers.
     Fluorescence resonance energy transfer (FRET) is one of the most powerful and widely used fluorescence technique available for probing structure and dynamics in media. The efficiency of FRET is dependent upon donor-acceptor proximity and spectral overlap. The most used donor is fluorescein due to its high quantum yield. The use of quenching acceptors is becoming increasingly popular in FRET systems, whether the acceptor partner is fluorescent or not.
     As a photoluminescent quencher, gold nanoparticles (AuNPs) can ultra-efficiently quench the molecular-excitation energy in chromophore-AuNP composites. AuNPs have been of great interest because of their high extinction coefficient and a broad absorption spectrum in a visible light that is overlapped with the emission wavelength of usual energy donors. In comparison with the organic quencher, AuNPs have unique structural and optical properties, low toxicity, well biocompatibility for new applications in biosensing and molecular engineering.
     Glucose, an important bioactive substance, plays a prominent role in the natural growth of cells. Its lack or excess can produce detrimental influence on cellular functions. Currently, there are many references reported cancer cells have increased rates of glucose metabolism relative to normal cells.The reason remains unclear, but that cancer cells metabolize glucose extensively is generally accepted.To date, many methods available for the glucose assays have been reported, among which,fluorescence-assay method based on a competitive binding reaction between glucose oxidase(GOD), Dextran and glucose, which has advantages in terms of good selectivity and nondestructive characteristics, has been extensively used for glucose detection. However, these methods were mostly confined to the toxicity, detection limit and could not determine glucose directly in biological samples, which restricted application in cellular signal transduction and cell imaging. Hence, a design of a selective and stable fluorescent probes for glucose detection in living cells is of special interest for biochemistry. We carried out two aspects of investigation:
     First, a simple and effective nanoprobe based on FRET for specific detection of glucose was designed. Dextran-FITC were used as the donor, while AuNPs modified with apo-glucose oxidase (apo-GOx) acting as a quencher. The detection mechanism is based on the switching off FRET through the high specific recognition of apo-GOx to glucose. Evidences available indicated that apo-GOx is highly specific to glucose and a higher affinity of apo-GOx for glucose over Dextran. In the absence of glucose the binding of AuNPs-apo-GOx and FITC-Dextran resulted in a high FRET efficiency. In the presence of glucose, FITC-Dextran of the nanobprobe is displaced by glucose which competes with Dextran on the binding sites of apo-GOx, resulting in the fluorescence recovery of the quenched FITC. The results show that the linear range of this method is 20nM ~ 0.2μM with the detection limit as low as 5 nM, and has excellent selectivity for glucose over other sugars and most biological species present in living cells. The nanoprobe was successfully applied in cellular imaging.
     Second, a new-typed nanoprobe with two gold nanoparticles of different sizes was designed for glucose detection.11-MUA modified gold nanodots (LAuND) were emplyed as donors and Dex-Au-NP as quencher. Based on the competitive combination between Dextran, glucose and apo-GOx, in the presence of glucose, Dextran is displaced by glucose which competes with Dextran on the binding sites of apo-GOx, resulting in the fluorescence recovery of quenched LAuND.
引文
[1] Lee, S.W., Mao, C., et al. Ordering of Quantum Dots Using Genetically Engineered Viruses [J]. Science, 2002, 296 (596): 892-895.
    [2] Weiss, S., Bruchez, M. Jr., Alivisatos.A. P. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes [P]. U. S Patent 5990479, 1999-12-23.
    [3] Dabbousi, B.O. (CdSe) ZnS Core?Shell Quantum Dots: Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites [J]. J. Phys. Chem. B, 1997, 101(46): 9463-9475.
    [4] Hines, M. A., Guyot-Sionnest P. Synthesis and Characterization of Strongly Luminescing ZnS-Capped CdSe Nanocrystals [J]. J. Phys. Chem. 1996, 100 (2) : 468-471.
    [5] Nirmal, M., Brus, L. E. Luminescence photophysics in semiconductor nanocrystals [J]. Acc. Chem. Res. 1999, 32(5): 407-410.
    [6] Chan, W. C. W.; Nie, S. M. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection [J]. Science, 1998, 281(5385): 2016-2018.
    [7] Gerion, D., Pinaud, F., Williams, S. C., Parak, W. J., Zanchet, D., Weiss, S.,Alivisatos, A. P. Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots [J] , J. Phys. Chem. B. 2001, 105 (37):8861-8871.
    [8] Bruchez J M,Moronne M, GN P,et al. Semiconductor nanocrystals as fluorescent biological labels [J]. Science, 1998, 281(5385): 2013-2016.
    [9] Peng X G, Schlamp M C, Kadavanich A V. Epitaxial growth of highly luminescent CdSePCdS corePshell nanocrystals with photostability and electronic accessibility [J]. J. Am. Chem. Soc. 1997, 119(30): 7019-7029.
    [10] Chen Y, Rosenzweig Z. Luminescent CdS Quantum Dots as Selective Ion Probes [J]. Ana. Chem. 2002, 74(19): 5132 -5138.
    [11] Cao, Y. W.; Banin, U. Synthesis and Characterization of InAs/InP and InAs/CdSe Core/Shell Nanocrystals [J]. Angew. Chem. Int. Edit. 1999, 38(24): 3692-3694.
    [12] Cao, Y. W., Banin, U. Growth and Properties of Semiconductor Core/Shell Nanocrystals with InAs Cores [J]. J. Am. Chem. Soc. 2000, 122(40): 9692-9702.
    [13] Ron Gill, Maya Zayats, and Itamar Willner. Semiconductor Quantum Dots for Bioanalysis [J]. Angew. Chem. Int. Ed. 2008, 47(40):7602– 7625.
    [14] Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics [J]. Science, 2005, 307(5709):538-544.
    [15]邹明强,杨蕊,李锦丰等.量子点的光学特征及其在生命科学中的应用[J].分析测试学报, 2005, 24 (6) :1332137.
    [16] Chen B, Yu Y, Zhou Z T, et al. Synthesis of Novel Nanocrystals as Fluorescent Sensors for Hg2+ Ions [J]. Chem. Lett. 2004, 33 (12): 1608 -1609.
    [17] Susha A S, Javier A M, Parak WJ, et al. Luminescent CdTe nanocrystals as ion probes and pH sensors in aqueous solutions [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 281(1-3): 40-43.
    [18] Chen J L, Gao Y C, Xu Z B , et al. A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters [J]. Anal. Chim. Acta, 2006, 577(1): 77 -84.
    [19] Tsay, J. M., Pflughoefft, M., Bentolila, L. A., Weiss, Shimon. Hybrid Approach to the Synthesis of Highly Luminescent CdTe/ZnS and CdHgTe/ZnS Nanocrystals [J]. J. Am. Chem. Soc. 2004, 126(7):1926-1927.
    [20] Wu, X. Y., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N. F., Peale, F., Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots[J].Nat. Biotechnol. 2003, 21(1) : 41-46.
    [21] Betty Y. S. Kim,Wen Jiang, John Oreopoulos, Christopher M. Yip, ames T. Rutka, and Warren C. W. Chan. Biodegradable Quantum Dot Nanocomposites Enable Live Cell Labeling and Imaging of Cytoplasmic Targets [J]. Nano Letters, 2008, 8 (11): 3887–3892.
    [22] Wang, S., Mamedova, N., Kovtov, N. A., Chen, W., Studer. J. Antigen/Antibody Immunocomplex from CdTe Nanoparticle Bioconjugates [J]. Nano Letters, 2002, 2 (8):817-822.
    [23] Wargnier, R., Baranov, A. V., Maslov, V.G., Stsiapura, V., Artemyev, M., Pluot, M., Sukhanova, A., Nabiev, I. Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot?Nanogold Assemblies [J]. Nano Letters, 2004, 4 (3): 451-457.
    [24] Oh, E., Hong, M.Y., Lee, D., Nam, S. H., Yoon, H. C., Kim, H. S. Inhibition Assay of Biomolecules based on Fluorescence Resonance Energy Transfer (FRET) between Quantum Dots and Gold Nanoparticles [J]. J. Am. Chem. Soc., 2005, 127 (10):3270-3271.
    [25] Cordes, D. B., Gamsey, S., Singaram, B. Fluorescent Quantum Dots with Boronic Acid Substituted Viologens To Sense Glucose in Aqueous Solution [J]. Angew. Chem. Int. Ed, 2006, 45(23): 3829-3832.
    [26] Peng, H., Zhang, L. J., Kjallman, T. H. M., Soeller, C. Travas-Sejdic J. DNA Hybridization Detection with Blue Luminescent Quantum Dots and Dye-Labeled Single-Stranded DNA [J]. J. Am. Chem. Soc. 2007, 129 (11):3048-3049.
    [27] Kelly Boeneman, Bing C. Mei, ?Allison M. Dennis, Gang Bao, Jeffrey R. Deschamps, Hedi Mattoussi, and Igor L. Medintz. Sensing Caspase 3 Activity with Quantum Dot-Fluorescent Protein [J]. J. Am. Chem. Soc. 2009, 131 (11), 3828–3829.
    [28] Vaishali Bagalkot, Liangfang Zhang, Etgar Levy-Nissenbaum, Sangyong Jon, Philip W. Kantoff, Robert Langer, and Omid C. Farokhzad. Quantum Dot-Aptamer Conjugates for Synchronous Cancer Imaging, Therapy, and Sensing of Drug Delivery Based on Bi-Fluorescence Resonance Energy Transfer [J]. Nano letters, 2007, 7(10): 3065-3070.
    [29] Ayush Verma, Oktay Uzun, Yuhua Hu, Ying Hu, Hee-Sun Han, Nichi Watson, Suelin Chen, Darrell J. Irvine and Francesco Stellacci, Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles [J]. Nature Materials, 2008, 7:588– 595.
    [30] Hung-Jen Yen, Shan-hui Hsu, and Ching-Lin Tsai.Cytotoxicity and Immunological Response of Gold andSilver Nanoparticles of Different Sizes [J]. Small, 2009, 5(13): 1553-1561.
    [31] Cao Y. W. C. , Jin, R. C. , Mirkin, C. A. Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection [J]. Science, 2002, 297 (5586):1536-1540.
    [32] Rosi, N. L., Giljohann, D. A., Thaxton, C. S. et al. Oligonucleotide-Modified Gold Nanoparticles for Intracellular Gene Regulation [J]. Science, 2006, 312(5776): 1027-1030.
    [33] Lee, J.-S., Stoeva, S. I., Mirkin, C. A. DNA-Induced Size-Selective Separation of Mixtures of Gold Nanoparticles [J]. J. Am. Chem. Soc. 2006, 128 (17): 8899-8903.
    [34] Huang, Y.-F., Chang, H.-T. Nile Red-Adsorbed Gold Nanoparticle Matrixes for Determining Aminothiols through Surface-Assisted Laser Desorption/Ionization Mass Spectrometry [J]. Anal. Chem. 2006, 78(5):1485-1493.
    [35] He, X. R., Liu, H. B., Li, Y. L. et al. Gold Nanoparticle-Based Fluorometric and Colorimetric Sensing of Copper(II) Ions [J]. Adv. Mater. 2005, 17 (23) :2811-2815.
    [36] Huang, C.-C.,Chang, H.-T. Selective Gold-Nanoparticle-Based“Turn-On”Fluorescent Sensors for Detection of Mercury (II) in Aqueous Solution [J]. Anal. Chem. 2006, 78 (24): 8332-8338.
    [37] Nicholas O. Fischer, Ayush Verma, Catherine M. Goodman, Joseph M.Simard, and Vincent M. Rotello. Reversible“Irreversible”Inhibition of Chymotrypsin Using Nanoparticle Receptors [J]. J. Am. Chem. Soc. 2003, 125 (44): 13387–13391.
    [38] Rongrong Liu, Roushen Liew, Jie Zhou, and Bengang Xing. A Simple and Specific Assay for Real-Time Colorimetric Visualization of -Lactamase Activity by Using Gold Nanoparticles [J] .Angew. Chem. Int.Ed. 2007, 46 (46):8799-8803.
    [39] Oh, E.; Hong, M.Y.; Lee, D.; Nam, S. H.; Yoon, H. C.; Kim, H. S. Inhibition Assay of Biomolecules based on Fluorescence Resonance Energy Transfer (FRET) between Quantum Dots and Gold Nanoparticles [J]. J. Am. Chem. Soc. 2005, 127 (10):3270-3271.
    [40] Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Angew. Chem. Int. Ed. Fluorescence Resonant Energy Transfer Biosensor Based on Upconversion-Luminescent Nanoparticles [J] 2005, 44(37): 6054-6057.
    [41] Dyadyusha, L.; Yin, H.; Jaiswal, S.; Brown, T.; Baumberg, J. J.; Booy, F. P.; Melvin, T. Chem. Comm. 2005, 25: 3201-3203.
    [42] Chih-Ching Huang, Cheng-Kang Chiang, Zong-Hong Lin, Kun-Hong Lee, and Huan-Tsung Chang. Bioconjugated Gold Nanodots and Nanoparticles for Protein Assays Based on Photoluminescence Quenching [J]. Anal. Chem. 2008, 80(5):1497-1504.
    [43] Dongmao Zhang,Oara Neumann, Hui Wang, Virany M. Yuwono, Aoune Barhoumi, Michael Perham, Jeffrey D. Hartgerink,Pernilla Wittung-Stafshede, and Naomi J. Halas. Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH [J]. Nano Lett. 2009, 9(2): 666-671.
    [44] Wen Jiang, Betty Y.S.Kim, James T.Rutka and Warren C. W. Chan. Nanoparticle-mediated cellular response is size-dependent [J], Nature nanotechnology, 2008, 3(4): 145-150.
    [45] The Diabetes Control and Complications Trial Research Group. The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long-Term Complications in Insulin-Dependent Diabetes Mellitus [J]. N. Engl. J. Med. 1993, 329(14): 977-986.
    [46] The Diabetes Control and Complications Trial Research Group. Hypoglycemia in the Diabetes Control and Complications Trial [J]. Diabetes Care, 1997, 46:271-286.
    [47] Warburg O. On the origin of cancer cells [J]. Science, 1956, 123(3191):309–314.
    [48] Gatenby, R. A.; Gillies, R. J. Why do cancers have high aerobic glycolysis? [J]. Nature Rev.Cancer, 2004, 4, 891–899.
    [49] Schultz, J. S., Mansouri, S., Goldstein, I. J. Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites [J]. Diabetes Care 1982, 5: 245-253.
    [50] Amato, I. Race quickens for non-stick blood monitoring technology [J]. Science 1992, 258(5084): 892-893.
    [51] Pickup, J., McCartney, L., Rolinski, O., Birth, D. In vivo glucose sensing for diabetes management: progress towards non-invasive monitoring, BMJ, 1999, 319: 1289-1292.
    [52] Koschinsky, T., Heinemann, L. Sensors forglucose moni- toring: lechnical and clinical aspects [J].Diabetes Metab. Res. ReV, 2001, 17(2):113-123.
    [53] Moschou, E. A., Sharma, B. V., Deo, S. K., Daunert, S. Fluorescence glucose detection: advances toward the ideal in vivo biosensor [J]. J. Fluoresc. 2004, 14(5): 535-547.
    [54] Ben-Moshe, M., Alexeev, V. L., Asher, S. A. Fast Responsive Crystalline ColloidalArray Photonic Crystal Glucose Sensors [J]. Anal. Chem. 2006, 78(14):5149-5157.
    [55] Zhang, T., Anslyn, E. V. Using an Indicator Displacement Assay to Monitor Glucose Oxidase Activity in Blood Serum [J]. Org. Lett. 2007, 9(9):1627-1629.
    [56] Yu, N-T., Krantz, B. S., Eppstein, J. A., Ignotz, K. D., Samuels, M. A., Long, J. R., and Price. Development of a noninvasive diabetes screening device using the ratio of fluorescence to Rayleigh scattered light [J]. J. Biomed. Optics, 1996, 1(3): 280-283.
    [57] Meadows D., Schultz, J. S. Fiber-optic biosensors based on fluorescence energy transfer [J]. Talanta, 1988, 35 (2):145-150.
    [58] Ibey, B.L., Beier, H. T., Rounds, R. M., Coté, G. L., Yadavalli, V. K., Pishko, M. bV. Competitive Binding Assay for Glucose Based on Glycodendrimer?Fluorophore Conjugates [J]. Anlytical Chemistry, 2005, 77 (21):7039-7046.
    [59] Bakalova, R., Zhelev, Z., Ohba, H., Baba, Y. Quantum Dot-Conjugated Hybridization Probes for Preliminary Screening of siRNA Sequences [J]. J. Am. Chem. Soc. 2005, 127 (32): 11328-11335.
    [60] Ibey, B.L., Beier, H. T., Rounds, R. M., Coté, G. L., Yadavalli, V. K., Pishko, M.V. Comptetive Binding. Assay for Glucose Based on Glycodendrimer-Fluorophore Conjugates [J]. Anlytical Chemistry, 2005, 77(21): 7039-7046.
    [61] Schultz, J., Mansouri S., Goldstein, I. J. Affinity sensor: a new technique for developing implantable sensors for glucose and other metabolites [J]. Diabetes Care, 1982, 5 (3): 245-253.
    [62] Kadir Aslan, Joseph R. Lakowicz, and Chris D. Geddesa. Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering [J]. Analytical Biochemistry, 2005, 77 (7): 2007–2014.
    [63] Swetha Chinnayelka and Michael J. McShane. Resonance Energy Transfer Nanobiosensors Based on Affinity Binding between Apo-Enzyme and Its Substrate [J]. Biomacromolecules, 2004, 5 (5): 1657-1661.
    [64] Bo Tang, Lihua Cao, Kehua Xu, Linhai Zhuo, Jiechao Ge, Qingling Li, and Lijuan Yu. A New Nanobiosensor for Glucose with High Sensitivity and Selectivity in Serum Based on Fluorescence Resonance Energy Transfer (FRET) between CdTe Quantum Dots and Au Nanoparticles [J]. Chem. Eur. J. 2008, 14 (12):3637– 3644.
    [65] Lily Bahshi, Ronit Freeman, Ron Gill, and Itamar Willner.Optical Detection ofGlucose by Means of Metal Nanoparticles or Semiconductor Quantum Dots [J], Small, 2009,5(6): 676–680.
    [1] Allyson E. Vaughn and Mohanish Deshmukh. Glucose metabolism inhibits apoptosis in neurons and cancer cells by redox inactivation of cytochrome c [J]. Nature cell biology, 2008, 10(12): 1477-1483.
    [2] Lakowicz, J. R., Maliwal. B. P. Optical sensing of glucose using phase-modulation fluorometry [J]. Anal. Chim. Acta, 1993, 271(1):155-164.
    [3] Schultz, J., Mansouri, S. Goldstein, I. J. Affinity sensor a new Affinity a new technique for developing implantable sensors for glucose and other metabolites [J]. Diabetes Care, 1982, 5(3): 245-253.
    [4] Meadows, D.L., Schultz, J. S. Fiber optic biosensors based on fluorescenceenergy transfer [J]. Talanta, 1988, 35(2):145-150.
    [5] Meadows, D.L., Schultz, J. S. Design, manufacture, and characterization of an optical fiber glucose affinity sensor based on a homogeneous fluorescence energy transfer assay system [J]. Anal. Chim. Acta, 1993, 280(1):21-30.
    [6] Blagoi, G., Rosenzweig, N., Rosenzweig, Z. Design.Synthesis, and Application of Particle-Based Fluorescence Resonance Energy Transfer Sensors for Carbohydrates and Glycoproteins [J]. Anal. Chem. 2005, 77(2):393-399.
    [7] Russell, R. J., Pishko, M. V., A Fluorescence-Based Glucose Biosensor Using Concanavalin A and Dextran Encapsulated in a Poly(ethylene glycol) Hydrogel [J]. Anal. Chem. 1999, 71(15): 3126-3132.
    [8] Barone, P. W., Parker, R. S., Strano, M. S. In Vivo Fluorescence Detection of Glucose Using a Single-Walled Carbon Nanotube Optical Sensor: Design, Fluorophore Properties, Advantages, and Disadvantages [J]. Anal. Chem. 2005, 77(23): 7556-7562.
    [9] Ballerstadt, R., Schultz, J. S. A Fluorescence Affinity Hollow Fiber Sensor for Continuous Transdermal Glucose Monitoring [J]. Anal. Chem. 2000, 72(17): 4185-4192.
    [10] Swetha Chinnayelka and Michael J. McShane. Resonance Energy Transfer Nanobiosensors Based on Affinity Binding between Apo-Enzyme and Its Substrate [J]. Biomacromolecules, 2004, 5 (5): 1657-1661.
    [11] Bo Tang, Lihua Cao, Kehua Xu, Linhai Zhuo, Jiechao Ge, Qingling Li, and Lijuan Yu. A New Nanobiosensor for Glucose with High Sensitivity and Selectivity in Serum Based on Fluorescence Resonance Energy Transfer (FRET) between CdTe Quantum Dots and Au Nanoparticles [J]. Chem. Eur. J. 2008, 14 (12):3637– 3644.
    [12] Lily Bahshi, Ronit Freeman, Ron Gill, and Itamar Willner. Optical Detection of Glucose by Means of Metal Nanoparticles or Semiconductor Quantum Dots [J]. Small, 2009, 5(6): 676–680.
    [13] Raghavan Baby Rakhi, Kanikrishnan Sethupathi, and Sundara Ramaprabhu. A Glucose Biosensor Based on Deposition of Glucose Oxidase onto Crystalline Gold Nanoparticle Modified Carbon Nanotube Electrode [J]. J. Phys. Chem. B, 2009, 113 (10): 3190–3194.
    [14] Xinyu Li, Yunlong Zhou, Zhaozhu Zheng, Xiuli Yue, Zhifei Dai, Shaoqin Liu,and Zhiyong Tang.Glucose Biosensor Based on Nanocomposite Films of CdTe Quantum Dots and Glucose Oxidase [J]. Langmuir, 2009, 25(11): 6580–6586.
    [15] Ziyi Wang, Shuna Liu, Ping Wu, and Chenxin Cai. Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes [J]. Anal. Chem. 2009, 81(4):1638–1645.
    [16] Lin Ding, Quanjiang Ji, Ruocan Qian, Wei Cheng, and Huangxian Ju. Lectin-Based Nanoprobes Functionalized with Enzyme for Highly Sensitive Electrochemical Monitoring of Dynamic Carbohydrate Expression on Living Cells [J]. Analytical Chemistry, 2010, 82(4):1292-1298.
    [17] Nitin Nitin, Alicia L. Carlson, Tim Muldoon, Adel K. El-Naggar, Ann Gillenwater and Rebecca Richards-Kortum. Molecular imaging of glucose uptake in oral neoplasia following topical application of fluorescently labeled deoxy-glucose [J]. Int. J. Cancer. 2009, 124(11): 2634–2642.
    [18] Katsuya Yamada, Mikako Saito, Hideaki Matsuoka, Nobuya Inagaki. A real-time method of imaging glucose uptake in single, living mammalian cells [J]. Nature protocols, 2007, 2(3):753-762
    [19] Marcus Fehr, Sylvie Lalonde, Ida Lager, Michael W. Wolff, Wolf B. Frommer. In Vivo Imaging of the Dynamics of Glucose Uptake in the Cytosol of COS-7 Cells by Fluorescent Nanosensors[J]. The Journal of Biological Chemisity, 2003, 278(21): 19127–19133.
    [20] Karen Deuschle, Bhavna Chaudhuri, Sakiko Okumoto, Ida Lager, Sylvie Lalonde, Wolf B. Frommer.Rapid Metabolism of Glucose Detected with FRET Glucose Nanosensors in Epidermal Cells and Intact Roots of Arabidopsis RNA-Silencing Mutants[J]. The Plant Cell, 2006, 18: 2314–2325.
    [21] Scott A. John, Michela Ottolia, James N. Weiss, Bernard Ribalet Dynamic modulation of intracellular glucose imaged in single cells using a FRET-based glucose nanosensor[J]. Pflugers Arch - Eur J Physiol, 2008, 456(2):307–322.
    [22] Chen, S. J. Chang H. T. Nile Red-Adsorbed Gold Nanoparticles for Selective Determination of Thiols Based on Energy Transfer and Aggregation [J]. Anal. Chem. 2004, 76(13):3727-3734.
    [23] Wargnier, R. Baranov, A. V., Maslov, V. G., Stsiapura, V., Artemyev, M., Pluot, M., Sukhanova, A., Nabiev, I. Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dot?Nanogold Assemblies [J]. Nano Lett. 2004, 4(3): 451-457.
    [24] Fan, C. H., Wang, S., Hong, J. W., Bazan, G. C., Plaxco, K. W., Heeger, A. J. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles [J]. PANS, 2003, 100(11): 6297-6301.
    [25] Huang, T., Murray, R. W. Quenching of [Ru(bpy)3]2+ Fluorescence by Binding to Au Nanoparticles [J]. Langmuir, 2002, 18(18): 7077-7081.
    [26] Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold solution [J]. Nat Phys Sci, 1973, 241(105): 20-22.
    [27] D’Auria, S., Herman, P., Rossi, M., Lakowicz, J. R. The fluorescence emission of the apo-gluxise oxidase from Aspergillus niger as probe to estimate glucose concentrations [J]. Biochem. Biophys. Res. Commun. 1999, 263(2):550-553.
    [28] Swoboda, B. E. P.The relationship between molecular conformation and the binding of flavin-adenine dinucleotide in glucose oxidase [J]. Biochim. Biophys. Acta, 1969, 175: 365-379.
    [29] Sunmook Lee and V?′ctor H. Pe′rez-Luna.Dextran-Gold Nanoparticle Hybrid Material for Biomolecule Immobilization and Detection [J]. Anal. Chem. 2005, 77(22):7204-7211.
    [30] Bo Tang, Prof. , Ning Zhang, Dr., Zhenzhen Chen , Kehua Xu , Linhai Zhuo , Liguo An, Prof., Guiwen Yang. Probing Hydroxyl Radicals and Their Imaging in Living Cells by Use of FAM-DNA-Au Nanoparticles [J].Chem. Eur. J. 2008, 14(2): 522– 528.
    [31] Aslan, K., Lakowicz, J. R., Geddes, C. D. Nanogold Plasmon Resonance-Based Glucose Sensing. 2. Wavelength-Ratiometric Resonance Light Scattering [J]. Anal. Chem., 2005, 77(7): 2007-2014.
    [32] So, M. K., Xu, C., Loening, A. M., Gambhir, S. S., Rao., J., H. Self-illuminating quantum dot conjugates for in vivo imaging [J]. Nature Biotechnology, 2006, 24(3): 339-343.
    [33] N. Patel, M. C. Davies, M. Hartshorne, Heaton, R. J., Roberts, C. J., Tendler, S. J. B., Williams, P. M. Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers [J]. Langmuir, 1997, 13(24): 6485-6490.
    [34] Lihua Cao, Jian Ye, Lili Tong, and Bo Tang. A New Route to the Considerable Enhancement of Glucose Oxidase (GOx) Activity: The Simple Assembly of a Complex from CdTe QuantumDots and GOx, and Its Glucose Sensing [J].Chem. Eur. J. 2008, 14(31): 9633-9640.
    [35] Lakowicz, J. R. Quenching of Fluorescence, Principles of Fluorescence Spectroscopy, 2nd ed. Plenum Press: New York, 1999: 237-265.
    [36]赵晓芳,张宏福.葡萄糖氧化酶的功能及在畜牧业中的应用[J].广东饲料2007,16(1): 34-35.
    [37]高甲友,罗丹明. 6G荧光猝灭法测定食盐中痕量碘酸根,冶金分析,2003, 23(3): 38-39.
    [38] Sabato D’Auria, Peter Herman, Mose′Rossi,1 and Joseph R. Lakowicz. The Fluorescence Emission of the Apo-glucose Oxidase from Aspergillus niger as Probe to Estimate Glucose Concentrations Analysis[J]. Biochemical and Biophysical Research Communications.1999, 263(2): 550–553.
    [39]杨杰,姜先荣,何晓淮.胶体金-SPA复合物的制备[J].安徽教育学院学报, 1999, 1: 35-36.
    [40] A. Siegel, H.P. Gordon. Surfactant-induced alterations of permeability of rabbit oral mucosa in vitro [N]. Exp.Mol.Pathol. 1986, 44(2): 132-137.
    [1] Huang, S.-H., Liao, M.-H.; Chen, D.-H. Direct binding and characterization of lipase onto magnetic nanoparticles [J]. Biotechnol. Prog. 2003, 19(3):1095-1100.
    [2] Rajgopalan, T. J.; Heller, R. A.“Wired”Enzyme Electrodes for Amperometric Determination of Glucose or Lactate in the Presence of Interfering Substances. Anal. Chem [J]. 1994, 66(15): 2451-2457.
    [3] Lin, Y., Lu, F., Tu, Y., Ren, Z. Glucose Biosensors Based on Carbon Nanotube Nanoelectrode Ensembles [J]. Nano Lett. 2004, 4(2): 191-195.
    [4] Yang, Y. H., Yang, H. F., Yang, M. H., Liu, Y. L., Shen, G. L., Yu, R. Q. Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix [J]. Anal. Chim. Acta, 2004, 525(2): 213-220.
    [5] Singhal, R., Chaubey, A., Srikhirin, T., Aphiantrakul, S., Pandey, S. S., Malhotra, B.D. Immobilization of glucose oxidase onto Langmuir–Blodgett films of poly-3-hexylthiophene [J]. Curr. Appl. Phys. 2003, 3(2-3):275-279.
    [6] Dongmao Zhang, Oara Neumann, Hui Wang, Virany M. Yuwono, Aoune Barhoumi, Michael Perham, Jeffrey D. Hartgerink, Pernilla Wittung-Stafshede, and Naomi J. Halas. Gold Nanoparticles Can Induce the Formation of Protein-based Aggregates at Physiological pH [J]. Nano Letters, 2009, 9(2):666-671.
    [7] Sunmook Lee and Víctor H. Pérez-Luna. Dextran-Gold Nanoparticle Hybrid Material Biomolecule Immobilization and Detection [J]. Anal. Chem., 2005, 77 (24): 7204-7211.
    [8] Sudip Nath, Charalambos Kaittanis, Alisa Tinkham, and J. Manuel Perez. Dextran-Coated Gold Nanoparticles for the Assessment of Antimicrobial Susceptibility [J]. Anal. Chem. 2008, 80(4): 1033-1038.
    [9] Chih-Ching Huang, Cheng-Kang Chiang, Zong-Hong Lin, Kun-Hong Lee, and Huan-Tsung Chang. Bioconjugated Gold Nanodots and Nanoparticles for Protein Assays Based on Photoluminescence Quenching [J]. Anal. Chem., 2008, 80 (5):1497-1504.
    [10] The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-termcomplications in insulin-dependent diabetes mellitus [J]. N. Engl. J. Med. 1993, 329(14): 977-986.
    [11] Sierra, J. F., Galban, J., Castillo, J. R. Determination of Glucose in Blood Based on the Intrinsic Fluorescence of Glucose Oxidase [J]. Anal. Chem. 1997, 69(8): 1471-1476.
    [12] Rosenzweig, Z., Kopelman, R. Analytical Properties and Sensor Size Effects of a Micrometer-Sized Optical Fiber Glucose Biosensor [J]. Anal. Chem. 1996, 68(8): 1408-1413.
    [13] Zhang, T., Anslyn, E. V. Using an Indicator Displacement Assay to Monitor Glucose Oxidase Activity in Blood Serum [J]. Org. Lett. 2007, 9(9): 1627-1629.
    [14] Bo Tang, Lihua Cao, Kehua Xu, Linhai Zhuo, Jiechao Ge, Qingling Li, and Lijuan Yu. A New Nanobiosensor for Glucose with High Sensitivity and Selectivity in Serum Based on Fluorescence Resonance Energy Transfer (FRET) between CdTe Quantum Dots and Au Nanoparticles [J]. Chem. Eur. J. 2008, 14 (12): 3637– 3644.
    [15] Stephan Link and Mostafa A. El-Sayed, Size and Temperature Dependence of the Plasmon Absorption of Colloidal Gold Nanoparticles [J]. J. Phys. Chem. B 1999, 103(21): 4212-4217.
    [16] Sudip Nath, Charalambos Kaittanis, Alisa Tinkham, and J. Manuel Perez, Dextran-Coated Gold Nanoparticles for the Assessment of Antimicrobial Susceptibility [J]. Anal. Chem., 2008, 80(4):1033-1038.
    [17] D’Auria, S., Herman, P., Rossi, M., Lakowicz, J. R. The fluorescence emission of the apo-gluxise oxidase from Aspergillus niger as probe to estimate glucose concentrations [J]. Biochem. Biophys. Res. Commun. 1999, 263(2): 550-553.
    [18] Swoboda, B. E. P. The relationship between molecular conformation and the binding of flavin-adenine dinucleotide in glucose oxidase [J]. Biochim. Biophys. Acta, 1969, 175(2): 365-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700