用户名: 密码: 验证码:
碲锌镉晶体表面处理、金属电极接触特性及其In掺杂行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Cd_(1-x)Zn_xTe(CZT)晶体具有优异的光电性能,是迄今制造室温X射线及γ射线探测器最为理想的半导体材料。尽管对CZT的研究由来已久,但在CZT晶体的表面处理、金属与CdZnTe晶体接触及In掺杂特性研究上尚存在诸多难题,本文对之进行了探索。
     CZT晶体钝化工艺主要是为了减小晶体表面富Te层的电导,减小表面漏电流,提高CZT探测器的性能。钝化可以是物理或者化学过程,可以给晶体表面提供与外界成化学和电学惰性的绝缘层。处理的方法主要有:(1)在晶体表面沉积绝缘物质(ZnS和SiO_2);(2)在晶体表面制备本征薄膜层(氧化物、硫化物以及氟化物);(3)原位生长宽禁带的Ⅱ-Ⅵ化合物异质结。用NH_4/H_2O_2对CZT晶体钝化,表面主要生成了TeO_2。钝化后([Cd]+[Zn])/[Te]原子比接近于1,表明钝化后表面更接近CZT的标准化学计量配比,而且改善了晶体近表面区的晶体结构,同时钝化后明显新增了O的含量。光致发光(PL)特性研究结果表明,钝化不仅减小了晶体表面的陷阱态密度,而且减小了与Cd空位复合的深能级杂质浓度。用Agilent 4339B高阻仪进行了CZT晶片I-V特性测试以及Agilent 4294A高精度阻抗分析仪进行了CZT晶片的C-V特性研究,结果表明钝化均能不同程度提高Au/CZT接触的势垒高度,减小漏电流。主要原因是在Au/CZT表面钝化生成的TeO_2氧化层增加了接触势垒高度,并减小了电荷因隧道效应而穿过氧化层TeO_2的几率。
     采用同步辐射X射线光电子能谱分析结果计算了Au/CZT接触的势垒高度,腐蚀和钝化处理后Au/CZT接触的Schottky势垒高度分别是0.88±0.02 eV和1.17±0.02 eV。根据I-V测试结果计算出钝化前后的Schottky势垒高度分别是0.85±0.02 eV和0.96±0.02eV。用C-V方法测试出钝化前后Schottky势垒高度分别是1.39±0.02 eV和1.51±0.02 eV。
     研究了溅射沉积不同金属与CZT晶体接触的电学性能。I-V测试和扫描电子显微镜(SEM)分析结果表明,Au是与CZT晶体最适合的电学接触材料,可以与高阻CZT晶体形成近乎理想的欧姆接触,而与低阻CZT晶体形成了0.95±0.02 eV的Schottky接触势垒。X射线光电子能谱分析,形成欧姆接触的原因主要是由于Au原子在退火的时候扩散进入高阻CZT晶体中,同时Cd与Te原子扩散进入Au接触层。扩散的Au未与CZT晶体中的任何元素形成化合物,而是形成了重掺杂层以及欧姆接触。光致发光谱分析结果表明,互扩散的施主[Au]~(3+)与受主[V_(Cd)]~(2-)在溅射过程中进行了复合。同时,Au接触的施主复合体峰(D_(complex))强度明显强于无Au接触的CZT晶体复合体峰的强度,施主[Au]~(3+)和[Au~(3+)·V_(Cd)~(2-)]~+可以与[V_(Cd)]~(2-)空位进行复合并产生不同的缺陷复合体。
     对In掺杂CZT晶体特性通过10 K下的光致发光能谱(PL)和室温下的红外透过率能谱来进行了分析研究。分析结果表明,In原子代替Cd空位[V_(Cd)]~(2-),形成了电离施主[In_(Cd)]~+,以及单负性缺陷复合体A-中心[In_(Cd)~+·V_(Cd)~(2-)]~-和中性缺陷复合体[2In_(Cd)~+·V_(Cd)~(2-)]~0和[In_(Cd)~+·(In_(Cd)~+·V_(Cd)~(2-))~-]~0。根据高阻In掺杂CZT晶体位于1.6014eV的浅能级施主—受主对峰(DAP)位置,得出位于E_(DS)=13.3 meV的浅施主能级[In_(Cd)]~+和位于E_(AS)=29.5 meV的浅受主能级[V_(Cd)-In_(Cd)]~-。同时根据CdZnTe:In晶体的10 K~60 K的PL温度依存关系,得出电离能分别为65.5 meV的深施主能级[Te_(Cd)]~(4+)和87.4 meV的深受主能级[V_(Cd)]~(2-)。
     用傅立叶变换红外能谱仪(FT-IR)测试了掺杂CZT与未掺杂CZT晶体的红外透过率。未掺杂的CZT晶体红外透过率为58%。掺杂In分别为10ppm、15ppm和30ppm时,CZT晶体红外透过率平均值分别为37%、21%和4%。CZT晶体的红外吸收机理可以归结于晶体的晶格吸收与自由载流子吸收。
Cd_(1-x)Zn_xTe(CZT) possesses excellent optoelectronic properties and is thereforethe most promising material for room temperature X-ray and gamma-ray detectors.Although the study on CZT has lasted for a long period, there still exist someproblems in the surface treatment of CdZnTe crystal, metal-CdZnTe contact propertiesand indium doping behaviors of CZT, which are investigated in this work.
     The process of passivation had been typically required to reduce the conductivityof Te-riched surface layer of CZT crystal and decrease the surface leakage current.Passivation is a chemical and /or physical process that renders the surface of amaterial chemically and/or electrically inert to its environment. Typical surfacepassivation technologies include the deposition of dielectric materials (ZnS, SiO_2),coating the surface with the native inert films, such as oxides, sulphides and fluorides,and in-situ growth of heterostuctures of wide band gapⅡ-Ⅵcompound. The oxideformed on CZT surface through the passivation treatment with NH_4/H_2O_2 agent isTeO_2, which offers an inert surface. After passivation,([Cd]+[Zn])/[Te] ratioapproches to 1, which means the stoichiometry composition is restored and thecrystallinity, is improved near the surface. Photoluminescence(PL) spectra confirmedthat the passivation treatment minimized the surface trap state density and decreasedthe deep level defects related to recombination of Cd vacancies. I-V and C-Vcharacteristics of Au/CZT contacts with different surface treatments on CZT wafer'ssurface were measured with Agilent 4339B High Resistance Meter and Agilent 4294APrecision Impedance Analyzer, respectively. It was shown that the passivationtreatment increased the barrier height of the Au/CZT contact and decreased theleakage current. The main reason is that higher barrier of Au/CZT contacts decreasesthe possibility for electrons to pass through the sandwich TeO_2 layer between CZTand Au contact.
     The interface barrier between Au/CZT contact was studied by synchrotron-basedX-ray photoemission spectroscopy(SXPS). The interface barrier was determined to be 0.88±0.02eV for Au/CZT without passivation and 1.17±0.02eV for Au/CZT afterpassivation, respectively. Schottky barrier height was determined to be 0.85±0.02eVwithout passivation and 0.96±0.02eV after passivation by current-voltagemeasurement. However, 1.39±0.02eV without passivation and 1.51±0.02eV withpassivation were obtained according to the capacitance-voltage measurement.
     The electrical properties of different metal-CZT contacts produced by sputteringdeposition method are investigated. The results of current-voltage and SEM analysesshow that Au is the most suitable electrical contact materials, which forms a nearlyideal Ohmicity contact with high resistivity CZT crystals and 0.95±0.02 eV barrierwith low resistivity ones. XPS analyses show that Au atoms diffuse into highresistivity CZT crystal during annealing, meanwhile Cd and Te atoms diffuse into Aucontact. Diffused Au did not form any compound with any element in CZT crystal.Thus, the heavy doped layer is formed and Ohmic contact is obtained. PL spectraanalysis results of CZT crystals with deposited Au layer show that the inter-diffuseddonors[Au]~(3+) recombine with acceptors [V_(Cd)]~(2-)during sputtering process.Meanwhile, the intensity of (D_(complex)) peak of CZT surface with Au contact increasessharply in comparison with un-deposited CZT crystal. Meanwhile, donor [Au]~(3+) and[Au~(3+)·V_(Cd)~(2-)]~+ compensates Cd vacancy [V_(Cd)]~(2-) and produce different defectcomplexes.
     The indium doped CZT crystal was characterized by PL spectra at 10 K and IRtransmission spectra at room temperature. The results showed that indium atomssubstituted Cd vacancy and produced ionized donor [In_(Cd)]~+, i. e. indium dopingelement recombined with [V_(Cd)]~(2-) and formed the single negative defect complexA-center[In_(Cd)~+·V_(Cd)~(2-)]~- and the neutral ones [2In_(Cd)~+·V_(Cd)~(2-)]~0 and [In_(Cd)~+·(In_(Cd)~+·V_(Cd)~(2-))~-]~0.According to shallow level DAP peak at 1.6014 eV in high resistivity In-doped CZT,shallow donors level [In_(Cd)]~+ and shallow acceptors level [V_(Cd)-In_(Cd)]~- are EDS=13.3meV, E_(AS)=29.5 meV, respectively. According to the measurements of temperaturedependence of CZT:In crystal from 10 K to 60 K, the ionization energies of deepdonors level [Te_(Cd)]~(4+) and deep acceptor level [V_(Cd)]~(2-) are determined to be 65.5 meV and 87.4 meV, respectively.
     IR transmission spectrum of the CZT crystal without indium dopant is about58%. The IR transmission spectra of CZT:In crystal with the concentrations of indiumdopant 10ppm, 15ppm and 30ppm are about 37%, 21%and 4%in the range from4000cm~(-1) to 500cm~(-1), respectively. The reason for IR absorption of CZT crystal maybe attributed to the lattice absorption and the free-carrier absorption.
引文
[1] A. Burger, H. Chen, K. Chattopadhyay et al, Cadmium zinc telluride high resolution detector technology, Proc. SPIE, 1998, 3446: 154-158
    [2] 丁洪林,张秀凤,化合物半导体探测器及其应用,原子能出版社,北京,1994:1-114
    [3] A. Owens, M. Bavdaz, G. Brammertz, et al, The hard X-ray response of HgI_2, Nucl. Instru. and Meth. A, 2002, 479:535-547
    [4] O. Limousin, New trend in CdTe and CdZnTe detectors for X-and gammay-ray applications, Nucl. Instru. and Meth. A, 2003, 504: 24-37
    [5] L. Verger, N. Baffert, M. Rosaz, et al, Characterization of CdZnTe and CdTe: Cl materials and their relationship to x-and γ-ray detector performance, Nucl. Instru. and Meth. A, 1996, 380: 121-126
    [6] U. Lachish, The role of contacts in semiconductor gamma radiation detectors, Nucl. Instru. and Meth. A, 1998, 403: 417-424
    [7] 金应荣,硒化镉(CdSe)单晶体生长及其空温核辐射探测器,四川大学博士学位论文,2002
    [8] D. S. McGregor, H. Hermonb, Room-temperature compound semiconductor radiation detectors, Nucl. Instru. and Meth. A, 1997, 395:101-124
    [9] A. Owens, A. Peacock, and M. Bavdaz, Progress in compound semiconductors, Proc. of SPIE, 2003, 4851: 1059-1071
    [10] A. Owens, H. Andersson, M. Bavdaz et al, Development of compound semiconductor detectors for x-and gamma-ray spectroscopy, Proc. of SPIE, 2002, 4784: 244-258
    [11] K. Mochizuki, K. Masumoto, and K. Miyazaki, Melt growth of CdTe single crystals with controlled deviation from stoichiometry, Mater. Lett., 1988, 6:119-122
    [12] Y. -C. Lu, J. -J. Shiau and R. S. FeigelsonR. K. Route, Effect of vibrational stirring on the quality of Bridgman-grown CdTe, J. Cryst. Growth, 1990, 102: 807-813
    [13] C. P. Khatak, F. Schmid, Improved quality of bulk Ⅱ-Ⅵ substrates for HgCdTe and HgZnTe epitaxy, Proc. SPIE, 1989, 47: 1106-1112
    [14] Fritz V. Wald and Richard O. Bell, Natural and forced convection during solution growth of CdTe by the Traveling Heater Method (THM), J. Cryst. Growth, 1975, 30: 29-36
    [15] R. Schoenholz, R. Dian and R. Nitsche, Growth of cadmium telluride crystals by an improved travelling heater method, J. Cryst. Growth, 1985, 72: 72-79
    [16] L. G. Casagrande, D. J. Larson Jr., D. D. Marzio et al, Growth and comparison of large-diameter vertical Bridgman CdZnTe and CdTe, J. Cryst. Growth, 1994, 137:195-200
    [17] T. S. Lee, S. B. Lee, J. M. Kim et al, Vertical Bridgman techniques to homogenize zinc composition of CdZnTe substrates, J. Electron. Mater., 1995, 24(9):1057-1061
    [18] M. Pfeiffer, M. Muhlberg, Interface shape observation and calculation in crystal growth of CdTe by the vertical Bridgman method, J. Cryst. Growth, 1992, 118: 269-276
    [19] S. Kuppurao, J. J. Derby, Designing thermal environments to promote convex interface shaps during the vertical Bridgman growth of cadmium zinc telluride, J. Cryst. Growth, 1997, 172: 350-360
    [20] K. Y. Lay, D. Nichols, S. McDevitt, B. E. Dean and C. J. Johnson, High quality, single crystal CdTe grown by a modified horizontal Bridgman technique, J. Cryst. Growth, 1988, 86: 118-126
    [21] A. Tanaka, Y. Masa, S. Seto and T. Kawasaki, Zinc and selenium co-doped CdTe substrates lattice matched to HgCdTe, J. Cryst. Growth, 1989, 94: 166-170
    [22]T. Asahi, O. Oda, Y. Taniguchi and A. Koyama, Growth and characterization of 100 mm diameter CdZnTe single crystals by the vertical gradient freezing method, J. Cryst. Growth,1996,161:20-27
    
    [23]R.A.劳狄斯,单晶生长,科学出版社,1979,第一版
    [24] S. Sen, W. H. Konkel, S. J. Tighe et al, Crystal growth of large-area single-crystal CdTe and CdZnTe by the computer-controlled vertical modified-Bridgman process, J. Cryst. Growth, 1990, 86:111-117
    [25]L. G. Casagrande, D. J. Larson, Jr. , D. D. Marzio et al, The growth and comparison of large-diameter vertical Bridgman CdZnTe and CdTe, J. Cryst. Growth, 1994,137:195-200
    [26] T. Asahi, O. Oda, Y. Taniguchi et al, Characterization of 100 mm diameter CdZnTe single crystals grown by the vertical gradient freezing method, J. Cryst. Growth, 1995,149:23-29
    [27]J. F. Butler, F. P. Doty, B. Apotovsky et al, Progress in Cd_(1-x)Zn_xTe (CZT) radiation detectors, Mater. Res. Soc. Symy. Proc. ,1993,302:497-501
    [28] L. Li., F. Lu, K. Shah et al, A new method for growing detector-grade cadmium zinc telluride crystals, Nuclear Science Symposium Conference, IEEE, 2001,4: 2396 -2400
    [29] L. Li, F. Lu, C. Lee et al, New progress in large-size CZT single crystal growth for nuclear radiation detectors, Proc. of SPIE, 2004,5198:41-47
    
    [30]O. Oda, K. Hirata, K. Imura et al, Non-destructive characterization of HgCdTe using photoinduced microwave reflection, Jpn. Soc. Appl. Phys., 1986,55:1084-1089
    [31]K. Grasza, U. Zuzga-Grasza, A. Jedrzejzak et al, A novel method of crystal growth by physical vapour transport and its application to CdTe , J. Cryst. Growth, 1992,123:519-528
    [32]M. Ohmori and Y. iwaseR. Ohno, High quality CdTe and its application to radiation detectors , Mater. Sci. Eng. B, 1993,16:283-290
    [33]G. T. Meugebauer, R. Shetty, C. K. Ard et al, CdTe crystal growth in the Soviet facility ZONA 4, Proc. SPIE, 1994,2228:23-29
    [34]M. Fiederle, T. Feltgen, J. Meinhardt, State of the art of (Cd,Zn)Te as gamma detector, J. Cryst. Growth, 1999,197:635-640
    [35]K. Suzuki, A. Iwata, S. Seto, T. Sawada and K. Imai, Drift mobility measurements on undoped Cdo.9Zno.1Te grown by high-pressure .Bridgman technique, J. Cryst. Growth, 2000, 214/215:909-912
    [36]T. E. Schlesinger, J. E. Toney, H. Yoon et al, Cadmium zinc telluride and its use as a nuclear radiation detector material, Materials Science and Engineering R, 2001,32:103-189
    [37]M. Nitaula, D. Mochizuki, T. Aoki et al, Fabrication of CdTe strip detectors for imaging applications, Nuc. Instr. and Meth. A, 2001,458:339-343
    [38] M. A. J. van Pamelen, C. Budtz-Jorgensen, J. Kuvvetli, Development of CdZnTe X-ray detectors at DSRI, Nuc. Instr. and Meth. A, 2000, 439:625-633
    [39]O. Tousignant, L. A. Hamel, J. F. Courville et al, Transport properties and performance of CdZnTe strip detectors, IEEE Trans. Nucl. Sci., 1998, 45(2):413-416
    [40]C. M. Stahle, Z. Q. Shi, K. Hu et al, Fabrication of CdZnTe strip detectors for large-area arrays, Hard X-ray and gamma ray detector Physics Optics and applications, SPIE, 1997, 3115:90-97
    [41]J. A. Heanue, J. K. Brown, B. H. Hasegawa et al, Two-dimensional modeling of Cd(Zn)Te strip detectors, IEEE Trans. Nucl. Sci., 19987 44(3):701-707
    [42]J. R. Macri, B. Donmez, M. Widholm et al, Single-sided CZT strip detectors, Proc. of SPIE, 2004,5501:208-217
    [43]E. Kalemci and J. L. Matteson, Investigation of charge sharing among electrode strips for a CdZnTe detector, Nucl. Instru. and Meth. A, 2002, 478: 527-537
    [44] Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instr. Meth. A, 2001,463:250-267
    [45]P. N. Luke, Single-polarity charge sensing in ionization detectors using coplanar electrodes, Appl. Phys. Lett., 1994, 65:2884-2886
    [46]P. N. Luke, E. E. Eissler, Performance of CdZnTe coplanar-grid gamma-ray detectors, IEEE Trans. Nucl. Sci., 1996,43:1481-1486
    [47]P. N. Luke, M. Amman, T. H. Prettyman et al, Electrode design for coplanar-grid detectors, IEEE Trans. Nucl. Sci., 1997,44:713-720
    [48]M. Amman, P. N. Luke, Coplanar-grid detectors with single-electrode readout, Proceedings of SPIE, 1997,3115:205-213
    [49]M. Amman, P. N. Luke, Optimization criteria for coplanar-grid detectors, IEEE Trans. Nucl. Sci., 1999, 46(3):205-212
    [50]P. N. Luke, M. Amman, J. S. Lee et al, Coplanar-grid CdZnTe detector with three-dimensional position sensitivity, Nucl. Instr. and Meth. A, 2000,439:611-618
    [51] F P. Doty, H. B. barber, F. L. Augustine et al, Pixellated CdZnTe detector arrays, Nucl. Instr. and Meth. A, 1994,353:356-360
    [52] A. Zumbiehl, M. Hage-Ali, P. Fougeres et al, Modelling and 3D optimization of CdTe pixels detector array geometry -Extension to small pixels, Nucl. Instr. and Meth. A, 2001,469:227-239
    
    [53] W. Li, Z. He, G. F. Knoll et al, Experimental results from an Imarad 8×8 pixellated CZT detector, Nucl. Instr. and Meth. A, 2001,458:518-526
    [54] Tadayuki Takahashi, Shin Watanabe, Recent progress in CdTe and CdZnTe detectors, IEEE Trans. Nucl. Sci., 2001,48(4):950-959
    [55] V. Gostilo, V. Ivanov, S. Kostenko et al, Technological aspects of development of pixel and strip detectors based on CdTe and CdZnTe, Nucl. Instr. and Meth. A, 2001,460:27-34
    [56]H. H. Barrett, J. D. Wskin, and H. B. Barber, Charge transport in arrays of semiconductor gamma-ray detector, Phys. Rev. Lett., 1995, 75(1):156-159
    [57] V. T. Jordanov, J. R. Macri, J. E. Clayton et al, Multi-electrode CZT detector packaging using polymer flip chip bonding, Nucl. Instr. and Meth. A, 2001,458:511-517
    [58] J. F. Butler, Novel electrode design for single-carrier charge collection in semiconductor nuclear detectors, Nucl. Instr. and Meth. A, 1997,396:427-430
    [59] J. M. Van Scyoc, B. A. Brunett, T. E. Schlesinger et al, Further investigation of the operation of Cd(1-x)Zn_xTe pixel array detectors, Nucl. Instr. and Meth. A, 2001,458:310-318
    [60] Y. Nemirovsky, G. Asa, J. Gorelik et al, Recent progress in n-type CdZnTe arrays for gamma-ray spectroscopy, Nucl. Instr. and Meth. A, 2001,458:325-333
    
    [61]A. E. Bolotnikov, W. R. Cook, S. E. Boggs et al, Development of high spectral resolutionCdZnTe pixel detectors for astronomical hard X-ray telescopes, Nucl. Instr. and Meth. A, 2001,458:585-592
    
    [62] M. Ifraimov, A. Ludwig, and Y. Nemirovsky, Statistical modeling of the spectral performance of a two-dimensional array of gamma-ray spectrometers, J. Appl. Phys., 2002, 91(5):3384-3397
    
    [63] Y. Nemirovsky, M. Ifraimov, and A. Ludwig, Effect of the geometrical parameters on theelectric field of pixilated two-dimensional arrays of γ-ray spectrometers, J. Appl. Phys., 2000, 88(9):5388-5394
    [64] Y. Nemirovsky, Statistical modeling of charge collection in semiconductor gamma-ray spectrometers, J. Appl. Phys., 1999,85(1):8-15
    
    [65] B. A. Brunett, J. M. Van Scyoc, R. B. James et al, CdZnTe pixel array detectors and implications for producing large volume gamma-ray spectrometers, J. Appl. Phys., 1999, 86(7):3926-3933
    [66] M. Ifraimov, A. Ludwig, and Y. Nemirovsky, Modeling of the induced charge in semiconductor gamma-ray imaging array, J. Appl. Phys., 2002,91(12):9676-9683
    [67] T.E.Schlesinger, B. Brunett, H. Yao et al, Large volume imaging arrays for gamma-ray spectroscopy, J. of Electron. Mater., 1999,28(6):864-868
    
    [68] H.B.Barber, H. H. Barrentt, F. L. Augustine et al, Development of a 64×64CdZnTe array and associated readout integrated circuit for use in nuclear medicine, J. of Elector. Mater. , 1997, 26(6):765-772
    [69]J. A. Gaskin, D. P. Sharma, B. D. Ramsey, Charge sharing and charge loss in a cadium -zinc -telluride fine-pixel detector array, Nucl. Instr. and Meth. A, 2003,505:122-125
    [70] S.S.Yoo, G, Jennings, P.A.Montano, Linear X-ray detector array made on bulk CdZnTe for 30-100 KeV energy, J. 1 of Electron. Mater., 1997,26(6):750-755
    [71] Asher Shor, Israel Mardor, and Yossi Eisen, Performance of 1cm×1cm×1cm pixelated CdZnTe gamma detectors, IEEE Trans. Nucl. Sci., 2002, 49(4):1935-1940
    [72] Z.He, W.Li, G.F.Knoll, et al, 3-D position sensitive CdZnTe gamma-ray spectrometers, Nucl. Instr. and Meth. A, 1999, 422:173-178
    [73] L.Verger, J. P. Bonnefoy, F. Glasser et al, New development in CdTe and CdZnTe detectors for X and γ-ray application, J. of Electron. Mater., 1997,26(6):738-744
    [74] M. Fiederle, C. Eiche, M. Salk et al, Modified compensation model of CdTe, J. Appl. Phys. ,1998, 84(12): 6689-6692
    [75]P. N. Luke, Unipolar charge sensing with coplanar electrodes- application to semiconductor detectors, IEEE Trans. Nucl. Sci., 1995, 42(4):207-213
    [76]J. E. Toney, B. A. Brunett, T. E. Schlesinger et al, Uniformity of Cd_(1-x)Zn_xTe grown byhigh-pressure Bridgman, Nucl. Instr. Meth. A, 1996,380:132-135
    [77]O. Tousignant, L. A. Hamel, J. F. courville et al, Transport properties and performance of CdZnTe strip detectors, IEEE Trans. Nucl. Sci., 1998,45(3):413-416
    [78]Y. Eisen, A. Shor and I. Mardor, CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems, Nucl. Instr. Meth. A, 1999, 428:158-170
    
    [79]J. Franc, P. Hoschl, E. Belas et al, CdTe and CdZnTe crystals for room temperature gamma-ray detectors, Nuc. Instru. and Meth. A ,1999,434:146-151
    [80]R. Arlt, V. Gryshchuk and P. Sumah, Gamma spectrometric characterization of various CdTe and CdZnTe detectors, Nucl. Instr. Meth. A, 1999,428:127-137
    [81]F. P. Doty, C. L. Lingren, B. A. Apotovsky et al, Multichannel CdZnTe gamma rayspectrometer, Nucl. Instr. Meth. A, 1999,422:185-189
    [82]A. Gliere, M. Rosaz and L. Verger, Simulation of CdZnTe gamma-ray spectrometer response, Nucl. Instr. Meth. A, 2000,442:250-254
    [83]Y. Nemirovsky, GAsa, J. Gorelik and A. Peyser, Spectroscopic evaluation of n-type CdZnTe gamma-ray spectrometers, J. of Electr. Mater. 2000,29 (6): 691-698
    [84] M. Chu, S. Terterian, D. Ting, Role of zinc in CdZnTe radiation detectors, IEEE Trans. Nucl. Sci.,2004, 51(5):2405-2411
    [85] M. Chu, S. Terterian, D. Ting et al, Effects of excess tellurium on the properties of CdZnTe radiation detectors, J. Electron. Mater., 2003, 32(7): 778-782
    [86] M. Chu, S. Terterian, D. Ting et al, Tellurium antisites in CdZnTe, Appl. Phys. Lett. ,2001, 79(17): 2728-2730
    [87] 沈学础著,半导体光谱和光学性质,科学出版社,北京,2002
    [88] 褚君浩著,窄禁带半导体物理学,科学出版社,北京,2005
    [89] Swati Jain, Photoluminescence study of cadmium zinc telluride, Master D. Thesis, West Virginia University, 2001
    [90] E. Rzepka, A. Lusson, A. Riviere et al, Defects study by photoluminescence and cathodoluminescence in vanadium doped CdZnTe, J. Cryst. Growth, 1996, 161: 286-291
    [91] H. Chen, Low-temperature photolurninescence of detector grade CZT crystal treated by different chemical etchants, J. Appl. Phys., 1996, 80:3510-3518
    [92] S. Miyajima, K. Imagawa, CZT detector in mammographic x-ray spectroscopy, Phys. Med. Boil., 2002, 47: 3959-3972
    [93] M. A. Kinch, Fundamental physics of infrared detector materials, J. Electron. Mater., 2000, 29: 809-817
    [94] 朱基千,褚君浩,张小平等,退火对CZT晶体质量的影响,半导体学报,1997,18:782-785
    [95] J. Zhu, J. Chu, X. Zhang et al, Study of zinc inclusions/precipitates in CdZnTe crystals, J. Cryst. Growth, 1997, 171:357-360
    [96] S. Sen, C. S Liang, D. R. Rhiger et al, The 1995 U. S. Workshop on the Physics and Chemistry of Mercury Cadmium Telluride and other IR Materials
    [97] T. H. Prettyman, M. A. Hoffbauer, J. A. Rennie et al, Perfformance of CdZnTe detectors passivated with energetic oxygen atoms, Nul. Instru. and Meth. A ,1999, 422: 179-184
    [98] H. Chen, K. Chattopadhyay, K. T. Chen, Passivation of CdZnTe surfaces by oxidation in low energy atomic oxygen, Vac. Sci. Technol. A, 1999, 17(1): 97-101
    [99] M. J. Mesher, T. E. Schlesinger, J. E. Toney et al. Development of dry processing techniques for CdZnTe surface passivation, J. of Electr. Mater., 1999, 28(6): 700-704
    [100] K. T. Chen, D. T. Shi, H. Chen et al, Study of oxidized cadmium zinc telluride surfaces, J. Vac. Sci. Technol. A, 1997, 15(3): 850-853
    [101] K. Chattopadhyay, M. Hayes, J. Ndap, et al, Surface passivation of Cadmium zinc telluride radiation detectors by potassium hydroxide solution, J. Electr. Mater., 2000, 29(6):708-712
    [102] G. W. Wright, R. B. James, D. Chinn et al, Evaluation of NH_4F/H_2O_2 effectiveness as a surface passivation agent for Cd_(1-x)Zn_xTe crystals, Proc. of SPIE, 2000, 4141: 324-335
    [103] G. W. Wright, G. Camarda, E. Kakuno et al, Effects of surface roughness on large volume CdZnTe nuclear radiation detectors and removal of surface damage by chemical etching, Proc. of SPIE, 2004, 5198:306-313
    [104] G. W. Wright, D. A. Chinn, B. A. Brunett et al, Exploratory search for improved oxidizing agents used in the reduction of surface leakage currents of Cd_(1-x)Zn_xTe radiation detectors," Proc. of SPIE, 1999, 3768: 481-485
    [105] I. M. Dharmadasa, Recent development and progress on electrical contacts to CdTe,CdS and ZnSe with special reference to barrier contacts to CdTe, Prog. Crystal Growth and Characteristic, 1998, 36(4): 249-290
    [106] 罗德里克(E.H.Rhoderick)著,金属半导体接触,科学出版社,北京,1984
    [107] M. rogalla, K. Runge, Formation of a quasi-neutral region in Schottky diodes based on semi-insulating GaAs and the influence of the compensation mechanism on the particle detector performance, Nucl. Instr. and Meth. A, 1999, 434:44-56
    [108] 许振嘉编著,近代半导体材料的表面科学基础,北京大学出版社,北京,2002
    [109] Dae-Woo Kim, Hee-Soo Park, Joon Seop Kwak et al, The ohmic contact formation mechanism of Au/Pt/Pd ohmic contact to p-ZnTe, Journal of Electronic Materials, 1999, 28(8): 939-943
    [111] Takeo Ohtsuka, Masashi Yoshimura, Katsuhiko Morita et al, Low resistance ohmic contact for p-type ZnTe using Au electrode, Appl. Phys. Lett., 1995, 67(9):1277-1279
    [112] M. Ozawa, F. Hiei, M. Takasu et al, Low resistance ohmic contacts for p-type ZnTe, Appl. Phys. Lett., 1994, 64(9): 1120-1122
    [113] P. Fochuk, O. Panchuk, P. Feychuk et al, Indium dopant behaviour in CdTe single crystals, Nucl. Instr. and Meth. A, 2001, 458: 104-112
    [114] M. Fiederle, V. Babentsov, J. Franc et al, Growth of high resistivity CdTe and (Cd, Zn)Te crystals, Cryst. Res. Technol., 2003, 38(7-8): 588-597
    [115] A. Zerrai, M. Dammak, G. Marrakchi et al, Investigation of deep levels in Vanadium-doped CdTe and CdZnTe, J. Cryst. Growth, 1999, 197: 729-732
    [116] O. Panchuk, A. Savitskiy, P. Fochuk et al, Ⅳ group dopant compensation effect in CdTe, J. Cryst. Growth, 1999, 197: 607-611
    [117] M. Fiederle, D. Ebting, C. Eiche et al, Comparison of CdTe, Cd_(0.9)Zn_(0.1)Te and CdTe_(0.9)Se_(0.1) crystals: application for γ-and X-ray detectors, J. Cryst. Growth, 1994, 138, 529-533
    [1] 朱惜辰,碲镉汞探测器的表面钝化。红外技术,2001,23(3):9-15
    [2] 刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,北京,1994:178-226
    [3] H. Yoon, J. M. Van Scyoc, M. S. Goorsky et al, Investigation of the effects of polishing and etching on the quality of Cd_(1-x)Zn_xTe using spatial mapping techniques, J. Electron. Mater., 1997, 26: 529-533
    [4] C. Braun, H. W. Helberg, and A. George, surface damage of CdTe produced during sample preparation and determination of dislocation types near microhardness indentations, Phil. Mag. A, 1986, 53(2): 277-284
    [5] G. W. Wright, R. B. James, D. Chinn, B. A. Brunett, R. W. Olsen, J. Van Scyoc, M. Clift, A. Burger, K. Chattopadhyay, D. Shi and R. Wingfield, Evaluation of NH_4F/H_2O_2 effectiveness as a surface passivation agent for CdZnTe crystals. SPIE, 2000, 4141: 324-335
    [6] H. Qu, P. O. Nilsson, J. Kanski, et al. Electronic structure of CdTe(110) as studied by angle-resolved photoemission, Physical Review B, 1989, 39: 5276-5281
    [7] K. O. Magnusson, S. A. Flodstrom. Valence-band and surface electronic structure of CdTe, Physical Review B, 1988, 38: 5384-5391
    [8] 潘承璜,赵良仲,电子能谱基础,北京:科学出版社,1981:256
    [9] T. Kendelewicz, J. E. Klepeis, J. C. Woicik, et al. Large-angle bond-rotation relaxation for CdTe (110), Physical Review B, 1995, 51: 10774-10778
    [10] D. E. EasTman, W. D. Grobman. Photomission Densities of Intrinsic Surface States for Si, Ge, And GaAs, Physical Review Letters, 1972, 28: 1378-1381
    [11] L. F. Wagner, W. E. Spicer. Observation of a Band of Silicon Surface States Containing One Electron Per Surface Atom, Physical Review Letters, 1972, 28: 1381-1384
    [12] K. T. Chen, D. T. Shi, H. Chen, et al. Study of oxidized cadmium zinc telluride surfaces. J. Vac. Sci. Technol. A, 1997,15(3): 850-855
    [13] E. Rzepka, A. Lusson, A. Riviere et al, Defects study by photoluminescence and cathodoluminescence in vanadium doped CZT, J. Cryst. Growth, 1996, 161: 286-291
    [14] K. Oettinger, D. M. Hofmann, Al. L Efros et al, Low-temperature PL spectra of CZT single crystals grown by Bridgrnan method, J. Appl. Phys., 1992, 71: 4523-4529
    [15] J. Lee, N. C. Giles, D. Rajavel et al, Donor-acceptor pair luminescence involving the iodine A center in CdTe, J. Appl. Phys., 1995, 78:5669-5674
    [16] Young-Hun Kim, Se-young An, Ju-young Lee et al, Photoluminescence study on the effects of the surface of CdTe by surface passivation, J. Appl. Phys. ,1999, 85:7370-7373
    [17] B. Hu, A. Yin, G. karczewski et al, An optical method for evaluation of the net acceptor concentration inp-type ZnSe, J. Appl. Phys. ,1993, 74:4153-4157
    [18] K. Chattopadhyay, X. Ma, J. O. Ndap et al, Thermal treatments of CdTe and CdZnTe detectors, SPIE, 2000, 4141: 303-308
    [19] 刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,北京,1994:178-226
    [20] T. S. Sun, S. P. Bunchner and N. E. Byer. Oxide and interface properties of anodic films on Hg_(1-x)Cd_xTe, J. Vac. Sci. Technol. ,1980, 17: 1067-1073
    [21] Frank F. Wang A. L. Fahrenbruch and R. H. Bube, Properties of metal-semiconductor and metal-insulator-semiconductor junctions on the CdTe single crystals. J. Appl. Phys., 1989, 65(9):3552-3559
    [22] K. A. Rickert, A. B. Ellis, F. J. Himpsel et al, n-GaN surface treatments for metal contacts studied via x-ray photoemission spectroscopy, Appl. Phys. Lett., 2002, 80:204-206
    [23] K. A. Rickert, A. B. Ellis, Jong Kyu Kim et al, X-ray photoemission determination of the Schottky barrier height of metal contacts to n-GaN and p-GaN, J. Appl. Phys., 2002, 92(11):6671-6678
    [24] M. Alonso, R. Cimino, and K. Horn, Surface photovoltage effects in photoemission from metal-GaP(110) interfaces: Importance for band bending evaluation, Physical Review Letters, 1990, 64: 1947-1950
    [25] P. John, T. Miller, T. C. Hsieh et al, Photoemission studies of CdTe(100) and the Ag-CdTe(100) interface: surface structure, growth behavior, Schottky barrier, and surface photovoltage, Phys. Review B, 1986, 34(10): 6704-6712
    [1] A. Burger, H. Chen, K. Chattopadhyay et al, Characterization of metal contacts on and surfaces of cadmium zinc telluride, Nucl. Instr. and Meth. A, 1999, 428: 8-13
    [2] R. B. James, T. E. Schlesinger, J. C. Lund et al, Semiconductors and semimetals, New York: Academic Press, 1995, chap. 9
    [3] Z. Pastuovic, M. Jaksic, R. B. James et al, Influence of electrical contacts on charge collection profiles in CdZnTe studied by IBIC, Nucl. Instr. and Meth. A, 2001, 458: 254-261
    [4] I. M. Dharmadasa, J. M. Thornton, and R. H. Williams, Effects of surface treatments on Schottky barrier formation at metal/n-type CdTe contacts, Appl. Phys. Lett., 1989, 54:137-139
    [5] S. H. Lee, I. J. Kim, Y. J. Choi et al, The comparison on the performance of a gamma-ray spectrometer with the variation of Pt(Au)/CdZnTe/Pt(Au) interface, J. of Cryst. Growth, 2000, 214/215: 1111-1115
    [6] Y. Nemirovsky, A. Ruzin, G. Asa et al, Study of contacts to CdZnTe radiation detectors. J. of Electr. Mater., 1997, 26(6): 756-764
    [7] E. H. Rhoderick, and R. H. Williams, Metal-semiconductor contacts, 2nd edition, Oxford: oxford Science Publications, 1988,
    [8] L. A. Kosyachenko, O. L. Maslyanchuk, V. V. Motushchuk et al. Charge transport generation-recombination mechanism in Au/n-CdZnTe diodes. Solar Energy Materials&Solar Cells, 2004, (82): 65-73
    [9] I. M. Dharmadasa, C. J. Blomfield, C. G. Scott et al, Metal/n-CdTe interfaces: A study of electrical contacts by deep level transient spectroscopy and ballistic electron emission microscopy. Solid State electronics, 1998, 42(4): 595-604
    [10] Ching-Yuan Wu, Interfacial layer theory of the Schottky barrier diodes, J. Appl. Phys., 1980,51(7): 3786-3789
    [11] 金应荣,硒化镉(CdSe)单晶体生长及其室温核辐射探测器,四川大学博士学位论文,2002
    [12] S. M. Sze, Physics of semiconductor devices, 2 nd edition, John Wiley &Sons, New York, 1981
    [13] 施敏著,王阳元等译,半导体器件物理与工艺,科学出版社,北京,1992:173-241
    [14] 朱惜辰,碲镉汞探测器的表面钝化,红外技术,2001,23(3):9-15
    [15] 刘恩科,朱秉升,罗晋生等,半导体物理学,国防工业出版社,北京,1994:178-226
    [16] 施敏著,黄振岗译,半导体物理学,电子工业出版社,北京,1987:169-220
    [17] F. M. Amanullsh, Effect of isochronal annealing on CdTe and the study of electrical properties of Au-CdTe schottky devices. Canadian Journal of Physics. ,2003, 81(3):617-624
    [18] Y.Nemirovsky, A. Ruzin, G. Asa er al, Study of the charge cleection efficiency of CdZnTe radiation detectors, J. of Electr. Mater., 1996, 25(8):1221-1231
    [19]S . Aydogan, M. Saglam, and A. Turut, Current-voltage and capacitance-voltage characteristics of polypyrrole/p-InP structure, Vacuum, 2005,77:269-274
    [20] C. Coskun, S. Aydogan and H. Efeoglu, Temperature dependence of reverse bias capacitance -voltage characteristics of Sn/p-GaTe Schottky diodes, Semicond. Sci. Technol., 2004,19: 242-246
    [21]E. H. Rhoderick, Metal-seminconductor contacts, 2 nd edition, Oxford University Press, Clerendon; 1988:121
    [1] 胡德林,金属学及热处理,西北工业大学出版社,西安,1994,p.248-268
    [2] A. Burger, H. Chen, J. Tong et al, Investigation of electrical contacts for Cd_(1-x)Zn_xTe nuclear radiation detectors, IEEE Trans. Nucl. Sci., 1997, 44(3): 934-938
    [3] J. F. Butler, F. D. Doty, B. Apotovsky et al, Gamma-and X-ray detectors manufactured from Cd_(1-x)Zn_x Te grown by a high pressure bridgman method, Mate. Sci. Engi. B, 1993, 16:291-295
    [4] M. A. George, W. E. Collins, K. T. Chen et al, Study of electroless Au film deposition on ZnCdTe crystal surfaces, J. Appl. Phys., 1994, 77(7): 3134-3137
    [5] S. Mergui, M. Hage-Ali, J. M. Koebel et al, Thermal annealing of gold deposited contacts on high resistivity p-type CdTe nuclear detectors, Nucl. Instru. and Meth. A, 1992, 322:375-380
    [6] T. E. Schlesinger, J. E. Toney, H. Yoon et al, Cadmium zinc telluride and its use as a nuclear radiation detector material, Materials Science and Engineering R, 2001, 32: 103-189
    [7] P. Fochuk, O. Panchuk, P. feychuk et al, Indium dopant behaviour in CdTe single crystals, Nucl. Instru. and Meth. A, 2001, 458:104-112
    
    [8] F.A. Kroger, The Chemistry of Imperfect Crystals, North-Holland, Amsterdam, 1964, p. 655
    
    [9] A. A. Rouse, C. Szeles, J. -O. Ndp et al, Interfacial chemistry and the performance of bromine-etched CdZnTe radiation detector devices, IEEE Trans. Nucl. Sci. , 2002, 49(4):2005-2009
    [10] T. Takebe, J. Saraie, and T. Tanaka, Study of the surface barrier of metal-n-CdTe contact, Phys. Stat. Sol. (a), 1978,47:123-130
    [11] M. Ozawa, F. Hiei, M. Takasu et al, Low resistance Ohmic contacts for p-type ZnTe, Appl. Phys. Lett., 1994, 64(9): 1120-1122
    
    [12] K. Chattopadhyay, X. Ma, J. -O. Ndap et al, Thermal treatment of CdTe and CdZnTe detectors, Proc. of SPIE, 2000,4141:303-308
    [1] 沈学础著,半导体光谱和光学性质,科学出版社,北京,2002
    [2] 褚君浩著,窄禁带半导体物理学,科学出版社,北京,2005
    [3] L Li, F. Lu, C. Lee et al, New progress in large-size CZT single crystal growth for nuclear radiation detectors, Proc. of SPIE, 2004, 5198:41-47
    [4] F. P. Doty, J. F. Butler, J. F. Schetzina, and K. A. Bowers, Properties of CdZnTe crystals grown by a high pressure Bridgman method. J. Vac. Sci. Technol. B, 1992, 10: 1418-1422
    [5] Young-Hun Kim, Sung-Hoon Kim, In-Jae Kim et al, The surface passivation of CdZnTe as to ZnS thickness and pre-heating, Current Appl. Phys., 2005, 5:392-396
    [6] Hwa-Yuh Shin and Cherng-Yuan Sun, The exciton and edge emissions in CdTe crystals, Materials Science and Engineering B, 1998, 52:78-83
    [7] Swati Jain, Photoluminescence study of cadmium zinc telluride, Master D. Thesis, West Virginia University, 2001
    [8] L. Worschech,, W. Ossau, and G. Landwehr, Characterization of a strain-inducing defect in CdTe by magnetoluminescence spectroscopy, Phys. Rev. B, 1995, 52: 13965-13974
    [9] S. Seto, K. Suzuki, V. N. Abastillas Jr. et al, Compensating related defects in In-doped bulk CdTe, J. Cryst. Growth, 2000,214/215: 974-978
    [10] E. Molva, J. P. Chamonal, and J. L. Pautrat, Shallow Acceptors in Cadmium Telluride, Phys. Stat. Solidi. B, 1982, 109: 635-644
    [11] M. Chu, S. Terterian, D. Ting et al, Effects of excess Tellutium on the properties of CdZnTe radiation detectors, J. of Electronic Materials 2003, 32: 778-782
    [12] K. Hjelt, M. Juvonen, T. Tuomi et al, Photoluminescence of Cd_(1- x)Zn_xTe Crystals Grown by High-Pressure Bridgman Technique, Phys. Stat. Sol. A, 1997,162: 747-763
    [13]T. E. Schlesinger, J. E. Toney, H. Yoon et al, Cadmium zinc telluride and its use as a nuclear radiation detector material, Materials Science and Engineering R, 2001,32:103-189
    [14] F. A. Kroger, The chemistry of Imperfect Crystals, NorthHolland, Amsterdam, 1964, p.655
    [15] P. Fochuk, O. Panchuk, P. feychuk et al, Indium dopant behaviour in CdTe single crystals, 2001 Nucl. Instru. and Meth. A 458:104-112
    [16] D. Weger, E. Meyer, Evidence for In-defect complexes in CdTe, J. Phys. : Condensed Matter, 1989,1(32): 5403-5409
    [17]S. Sen, D. R. Rhiger, C. R. Curtis, et al, Infrared absorption behavior in CdZnTe substrates, J. of Electronic Materials, 2001,30(6):611-618
    [18] M. Lax and E. Burstein, Broadening of Impurity Levels in Silicon, Phys. Rev. B, 1955, 100: 592-602
    [19] Y. Sun: Semiconductor Measurement Technology, Metallurgy Industrial Press, China 1984, p. 225
    [1] Z. He, Review of the Shockley-Ramo theorem and its application in semiconductor gamma-ray detectors, Nucl. Instr. Meth. A, 2001, 463:250-267
    [2] M. Amman, J. S. Lee, and P. N. Luke, Electron trapping nonuniformity in high-press-Bridgman-grown CdZnTe, J. Appl. Phys., 2002, 92(6): 3198-3206
    [3] D. S. McGregor, H. Hermonb, Room-temperature compound semiconductor radiation detectors, Nucl. Instru. and Meth. A, 1997, 395: 101-124
    [4] K. Hecht, Zum mechanismus des lichtelektrischen primarstromes in isolierenden kristallen, Zeits Phys., 1932, 77:235
    [5] Charge trapping in XR-100T-CdTe and-CZT detectors, Amptak Inc.
    [6] O. Limousin, New trend in CdTe and CdZnTe detectors for X-and gammay-ray applications, Nucl. Instru. and Meth. A, 2003, 504:24-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700