用户名: 密码: 验证码:
压电生物传感器检测单核苷酸多态性的实验研究和临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、研究背景和目的
     近年来,压电生物传感器检测技术逐渐成为生物分析中的研究热点。它具有实时检测、准确定量、特异性高、无需标记、经济性等优点,被认为是现代临床诊断发展的一个新方向。其原理在于压电晶体表面负载的质量变化可通过自身谐振频率变化反映出来,并通过固定不同识别元件,能够检测DNA、抗原-抗体、酶、细菌等多种物质,在分子识别、临床诊断、分子成膜过程、表面性质、毒理研究等领域中已得到较为广泛的应用。同时压电生物传感器操作简便,环境要求简单,检测设备易于微型化使其具有更大的临床应用价值。
     SNP (single nucleotide polymorphism,单核苷酸多态性)是指基因组特定位置上由单个核苷酸的变异所引起的一种DNA序列多态性,如果人群中这种变异的频率大于1%,即称为SNP。作为基因变异的主要形式,SNPs在对疾病的起因、风险评估和防治方面有着巨大的潜力。其研究已成为人类后基因组时代的主要内容之一。近年大量研究证实,SNP位点不仅与一些人类疾病直接相关、还可以用来预测个体对药物治疗的应答以及作为易患某种疾病的危险人群的标记,对疾病的风险评估和个性化医疗十分重要。因此,SNP的检测技术对于临床诊断医学具有重要的潜在意义,有望为临床疾病风险评估以及个性化医疗诊断的研究开辟新的切入点和研究焦点。
     关于SNP的大量研究已经鉴定发现了很多和疾病相关的位点,但由于缺乏简单有效快速低廉的临床检测手段,SNP的研究还停留在实验室阶段,SNP潜在应用价值远远没有得到有效地挖掘。而压电生物传感器具有简单实用快速低廉的特点,如能将其应用于SNP的检测将具有广阔的潜在临床应用前景。
     但SNP只有一个碱基的差异,SNP的检测需要检测方法能从样本中分辨出只有一个碱基差异的目的序列。靶序列和干扰序列之间仅有一个碱基的差异,质量变化小。这给基于质量效应原理的压电生物检测体系带来挑战,需要传感器具有更高的敏感性和更好的特异性。因为本研究拟首先从多个方面提高压电生物传感器的稳定性,然后通过试验证实生物素-链霉亲和素放大系统可以放大压电生物传感器的信号,提高其检测敏感性。在此基础上,建立高敏感的压电SNP检测方法。同时利用EIS方法对压电SNP检测体系进行评估和验证,并对实验条件进行优化。最后,以慢性乙肝易感相关SNP位点为靶点,初步研究压电SNP检测方法在临床标本检测中的应用情况。
     二、方法和结果
     1.利用酶生物信号放大系统建立高敏感的压电传感器SNP检测方法:
     a.探讨生物素-链霉亲和素放大系统用来放大压电生物传感器的检测信号的可行性研究:分别固定标记生物素和未标记生物素的探针于压电传感器基片上,然后加入结合HRP的链亲和素以及DAB底物,检测分析频率变化。结果发现生物素将HRP-SA结合到基片上后,后者催化DAB形成的不可溶沉淀紧密附着于压电基片表面,引发谐振频率显著改变,最低可检测ssDNA片段10-13mol/l,而对照则无法检测出有意义的频率变化。表明酶生物信号放大系统可以用于压电传感器,对发生在后者之上的生物反应信号进行放大,可以有效提高压电传感器的检测敏感性。
     b.利用酶生物信号放大系统,结合单碱基延伸技术,建立压电生物传感器的SNP检测体系:分别合成两条寡核苷酸,两者间仅存在一个碱基的不同(A/G);将其加入固定有未标记探针的压电检测池,分别利用Taq、Pfu以及Klenow fragment三种不同的DNA聚合酶将biotin-dUTP延伸结合到探针上;最后加入DAB,检测频率变化。结果表明含A碱基的序列能引起频率的显著变化,约20倍高于含G碱基的序列;单碱基延伸所采用的三种聚合酶中,pfu的特异性和敏感性最好。在模式试验中,本方法最低可检测出的最低阳性靶序列的浓度为2×10-11mol/l。与检测普通杂交信号比较,采用放大系统后,信号检测时间可缩短至20min,且结果稳定性更好。
     2. EIS系统的构建及其应用:
     将压电传感单元、三电极系统和电化学工作站共同组成EIS检测系统。设定适合分析压电基片表面金膜的电化学参数,对空白时、探针固定后及杂交后金膜表面进行了交流阻抗谱的检测,根据阻抗值分析金膜表面生物学反应情况。实验发现少部分实验用的压电基片空白表面交流阻抗值异常,可影响实验结果的重复性。探针固定和靶序列杂交的实验条件为:针对实验用的压电基片金膜面积而言,最适探针固定浓度为2μmol/l,最适固定时间为60min,靶序列最适杂交时间为60min。在压电传感器检测SNP的每一步骤中,金膜表面交流阻抗值均有相应变化。
     3.压电SNP检测方法的临床应用:
     首先以慢性乙肝持续感染相关SNP位点(ESR1 T392C)为靶点,分析并建立适合该位点的SNP检测探针、引物以及标准检测体系。然后收集的临床标本,提取基因组DNA,并进行特异性的扩增。采用压电SNP检测方法对其进行检测。结果表明该方法可以成功检测出临床来源标本中的ESR1 T392C位点。随后以经典的RFLP方法为参照方法,以RFLP检测的27例纯合子为样本,对比分析发现压电SNP检测方法TT型检出率为94.7%,CC型检出率为87.5%。两种方法经x2检验,p>0.05,表明我们建立的SNP压电检测方法在临床标本的实际检测中与RFLP相比具有较好的一致性。
     三、结论:
     1.酶生物放大系统可以显著增加压电传感器检测DNA靶序列时的频率变化,和干扰对照序列相比具有良好的特异性。表明酶生物放大系统有望作为一种特异、有效的放大手段应用于压电生物传感器,在检测微小质量变化样本中发挥重要作用。
     2. EIS是一种有效的方法,可用来评价压电生物传感器,也可以用来优化其检测条件,其建立的实验条件符合压电检测实际情况,可用于压电生物传感器常规检测的标准步骤和标准体系的建立。
     3.建立了压电SNP传感器检测慢性乙肝持续感染相关SNP位点(ESR1 T392C)的反应体系,初步研究了其频率变化特点;通过临床标本检测,并和传统方法RFLP对比分析,表明我们建立的SNP压电检测方法适合用于临床标本的实际检测。
Backgrounds
     Recent years, piezoelectric biosensor is becoming a focus in biomolecule detection field. The basic principle is that the characters of its oscillation are highly responded with the changes of the surface mass adsorption. It could detect many biomolecular real-timely, sensitively and specifically, such as DNA, antibody, enzyme, bacterium, based on different recognition elements. In recently research, it had been used in many research fields such as molecular recognition, clinical diagnosis, molecular filming, surface property research, poison research and so forth. In addition, piezoelectric biosensor is easy to control and shape minimized,so it is flexible to be used in clinical diagnose.
     A SNP represents an alternate nucleotide in a given and defined genetic location at a frequency exceeding 1 % in a given population. As the mostly major in the human genetics variability, SNPs have immense potentiality in the study of disease’etiopathogenisis, risk assessment, prevention and treatment. It is now one of the main areas in the post-genomics era. These recently results confirmed that not only directly connected to disease, SNPs is also useful in the prediction of drug reaction and risk assessment in particular sensitivity popular. For these reasons, SNP detection technology is very important and can be the new area of the clinical diagnosis technology research.
     Although many SNP sites have been found to be linked with some disease, but lacking of simply, effective and cheap SNP detection technology make it still a toy in laboratory. For the advantage of piezoelectric biosensor, it is useful to use it in SNP detection.
     In SNPs detection, only one nucleotide variation occurred in the DNA sequence, the detection methods need to detect the one nucleotide mismatch target sequence from samples. The mass shift is very little and account for a big challenge to piezoelectric biosensor. It requires more sensitive and stable biosensor. In this study, we firstly improved the stability of piezoelectric biosensor and then confirmed that biotin-SA-HRP system can be used to amplify the signal of piezoelectric biosensor and improve its detection sensitivity. Based on that, we constructed a high sensitive Piezoelectric SNP biosensor. And then, we used EIS to evaluate it and optimize the reaction conditions. Finally, we use this system to detect one HBV related SNP site in the clinical samples, and studied its concordance with the RFLP method.
     Methods and Results
     1. Use enzyme signal amplification system to establish a high sensitivity Piezoelectric SNP biosensor
     a) The feasibility study on the use of biotin-SA-HRP signal amplification system in piezoelectric biosensor: The biotin labeled or unlabeled probe was separately immobilized on the piezoelectric crystal wafer. The SA-HRP was added to bind biotin, and then the DAB substrate was added, the frequency shift was record and analyzed. The results showed that comparing with the unlabeled probe, biotin labeled probe had a remarkable frequency shift, with it, the biosensor can detect as low as 10-13mol/l ssDNA. It suggested that after binding biotin, SA-HRP catalyzed DAB and formed insoluble precipitation, and give a big mass shift on the piezoelectric crystal wafer. These results suggested that the Biotin-SA-HRP system can be used to amplify the piezoelectric biosensor signal, and improve its sensitivity.
     b) Use Biotin-SA-HRP system and SBE technology to establish a high sensitivity piezoelectric SNP biosensor: two target sequences with only one nucleotide (A/G) difference was added and hybridized with unlabeled probe which immobilized on the crystal wafer. Three DNA polymerase (Taq, Pfu and Klenow) were added separately to extend one base on the sequence of probe with biotin-dUTP. And then the SA-HRP and DAB was added, the frequency shift was recorded and analyzed. The results showed that the A-containing sequence brought a more remarkable frequency shift than G-containing sequence. The system can discernment these two sequences based on their different signal shift, and the pfu polymerase is more suitable in this system. The results also showed that this method detection limit is 2×10-11mol/l,and compared with normal method, it is more stable and more quickly, the signal detection time can reduced to 20min.
     2. To establish electrochemical impedance system and evaluate piezoelectric SNP biosensor:
     The electrochemical impedance system we established has three parts, piezoelectric element, three electrode system and electrochemical workstation. To characterize impedance shift of thin Au film, we set some setting suitable parameters and detect the impedance when biomaterial modification on the Au film with probe and target DNA. Results suggested that abnormal impedance of blank film could influence the stable detection. And we optimized the piezoelectric detection system by characterizing the Au film impedance with EIS. According to the Au film area we used, the best probe immobilized concentration is 2μmol/l and the suitable immobilized and hybridized duration is 60 min. we also detected impedance after every step of piezoelectric SNP detection, and found that it happened correspond impedance shift to biological reaction.
     3. Use piezoelectric SNP biosensor to detect clinical blood samples: According to the sequence of T392C, we designed the specific probe and primers. 44 clinical blood samples were collected and DNA genomes were extracted as PCR template. The result suggested that piezoelectric SNP biosensor could detect the SNP specifically. Compare with RFLP, the detection rate of TT is 94.7%, and the rate of CC is 87.5%. Two methods have no variability.
     Conclusions
     1. Enzyme signal amplification system could detect target DNA specifically and amplify the piezoelectric signal significantly. It has great versatility and can be used in different types of piezoelectric biosensors in detecting tiny mass.
     2. EIS is a powerful tool to provide information of various biochemical events occurring in biosensors and is useful in establishing and optimizing piezoelectric detection system and protocol.
     3. The piezoelectric SNP detection system we established can be used to clinical detect single nucleotide polymorphism from blood sample. And we also have designed a protocol on detecting ESR1 T392C SNP site with our system, and studied its features of frequency shift. Compare with RFLP, piezoelectric SNP detection system is more flexible to be used in clinical SNP detection.
引文
1. Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome[J]. Nature, 2006,444(7118):444-54.
    2. Moritani M, Nomura K, Tanahashi T, et al. Genetic association of single nucleotide polymorphisms in endonuclease G-like 1 gene with type 2 diabetes in a Japanese population[J]. Diabetologia, 2007.
    3. Graham RR, Kyogoku C, Sigurdsson S, et al. Three functional variants of IFN regulatory factor 5 (IRF5) define risk and protective haplotypes for human lupus[J]. Proc Natl Acad Sci U S A, 2007.
    4. Wang Z, Wang J, Tantoso E, et al. Signatures of Recent Positive Selection at the ATP-Binding Cassette (ABC) Drug Transporter Superfamily Gene Loci[J]. Hum Mol Genet, 2007.
    5. Bakker SC, Hoogendoorn ML, Hendriks J, et al. The PIP5K2A and RGS4 genes are differentially associated with deficit and non-deficit schizophrenia[J]. Genes Brain Behav, 2007,6(2):113-9.
    6. Chen JF, Long GF, Lin WX, et al. [Beta-thalassemia mutations and single nucleotide polymorphism at -158 of Ggamma-globin gene associated with altered levels of Hb F in beta-thalassemia heterozygotes][J]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2004,21(5):498-501.
    7. Corder EH, Saunders AM, Risch NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease[J]. Nat Genet, 1994,7(2):180-4.
    8. Lewandowski K, Swierczynska A, Kwasnikowski P, et al. The prevalence of C807T mutation of glycoprotein Ia gene among young male survivors of myocardial infarction: a relation with coronary angiography results[J]. Kardiol Pol, 2005,63(2):107-13; discussion114.
    9. Cichon S, Nothen MM, Rietschel M, et al. Pharmacogenetics of schizophrenia[J]. Am J Med Genet, 2000,97(1):98-106.
    10. Misra A, Hong JY, Kim S. Multiplex Genotyping of Cytochrome P450 Single-Nucleotide Polymorphisms by Use of Matrix-Assisted Laser Desorption/ Ionization Time-of-Flight Mass Spectrometry[J]. Clin Chem, 2007.
    11. Mabru D, Douet JP, Mouton A, et al. PCR-RFLP using a SNP on the mitochondrial Lsu-rDNA as an easy method to differentiate Tuber melanosporum (Perigord truffle) and other truffle species in cans[J]. Int J Food Microbiol, 2004,94(1):33-42.
    12. Abbas A, Lepelley M, Lechevrel M, et al. Assessment of DHPLC usefulness in the genotyping of GSTP1 exon 5 SNP: comparison to the PCR-RFLP method[J]. J Biochem Biophys Methods, 2004,59(2):121-6.
    13. Jung SK, Hong MS, Suh GJ, et al. Association between polymorphism in intron 1 of cocaine- and amphetamine-regulated transcript gene with alcoholism, but not with bipolar disorder and schizophrenia in Korean population[J]. Neurosci Lett, 2004,365(1):54-7.
    14. Buono RJ, Lohoff FW, Sander T, et al. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility[J]. Epilepsy Res, 2004,58(2-3):175-83.
    15. Shi K, Wang A, Li N, et al. Single nucleotide polymorphism analysis on melanocortin receptor 1 (MC1R) of Chinese native pig[J]. Sci China C Life Sci, 2004,47(3):287-92.
    16. Nagano M, Nakamura T, Ozawa S, et al. Allele-specific long-range PCR/sequencing method for allelic assignment of multiple single nucleotide polymorphisms[J]. J Biochem Biophys Methods, 2003,55(1):1-9.
    17. Geller F, Reichwald K, Dempfle A, et al. Melanocortin-4 receptor gene variant I103 is negatively associated with obesity[J]. Am J Hum Genet, 2004,74(3):572-81.
    18. Genomics and microarray for detection and diagnostics[J]. 2004,51(4):463-7.
    19. Kulle B, Schirmer M, Toliat MR, et al. Application of genomewide SNP arrays for detection of simulated susceptibility loci[J]. Hum Mutat, 2005,25(6):557-65.
    20. Sasayama T, Kato M, Aburatani H, et al. Simultaneous genotyping of indels and SNPs by mass spectroscopy[J]. J Am Soc Mass Spectrom, 2006,17(1):3-8.
    21. Mengel-Jorgensen J, Sanchez JJ, Borsting C, et al. MALDI-TOF mass spectrometric detection of multiplex single base extended primers. A study of 17 y-chromosome single-nucleotide polymorphisms[J]. Anal Chem, 2004,76(20):6039-45.
    22. Smylie KJ, Cantor CR, Denissenko MF. Analysis of sequence variations in several human genes using phosphoramidite bond DNA fragmentation and chip-based MALDI-TOF[J]. Genome Res, 2004,14(1):134-41.
    23. Arce L, Zougagh M, Arce C, et al. Self-assembled monolayer-based piezoelectric flow immunosensor for the determination of canine immunoglobulin[J]. Biosens Bioelectron, 2007.
    24. Zhang B, Fu W. [Advances in piezoelectric quartz crystal biosensor and its applications][J]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2004,21(2):316-20.
    25. Marx KA. Quartz crystal microbalance: a useful tool for studying thin polymer films and complex biomolecular systems at the solution-surface interface[J]. Biomacromolecules, 2003,4(5):1099-120.
    26. Wang J, Fu W, Liu M, et al. Multichannel piezoelectric genesensor for the detection of human papilloma virus[J]. Chin Med J (Engl), 2002,115(3):439-42.
    27. Ding Y, Liu J, Wang H, et al. A piezoelectric immunosensor for the detection of alpha-fetoprotein using an interface of gold/hydroxyapatite hybrid nanomaterial[J]. Biomaterials, 2007,28(12):2147-54.
    28. Dell'Atti D, Tombelli S, Minunni M, et al. Detection of clinically relevant point mutations by a novel piezoelectric biosensor[J]. Biosens Bioelectron, 2006,21(10): 1876-9.
    29. Tombelli S, Mascini M, Turner AP. Improved procedures for immobilisation of oligonucleotides on gold-coated piezoelectric quartz crystals[J]. Biosens Bioelectron, 2002,17(11-12):929-36.
    30. 吴蓉, 府伟灵, 陈鸣. "RecA 蛋白-互补单链 DNA 探针"生物信号放大系统用于压电基因传感器的研究[J]. 重庆医学, 2004(08):1132.
    31. Hahn S, Mergenthaler S, Zimmermann B, et al. Nucleic acid based biosensors: the desires of the user[J]. Bioelectrochemistry, 2005,67(2):151-4.
    32. Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction[J]. Nat Biotechnol, 2001,19(3):253-7.
    33. Nakamoto K, Wang S, Jenison RD, et al. Linkage disequilibrium blocks, haplotype structure, and htSNPs of human CYP7A1 gene[J]. BMC Genet, 2006,7:29.
    34. Belosludtsev YY, Bowerman D, Weil R, et al. Organism identification using a genome sequence-independent universal microarray probe set[J]. Biotechniques, 2004,37(4): 654-8, 660.
    35. N. C. Fawcett, J. A. Evans, and R. D. Craven. Nucleic acid hybridization detected bypiezoelectric resonance[J]. Anal. Lett, 1988,21:1099.
    36. Duman M, Saber R, Piskin E. A new approach for immobilization of oligonucleotides onto piezoelectric quartz crystal for preparation of a nucleic acid sensor for following hybridization[J]. Biosens Bioelectron, 2003,18(11):1355-63.
    37. Tombelli S, Minunni M, Mascini M. Piezoelectric biosensors: strategies for coupling nucleic acids to piezoelectric devices[J]. Methods, 2005,37(1):48-56.
    38. S. Tombelli, M. Minunni, A. Santucci, M.M. Spiriti and M. Mascini. A DNA-based piezoelectric biosensor: Strategies for coupling nucleic acids to piezoelectric devices[J]. talanta, 2006,68:806-812.
    39. Ha TH, Kim S, Lim G, et al. Influence of liquid medium and surface morphology on the response of QCM during immobilization and hybridization of short oligonucleotides[J]. Biosens Bioelectron, 2004,20(2):378-89.
    40. Marchand G, Delattre C, Campagnolo R, et al. Electrical detection of DNA hybridization based on enzymatic accumulation confined in nanodroplets[J]. Anal Chem JT - Analytical chemistry, 2005,77(16):5189-95.
    41. Wu Z, Wu J, Wang S, et al. An amplified mass piezoelectric immunosensor for Schistosoma japonicum[J]. Biosens Bioelectron, 2006,22(2):207-12.
    42. G. Z. Sauerbrey. The use of quartz oscillators for weighing thin layers and for microweighing[J]. Z. Phys, 1959,155:205.
    43. D'Orazio P. Biosensors in clinical chemistry[J]. Clin Chim Acta JT - Clinica chimica acta; international journal of clinical chemistry, 2003,334(1-2):41-69.
    44. Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system[J]. J Nanosci Nanotechnol, 2005,5(8): 1266-72.
    45. Skladal P, dos Santos Riccardi C, Yamanaka H, et al. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus[J]. J Virol Methods, 2004,117(2):145-51.
    46. Skladal P, Jilkova Z, Svoboda I, et al. Investigation of osteoprotegerin interactions with ligands and antibodies using piezoelectric biosensors[J]. Biosens Bioelectron, 2005,20(10):2027-34.
    47. Wang H, Zeng H, Liu Z, et al. Immunophenotyping of acute leukemia using anintegrated piezoelectric immunosensor array[J]. Anal Chem, 2004,76(8):2203-9.
    48. Zuo B, Li S, Guo Z, et al. Piezoelectric immunosensor for SARS-associated coronavirus in sputum[J]. Anal Chem, 2004,76(13):3536-40.
    49. Li, Jing, Thielemann, Christiane, Reuning, Ute, et al. Monitoring of integrin-mediated adhesion of human ovarian cancer cells to model protein surfaces by quartz crystal resonators: evaluation in the impedance analysis mode. Biosensors and Bioelectronics. 20(7), 2005. 1333-1340.
    50. Pavlov V, Willner I, Dishon A, et al. Amplified detection of telomerase activity using electrochemical and quartz crystal microbalance measurements[J]. Biosens Bioelectron, 2004,20(5):1011-21.
    51. Chen M, Liu M, Yu L, et al. Construction of a novel peptide nucleic acid piezoelectric gene sensor microarray detection system[J]. J Nanosci Nanotechnol JT - Journal of nanoscience and nanotechnology, 2005,5(8):1266-72.
    52. 秦自楷. 压电石英晶体[J]. 国防工业出版社, 1980:68-112.
    53. G. Z. Sauerbrey. The use of quartz oscillators for weighing thin layers and for microweighing[J]. Z. Phys, 1959,105:205.
    54. K. K. Kanazawa,J. G. II Gordon. Frequency of a quartz microbalance in contact with liquid[J]. Anal. Chim. Acta, 1985,175:99.
    55. S. Z. Yao, T. A. Zhou. Dependence of the oscillation frequency of a piezoelectric crystal on the physical parameters of liquids[J]. Anal. Chim. Acta, 1988,212:61.
    56. Di Giusto D, King GC. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays[J]. Nucleic Acids Res, 2003,31(3):e7.
    57. Fan JB, Chen X, Halushka MK, et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays[J]. Genome Res, 2000,10(6):853-60.
    58. Lindroos K, Sigurdsson S, Johansson K, et al. Multiplex SNP genotyping in pooled DNA sample by a four-color microarray system[J]. Nucleic Acids Research, 2002, 30: 70~75, 2002,30:70-75.
    59. Dale Athey , Mark Ball , Calum J. McNeil , Ron D. Armstrong. A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement[J]. Electroanalysis, 1995,7:270-273.
    60. 曹楚南,张鉴清. 电化学阻抗谱导论[J]. 2002.
    61. Yu X, Lv R, Ma Z, et al. An impedance array biosensor for detection of multiple antibody-antigen interactions[J]. Analyst, 2006,131(6):745-50.
    62. Andrei B. Kharitonov, Lital Alfonta, Eugenii Katz and Itamar Willner. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry[J]. Electroanal Chem, 2000,487(2):133-141.
    63. He H, Xie Q, Zhang Y, et al. A simultaneous electrochemical impedance and quartz crystal microbalance study on antihuman immunoglobulin G adsorption and human immunoglobulin G reaction[J]. J Biochem Biophys Methods, 2005,62(3):191-205.
    64. Valincius G, McGillivray DJ, Febo-Ayala W, et al. Enzyme activity to augment the characterization of tethered bilayer membranes[J]. J Phys Chem B Condens Matter Mater Surf Interfaces Biophys, 2006,110(21):10213-6.
    65. W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnée, J. -J. Pireaux and G. Maes. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing[J]. Sens. Actuat, 2000,68:360.
    66. Li X, Yuan R, Chai Y, et al. Amperometric immunosensor based on toluidine blue/nano-Au through electrostatic interaction for determination of carcinoembryonic antigen[J]. J Biotechnol, 2006,123(3):356-66.
    67. Tang D, Yuan R, Chai Y, et al. New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2'-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations[J]. Biosens Bioelectron, 2005,21(4):539-48.
    68. Fu Y, Yuan R, Xu L, et al. Electrochemical impedance behavior of DNA biosensor based on colloidal Ag and bilayer two-dimensional sol-gel as matrices[J]. J Biochem Biophys Methods, 2005,62(2):163-74.
    69. Lillis B, Manning M, Hurley E, et al. Investigation into the effect that probe immobilisation method type has on the analytical signal of an EIS DNA biosensor[J]. Biosens Bioelectron, 2006.
    70. Peng H, Soeller C, Cannell MB, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles[J]. Biosens Bioelectron, 2006,21(9):1727-36.
    71. Sun Y, Yan F, Yang W, et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment[J].Biomaterials, 2006,27(21):4042-9.
    72. Takhistov P. Electrochemical synthesis and impedance characterization of nano-patterned biosensor substrate[J]. Biosens Bioelectron, 2004,19(11):1445-56.
    73. Zhang S, Wang N, Yu H, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor[J]. Bioelectrochemistry, 2005,67(1):15-22.
    74. JEB Randles. Kinetics of rapid electrode reactions[J]. Discuss. Faraday Soc, 1947,1:11.
    75. B. V. Ershler. Discuss. Faraday Soc, 1947,1:269.
    76. Hrapovic S, Liu Y, Male KB, et al. Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes[J]. Anal Chem, 2004,76(4):1083-8.
    77. Tsai YC, Li SC, Chen JM. Cast thin film biosensor design based on a Nafion backbone, a multiwalled carbon nanotube conduit, and a glucose oxidase function[J]. Langmuir, 2005,21(8):3653-8.
    78. Doong RA, Shih HM. Glutamate optical biosensor based on the immobilization of glutamate dehydrogenase in titanium dioxide sol-gel matrix[J]. Biosens Bioelectron, 2006,22(2):185-91.
    79. Kumar A, Aravamudhan S, Gordic M, et al. Ultrasensitive detection of cortisol with enzyme fragment complementation technology using functionalized nanowire[J]. Biosens Bioelectron, 2007,22(9-10):2138-44.
    80. Yang M, Tsang EM, Wang YA, et al. Bioreactive surfaces prepared via the self-assembly of dendron thiols and subsequent dendrimer bridging reactions[J]. Langmuir, 2005,21(5):1858-65.
    81. Deng G, Zhou G, Zhai Y, et al. Association of estrogen receptor alpha polymorphisms with susceptibility to chronic hepatitis B virus infection[J]. Hepatology, 2004,40(2):318-26.
    82. Furugaki K, Shirasawa S, Ishikawa N, et al. Association of the T-cell regulatory gene CTLA4 with Graves' disease and autoimmune thyroid disease in the Japanese[J]. J Hum Genet, 2004,49(3):166-8.
    83. Zhu QR, Ge YL, Gu SQ, et al. Relationship between cytokines gene polymorphism and susceptibility to hepatitis B virus intrauterine infection[J]. Chin Med J (Engl), 2005,118(19):1604-9.
    84. Sun J, He ZG, Cheng G, et al. Multidrug resistance P-glycoprotein: crucial significance in drug disposition and interaction[J]. Med Sci Monit, 2004,10(1):RA5-14.
    85. Rustad TR, Stevens DA, Pfaller MA, et al. Homozygosity at the Candida albicans MTL locus associated with azole resistance[J]. Microbiology, 2002,148(Pt 4):1061-72.
    86. Efferth T, Sauerbrey A, Steinbach D, et al. Analysis of single nucleotide polymorphism C3435T of the multidrug resistance gene MDR1 in acute lymphoblastic leukemia[J]. Int J Oncol, 2003,23(2):509-17.
    1. Dale Athey , Mark Ball , Calum J. McNeil , Ron D. Armstrong. A study of enzyme-catalyzed product deposition on planar gold electrodes using electrical impedance measurement[J]. Electroanalysis, 1995,7:270
    2. 曹楚南,张鉴清. 电化学阻抗谱导论[J]. 2002.
    3. Andrei B. Kharitonov, Lital Alfonta, Eugenii Katz and Itamar Willner. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry[J]. Electroanal Chem, 2000,487(2):133
    4. W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnée, J. -J. Pireaux and G. Maes. Nanoscaled interdigitated titanium electrodes for impedimetric biosensing[J]. Sens. Actuat, 2000,68:360
    5. Peng H, Soeller C, Cannell MB, et al. Electrochemical detection of DNA hybridization amplified by nanoparticles[J]. Biosens Bioelectron, 2006,21(9):1727
    6. Sun Y, Yan F, Yang W, et al. Multilayered construction of glucose oxidase and silica nanoparticles on Au electrodes based on layer-by-layer covalent attachment[J]. Biomaterials, 2006,27(21):4042
    7. JEB Randles. Kinetics of rapid electrode reactions[J]. Discuss. Faraday Soc, 1947,1:11.
    8. B. V. Ershler. Discuss. Faraday Soc, 1947,1:269
    9. Clark L C Jnr. Trans Am Soc Artif Intern Organs, 1956,2:41
    10. Turner A. P. F. Biosensors: past, present and future[J]. www.cranfield.ac. uk/biotech/chinap.htm, 1996.
    11. Xiao-Li Su and Yanbin Li. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7[J]. 2004,19:563
    12. Ling Ren, Daryl Emery, Barbara Kaboord, Edith Chang and M. Walid Qoronfleh. Improved immunomatrix methods to detect protein:protein interactions[J]. Journal of Biochemical and Biophysical Methods, 2003,57:143
    13. C. A. Betty, R. Lal, D. K. Sharma, J. V. Yakhmi and J. P. Mittal. Macroporous silicon based capacitive affinity sensor-fabrication and electrochemical studies[J]. 2004,97:334
    14. D. Clerc and W. Lukosz. Direct immunosensing with an integrated-optical output grating coupler[J]. Sensors and Actuators B: Chemical, 1997,40:53
    15. Rickert J, Gopel W, Beck W, et al. A 'mixed' self-assembled monolayer for an impedimetric immunosensor[J]. Biosens Bioelectron, 1996,11(8):757
    16. Ma Jie, Chu Yi Ming, Di Jing, Liu Shun Cheng, Li Huai na, Feng Jun and Ci Yun Xiang. An electrochemical impedance immunoanalytical method for detecting immunological interaction of human mammary tumor associated glycoprotein and its monoclonal antibody [J]. Electrochemistry Communications, 1999,1:425
    17. 张 灯,陈松月,秦利锋,李 蓉,王 平,Li Yanbin. 检测大肠杆菌 O157:H7 的电化学阻抗谱生物传感器的研究[J]. 传感器技术学报, 2005(18):5
    18. Zhaoyang Wu, Jian Wu, Shiping Wang, Guoli Shen and Ruqin Yu. An amplified mass piezoelectric immunosensor for Schistosoma japonicum[J]. Biosensors and Bioelectronics, 2006,22:207
    19. Su X, Wu YJ, Robelek R, et al. Surface plasmon resonance spectroscopy and quartz crystal microbalance study of MutS binding with single thymine-guanine mismatched DNA[J]. Front Biosci, 2005,10:268
    20. Vagin MY, Karyakina EE, Hianik T, et al. Electrochemical transducers based on surfactant bilayers for the direct detection of affinity interactions[J]. Biosens Bioelectron, 2003,18(8):1031
    21. Peng H, Soeller C, Vigar NA, et al. Label-free detection of DNA hybridization based on a novel functionalized conducting polymer[J]. Biosens Bioelectron, 2006.
    22. Patolsky F, Lichtenstein A, Willner I. Detection of single-base DNA mutations by enzyme-amplified electronic transduction[J]. Nat Biotechnol, 2001,19(3):253
    23. Xiaohong Li,Jeremy S. Lee, and Heinz-Bernhard Kraatz*. Electrochemical Detection of Single-Nucleotide Mismatches Using an Electrode Microarray[J]. Anal. Chem, 2006,78:6096
    24. Zhang S, Wang N, Yu H, et al. Covalent attachment of glucose oxidase to an Au electrode modified with gold nanoparticles for use as glucose biosensor[J]. Bioelectrochemistry, 2005,67(1):15
    25. Sotiropoulou S, Chaniotakis NA. Tuning the sol-gel microenvironment for acetylcholinesterase encapsulation[J]. Biomaterials, 2005,26(33):6771
    26. Maya Zayats, Eugenii Katz, and Itamar Willner. Electrical Contacting of Flavoenzymes and NAD(P)+-Dependent Enzymes by Reconstitution and Affinity Interactions on Phenylboronic Acid Monolayers Associated with Au-Electrodes[J]. J. Am. Soc, 2002,124:14724
    27. Kharitonov A.B, Alfonta L, Katz E, et al. Probing of bioaffinity interactions at interfaces using impedance spectroscopy and chronopotentiometry[J]. Journal of Electroanalytical Chemistry, 2000,487:133
    28. Jung-Suk Yoo, Inja Song, Ji-Hun Lee, and Su-Moon Park. Real-Time Impedance Measurements during Electrochemical Experiments and Their Application to Aniline Oxidation[J]. Anal. Chem, 2003,75(14):3294
    29. Walter Pernkopf, Markus Sagl, Günter Fafilek, Jürgen O. Besenhard, Hermann Kronberger and Gerhard E. Nauer. Applications of microelectrodes in impedance spectroscopy[J]. Solid State Ionics, 2005,176(25-28):2031
    30. Anthony Layson, Shailesh Gadad and Dale Teeters. Resistance measurements at the nanoscale: scanning probe ac impedance spectroscopy[J]. Electrochimica Acta, 2003,48(14-16):2207
    31. F. Mansfeld* and M.W. Kendig. The application of the transform of Kramers-Kronig for computing the polarization resistance[J]. Materials and Corrosion, 1999,50:475

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700