用户名: 密码: 验证码:
钼酸盐纳米材料的液相控制合成、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米粒子形貌、尺寸和结构的可控合成是纳米科技发展的重要组成部分,是探索纳米材料纳米结构性能及其应用的基石。本论文就典型形貌钼酸盐功能纳米材料纳米结构的液相化学控制合成进行了研究,初步探讨了产物结构形貌与其性能间的相互关系。
     在探索不同尺寸和形貌的纳米材料空心结构方面,通过一系列不同粒径的CaMoO_4纳米空心球和纳米空心纺锤的调控合成,扩展了室温微乳液法在无机功能纳米空心结构控制合成中的应用。并初步探索了CaMoO_4纳米材料形貌结构和尺寸与其性能之间的相关性。以长链的阳离子表面活性剂作为结构导向模板,在液相体系中控制合成了由一维纳米结构组装成的CaMoO_4三维花状结构。
     室温条件下,在Triton-100稳定的微乳液体系中调控合成了由纺锤状结构花瓣组装而成的新颖的SrMoO_4三维花状结构。在CTAB稳定的微乳液体系中调控得到了准正方形的SrMoO_4二维片状结构。该二维SrMoO_4纳米片呈现出了特征的光学特性。
     通过调控液相反应体系参数合成了一系列不同粒径的四方相BaMoO_4和CdMoO_4八面体结构纳米晶,证实了纳米晶的生长行为与晶体结构对称性存在相关性。
     基于过渡金属钼酸盐优良的性能和广泛的应用价值,分别在室温微乳液体系中和辅助以水热热处理手段的微乳液体系中调控合成了一维MnMoO_4·H_2O纳米棒及菱面体α-NiMoO_4微粒。
Shape-/size-controlled synthesis of nanoparticles is one of the most important parts of nanotechnology and nanosicence, and also the base of investigating the distinctive properties and applications of nanostructures. This thesis studied solution-based controlled synthesis of typical functional molybdates nanostructures, emphasizing on the relationship between the shape and properties of the obtained nanoparticles.
     In the aspect of exploring dimension and shape controlled synthesis of hollow nanostructures, obtained a series of different size CaMoO_4 hollow spheres and hollow spindles, expanded the area of control synthesis of hollow nanostructures by microemulsions route. The relationship between the shape / size of CaMoO_4 nanostructures and its properties was initially investigated. Using long-chain cationic surfactant CTAB as soft structure temple, control synthesized CaMoO_4 three-dimension (3D) flower-like nanostructures, which is self-assembled by one-dimension (1D) nanorods.
     Novel 3D flower-like SrMoO_4 nanostructures which constructed by nanospindles were obtained in the TritionX-100 microemulisons under room-temperature circumstance, and in the CTAB microemulsions, control synthesized 2D quasi-square shaped SrMoO_4 nanostructures. Some distinctive optical characteristics were found on the nanoplates.
     By the way of manipulated parameters of solution-based reaction system, synthesized a series of size-controlled tetragonal BaMoO_4 and CdMoO_4 octahedron. And the synthesized regular octahedron revealed the existence of relationship between nanocrystals growth behavior and crystal symmetry.
     On the bases of its excellent performance and its wide use in various fileds, we have manipulated synthesis 1D MnMoO_4·H_2O nanorods and novel 3Dα-NiMoO_4 microhombohedra via room-temperature microemulsions route and hydrothermal assisted microemulsions process, respectively.
引文
[1] Z. L. Wang, Nanowires and Nanobelts, Materials, Properties and Devices (Vol.2) [M]. Kluwer Academic Publishers, ISBN 1 4020 7443. 3.
    [2]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.朱静.纳米材料与器件[M].北京:清华大学出版社,2003.
    [3] A. C. Templiton, W. P. Wuelfing, R. W. Murray, Monolayer-protected cluster molecules [J]. Acc. Chem. Res., 2000, 33: 27-36.
    [4] G. L. Che, B. B. Lakshmi, E. R. Fisher, C. R. Martin, Carbon nanotubule membranes for electrochemical energy storage and production[J]. Nature 1998, 393: 346-349.
    [5] B. L. Cushing, V. L. Kolesnichenko, C. J. O'Connor, Recent advances in the liquid-phase syntheses of inorganic nanoparticles[J]. Chem. Rev., 2004, 104: 3893-3946.
    [6] J. T. Hu, T. W. Odom, C. M. Lieber, Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes[J]. Accounts. Chem. Res., 1999, 32: 435-445.
    [7] S. H. Joo, S. J. Choi, I. Oh, J. Kwak, Z. Liu, O. Terasaki, R. Ryoo, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature., 2001, 414: 470-470.
    [8] D. L. Klein, R. Roth, A. K. L. Lim, A. P. Alivisatos, P. L. McEuen, A single-electron transistor made from a cadmium selenide nanocrystal[J]. Nature., 1997, 389: 699-701.
    [9] V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, Optical gain and stimulated emission in nanocrystal quantum dots[J]. Science., 2000, 290: 314-317.
    [10] J. Phillips, Evaluation of the fundamental properties of quantum dot infrared detectors[J]. J. Appl. Phys., 2002, 91: 4590-4594.
    [11] Z. L. Wang, Structural analysis of self-assembling nanocrystal superlattices[J]. Adv. Mater., 1998, 10: 13-30.
    [12] Z. L. Wang, Characterizing the structure and properties of individual wire-like nanoentities[J]. Adv. Mater., 2000, 12: 1295-1298.
    [13] Z. L. Wang, Nanobelts, nanowires, and nanodiskettes of semiconducting oxides-frommaterials to nanodevices[J]. Adv. Mater., 2003, 15: 432-436.
    [14] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, X. F. Wang, Ordered indium-oxide nanowire arrays and their photoluminescence properties[J]. Appl. Phys. Lett., 2001, 79: 839-841.
    [15] B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, Y. N. Xia, Synthesis andoptical properties of silver nanobars and nanorice[J]. Nano. Lett., 2007, 7: 1032-1036.
    [16] C. M. Lieber, One-Dimensional Nanostructures: Chemistry, Physics & Applications[J]. Solid. State. Commun., 1998, 107: 607-616.
    [17] M. A. EI-Sayed, Some interesting properties of metals confined in time and nanometer space of different shapes[J]. Acc. Chem. Res., 2001, 34: 257-264.
    [18] X. F. Duan, C. M. Lieber, General synthesis of compound semiconductor nanowires[J]. Adv. Mater., 2000, 12: 298-302.
    [19] W. Z. Pan, Z. R. Dai, Z. L. Wang, Nanobelts of semiconducting oxides[J]. Science., 2001, 291: 1927-1949.
    [20] Y. D. Li, X. L. Li, Z. X. Deng, B. C. Zhou, S. S. Fan, J. W. Wang, X. M. Sun, From surfactant-inorganic mesostructures to tungsten nanowires[J]. Angew. Chem. Int. Ed., 2002, 41: 333-335.
    [21] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, One-dimentional nanostructures: synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15: 353-389.
    [22] S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, Y. N. Xia, On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent[J]. Nano. Lett., 2008, 8: 2077-2081.
    [23] J. Chen, J. M. McLellan, A. Siekkinen, Y. Xiong, Z. Y. Li, Y. N. Xia, Facile synthesis of gold-silver nanocages with controllable pores on the surface[J]. J. Am. Chem. Soc., 2006, 128: 14776-14777.
    [24] R. Kubo, A. Kawabata, S. Kobayashi, Electronic properties of small particles[J]. Annu. Rev. Mater. Sci., 1984, 14, 49-66.
    [25] X. M. Sun, Y. D. Li, Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly [J]. Langmuir., 2005, 21: 6019-6024.
    [26] R. Q. Song, A. W. Xu, S. H. Yu, Layered copper metagermanate nanobelts: hydrothermal synthesis, structure, and magnetic properties[J]. J. Am. Chem. Soc., 2007, 129: 4152-4153.
    [27] L. Yan, R. B. Yu, J. Chen, X. R. Xing, Template-free hydrothermal synthesis of CeO2 nano-octahedrons and nanorods: Investigation of the morphology evolution[J]. Cryst. Growth Des., 2008, 8: 1474-1477.
    [28] B. M. Wen, Y. Z. Huang, J. J. Boland, Controllable growth of ZnO nanostructures by a simple solvothermal process[J]. J. Phys. Chem. C., 2008, 112: 106-111.
    [29] C. Bae, H. Yoo, S. Kim, K. Lee, J. Kim, M. M. Sung, H. Shin, Template-directed synthesis of oxide nanotubes: fabrication, characterization, and applications[J]. Chem. Mater., 2008, 20: 756-767.
    [30] G. Zhou, M. Lü, Z. Xiu, S. Wang, H. Zhang, Y. Zhou, S. Wang, Conrtolled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanotubes and nanocubes and their shape evolution process[J]. J. Phys. Chem. B., 2006, 110: 6543-6548.
    [31] S. P. Moulik, B. K. Paul, Structure, dynamics and transport properties of microemulsions[J]. Adv. Colloid. Interfac., 1998, 78: 99-195.
    [32] H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, B. Y. Zhu, Synthesis of hierarchical superstructures consisting of BaCrO4 nanobelts in catanionic reverse micelles[J]. Adv. Mater., 2003, 15: 1647-1651.
    [33] J. H. Xiang, S. H. Yu, X. Geng, B. H. Liu, Y. Xu, Growth of PbSO_4 single-crystal nanorods and optical properties by a microemulsion approach[J]. Cryst. Growth Des., 2005, 5: 1157-1161.
    [34] J. D. Hopwood, S. Mann, Synthesis of barium sulfate nanoparticles and nanofilaments in reverse micelles and microemulsions[J]. Chem. Mater., 1997, 9: 1819-1828.
    [35] G. D. Rees, R. Evans-Gowing, S. J. Hammond, B. H. Robinson, Formation and morphology of calcium sulfate nanparticles and nanowires in water-in-oil microemulsion[J]. Langmuir., 1999, 15: 1993-2002.
    [36] L. M. Qi, J. M. Ma, H. M. Cheng, Z. G. Zhao, Reverse micelle based formation of BaCO_3 nanowires[J]. J. Phys. Chem. B., 1997, 101: 3460-3463.
    [37] Z. L. Yin, Y. Sakamota, J. H. Yu, S. X. Sun, A. Terasaki, R. R. Xu, Microemulsion-based synthesis of titanium phosphate nanotubes via amine extraction system[J]. J. Am. Chem. Soc., 2004, 126: 8882-8883.
    [38] Z. Wang, H. Liang, M. Gong, Q. Su, Luminescence investigation of Eu~(3+) activated double molybdates red phosphors with scheelite structure[J]. J. Alloy. Compd., 2007, 432: 308-312.
    [39] B. Muktha, G. Madras, T. N. Guru Row, A novel scheelite-like structure of BaBi_2Mo_4O_(16): Photocatalysis and investigation of the solid solution, BaBi2Mo4-xWxO16(0.25≤x≤1)[J]. J. Photoch. Photobio. A., 2007, 187: 177-185.
    [40] G. Atun, N. Bodur, H. Ayyildiz, N. Ayar, B. Bilgin, Kinetics of isotopic exchange between calcium molybdate and molybdate ions in aqueous solution[J]. Radiochim. Acta., 2007, 95: 177-182.
    [41] Z. Wang, H. Liang, M. Gong, Q. Su, Novel red phosphor of Bi~(3+), Sm~(3+) co-activated NaEu(MoO_4)_2[J]. Opt. Mater., 2007, 29: 896-900.
    [42] A. Magnaldo, M. Masson, R. Champion, Nucleation and crystal growth of zirconium molybdate hydrate in nitric acid[J]. Chem. Eng. Sci., 2007, 62: 766-774.
    [43] X. Li, Z. Lin, L. Zhang, G. Wang, Growth and spectral properties of Yb~(3+)-doped NaY(MoO_4)_2 crystal[J]. Opt. Mater., 2007, 29: 728-731.
    [44] T. Kim, S. Kang, Potential red phosphor for UV-white LED device[J]. J. Lumin., 2007, 122-123: 964-966.
    [45] I. V. Zatovsky, K. V. Terebilenko, N. S. Slobodyanik, V. N. Baumer, O. V. Shishkin, Synthesis, characterization and crystal structure of K_2Bi(PO_4)(MoO_4)[J]. J. Solid. State. Chem., 2006, 179: 3550-3555.
    [46] K. M. Begam, S. R. S. Prabaharan, Improved cycling performance of nano-composite Li_2Ni_2(MoO_4)_3 as a lithium battery cathode material[J]. J. Power. Sources., 2006, 159: 319-322.
    [47] X. Li, Z. Lin, L. Zhang, G. Wang, Growth, thermal and spectroscopic characterization of Er~(3+):NaY(MoO4)2 crystal[J]. J. Cryst. Growth., 2006, 293: 157-161.
    [48] Z. H. Zhou, J. Lin, W. B. Yan, H. Zhang, K. R. Tsai, pH dependent transformation of nitrilotriacetato molybdates(VI)-Synthesis, spectral and structural characterization[J]. Polyhedron., 2006, 25: 1909-1914.
    [49] X. Li, Z. Lin, L. Zhang, G. Wang, Growth, thermal and spectral properties of Nd~(3+)-doped NaGd(MoO_4)_2 crystal[J]. J. Cryst. Growth., 2006, 290: 670-673.
    [50] G. Mu, X. Li, Q. Qu, J. Zhou, Molybdate and tungstate as corrosion inhibitors for cold rolling steel in hydrochloric acid solution[J]. Corros. Sci., 2006, 48: 445-459.
    [51] P. K. Pandey, N. S. Bhave, R. B. Kharat, Structural, optical, electrical and photovoltaic electrochemical studies of cobalt molybdate thin films[J]. Indian. J. Pure. Ap. Phy., 2006, 44: 52-58.
    [52] H. Lin, B. Yan, P. D. Boyle, P. A. Maggard, Synthesis and properties of pyrazine-pillared Ag_3Mo_2O_4F_7 and AgReO4 layered phases[J]. J. Solid. State. Chem., 2006, 179: 217-225.
    [53] E. Burkholder, N. G. Armatas, V. Golub, C. J. O'Connor, J. Zubieta, Synthesis, structure and magnetic properties of the one-dimensional bimetallic oxide[Cu(terpy)Mo_2O_7][J]. J. Solid. State. Chem., 2005, 178: 3145-3151.
    [54] T. Varga, A. P. Wilkinson, C. Lind, W. A. Bassett, C. S. Zha, Pressure-induced amorphization of cubic ZrMo2O8 studied in situ by X-ray absorption spectroscopy and diffraction[J]. Solid. State. Commun., 2005, 135: 739-744.
    [55] F. Dury, S. Meixner, D. Clément, E. M. Gaigneaux, Coupling the deoxygenation of benzoic acid with the oxidation of propylene on a Co molybdate catalyst[J]. J. Mol. Catal. A-Chem., 2005, 237: 9-16.
    [56] S. K. Patidar, V. Tare, Effect of molybdate on methanogenic and sulfidogenic activity of biomass[J]. Bioresource. Technol., 2005, 96: 1215-1222.
    [57] K. Boulahya, M. Parras, J. M. González-Calbet, Synthesis, structural and magnetic characterization of a new scheelite related compound: Eu_2Mo_3O_(12)[J]. Eur. J. Inorg. Chem.,2005, 2005: 967-970.
    [58] Y. Zhang, F. Yang, J. Yang, Y. Tang, P. Yuan, Synthesis of crystalline SrMoO_4 nanowires from polyoxometalates[J]. Solid. State. Commun., 2005, 133: 759-763.
    [59] P. Kozma, R. Bajgar, P. K. Jr, Radiation damage of PbWO_4 crystals due to irradiation by ~(60)Co gamma rays[J]. Radiat. Phys. Chem., 2002, 65: 127-130.
    [60] H. Wang, F. D. Medina, Y. D. Zhou, Q. N. Zhang, Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals[J]. Phys. Rev. B., 1992, 45: 10356-10362.
    [61] K. Tanaka, T. Miyajima, N. Shirai, Q. Zhang, R. Nakata, Laser photochemical ablation of CdWO4 studied with the time-of-flight mass spectrometric technique[J]. J. Appl. Phys., 1995, 77, 6581-6587.
    [62] H. Shi, L. Qi, J. Ma, N. Wu, Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles[J]. Adv. Funct. Mater., 2005, 15: 442-450.
    [63] J. Zou, G. L. Schrader, Multicomponent thin film molybdate catalysts for the selective oxidation of 1,3-butadiene[J]. J. Catal., 1996, 161: 667-686.
    [64] J. A. Rodriguez, S. Chaturvedi, J. C. H. Albornoz, J. L. Brito, Electronic properties and phase transformations in CoMoO_4 and NiMoO_4: XANES and time-resolved synchrotron XRD studies[J]. J. Phys. Chem. B., 1998, 102: 1347-1355.
    [65] Y. Ding, Y. Wang, Y. L. Min, W. Zhang, S. H. Yu, General synthesis and phase control of metal molybdate hydrates MMoO_4·nH_2O (M= Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties[J]. Inorg. Chem., 2008, 47: 7813-7823.
    [66] Y. Cheng, Y. S. Wang, D. Chen, F. Bao, Evolution of single crystalline dendrites from nanoparticles through oriented attachment[J]. J. Phys. Chem. B., 2005, 109: 794-798.
    [67] Z. Luo, H. Li, H. Shu, K. Wang, J. Xia, Y. Yan, Synthesis of BaMoO_4 nestlike nanostructures under a new growth mechanism[J]. Cryst. Growth Des., 2008, 8: 2275-2281.
    [68] W. S. Wang, L. Zhen, C. Y. Xu, B. Y. Zhang, W. Z. Shao, Room temperature synthesis of hollow CdMoO_4 microspheres by a surfactant-free aqueous solution route[J]. J. Phys. Chem. B., 2006, 110: 23154-23158.
    [69] H. T. Shi, L. M. Qi, J. M. Ma, H. M.Cheng, Synthesis of single crystal BaWO4 nanowires in catanionic reverse micelles[J]. Chem. Commun., 2002, 16: 1704-1705.
    [70] H. T. Shi, L. M. Qi, J. M. Ma, H. M. Cheng, Polymer-directed synthesis of penniform BaWO_4 nanostructures in reverse micelles[J]. J. Am. Chem. Soc., 2003, 125: 3450-3451.
    [72] H. T. Shi, X. H. Wang, N. N. Zhao, L. M. Qi, J. M. Ma, Growth mechanism of penniform BaWO_4 nanostructures in catanionic reverse micelles involving polymers[J]. J. Phys. Chem. B., 2006, 110: 748-753.
    [1] D. J. Gao, X. Lai, C. Cui, P. Cheng, J. Bi, D. Lin, Oxidant-assisted preparation of CaMoO_4 thin film using an irreversible galvanic cell method[J]. Thin. Solid. Films., 2010, 518: 3151-3155.
    [2] V. B. Mikhailik, S. Henry, H. Kraus, I. Solskii, Temperature dependence of CaMoO_4 scintillation properties[J]. Nucl. Instrum. Meth. A., 2007, 583: 350-355.
    [3] P. Yang, G. Q. Yao, J. H. Lin, Photoluminescence and combustion synthesis of CaMoO_4 doped with Pb~(2+)[J]. Inorg. Chem. Commun., 2004, 7: 389-391.
    [4] Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, J. Lin, Fabrication and luminescence properties of one-dimensional CaMoO_4: Ln~(3+) (Ln = Eu, Tb, Dy) nanofibers via electrospinning process[J]. Langmuir., 2009, 25: 12340-12348.
    [5] N. Sharam, K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Z. L. Dong, T. J. White, Carbon-coated nanophase CaMoO_4 as anode material for Li ion batteries[J]. Chem. Mater., 2004, 16: 504-512.
    [6] G. K. Choi, S. Y. Cho, J. S. An, K. S. Hong, Microwave dielectric properties and sintering behaviors of scheelite compound CaMoO_4[J]. J. Eur. Ceram. Soc., 2006, 26: 2011-2015.
    [7] B. K. Chandrasekhar, W. B. White, Luminescence of single crystal CaMoO_4[J]. Mater. Res. Bull., 1990, 25: 1513-1518.
    [8] W. Wang, Y. Hu, J. Goebl, Z. Lu, L. Zhen, Y. Yin, Shape- and size-controlled synthesis of calcium molybdate doughnut-shaped microstructures[J]. J. Phys. Chem. C., 2009, 113: 16414-16423.
    [9] J. H. Ryu, J. W. Yoon, C. S. Lim, W. C. Oh, K. B. Shim, Microwave-assisted synthesis of CaMoO_4 nano-powders by a citrate complex method and its photoluminescence property[J]. J. Alloy. Compd., 2005, 390: 245-249.
    [10] C. Xu, D. Zou, H. Guo, F. Jie, T. Ying, Luminescence properties of hierarchical CaMoO_4 microspheres derived by ionic liquid-assisted process[J]. J. Lumin., 2009, 129: 474-477.
    [11] C. Cui, J. Bi, D. Gao, Room-temperature synthesis of crystallized luminescent CaMoO_4 film by a simple chemical method[J]. Appl. Surf. Sci., 2008, 255: 3463-3465.
    [12] Y. Yin, Y. Gao, Y. Sun, B. Zhou, L. Ma, X. Wu, X.S Zhang, Synthesis and photoluminescent properties of CaMoO_4 nanostructures at room temperature[J]. Mater. Lett., 2010, 64: 602-604.
    [13] D. Chen, K. Tang, F. Li, H. Zheng, A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites[J]. Cryst. Growth Des., 2006, 6: 247-252.
    [1] S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qian, General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach[J]. Adv. Funct. Mater., 2003, 13: 639-647.
    [2] N. Saito, N. Sonoyama, T. Sakata, Analysis of the excitation and emission spectra of tungstates and molybdate[J]. Bull. Chem. Soc. Jpn., 1996, 69, 2191-2194.
    [3] S. P. S. Porto, J. F. Scott, Raman spectra of CaWO_4, SrWO_4, CaMoO_4, and SrMoO_4[J]. Phys. Rev., 1967, 157: 716-719.
    [4] Y. Zhang, N. A. W. Holzwarth, R. T. Williams, Electronic band structures of the scheelite materials CaMoO_4, CaWO_4, PbMoO_4, and PbWO_4[J]. Phys. Rev. B., 1998, 57: 12738-12750.
    [5] Y. S. Luo, W. D. Zhang, X. J. Dai, Y. Yang, S. Y. Fu, Facile synthesis and luminescent properties of novel flowerlike BaMoO_4 nanostructures by a simple hydrothermal route[J]. J. Phys. Chem. C., 2009, 113: 4856-4861.
    [6] J. C. Sczancoski, L. S. Cavalcante, M. R. Joya, J. A. Varela, P. S. Pizani, E. Longo, SrMoO_4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties[J]. Chem. Eng. J., 2008, 140: 632-637.
    [7] J. Liu, J. Ma, B. Lin, Y. Ren, X. Jiang, J. Tao, X. Zhu, Room temperature synthesis and optical properties of SrMoO_4 crystallites by w/o microemulsion[J]. Ceram. Int., 2008, 34: 1557-1560.
    [8] Y. M. Zhang, F. D. Yang, J. Yang, Y. Tang, P. Yuan, Synthesis of crystalline SrMoO_4 nanowires from polyoxometalates[J]. Solid. State. Commun., 2005, 133: 759-763.
    [9] Q. Gong, X. F. Qian, X. D. Ma, Z. K. Zhu, Large-scale fabrication of novel hierarchical 3D CaMoO_4 and SrMoO_4 mesocrystals via a microemulsion-mediated route[J]. Cryst. Growth Des., 2006, 6, 1821-1825.
    [10] D. Rangappa, T. Fujiwara, T. Watanabe, M. Yoshimura, Fabrication of AMoO4 (A = Ba, Sr) film on Mo substrate by solution reaction assisted ball-rotation[J]. Mater. Res. Bull., 2008, 43: 3155-3163.
    [11] P. Chen, Y. Gao, Mechanisms and applications of cell electrochemical technique to prepare luminescent SrMoO_4 thin films[J]. Chem. Eng. J., 2007, 131: 181-185.
    [12] L. P. Chen, D. Q. Xiao, P. Yu, X. L. Jin, Z. N. Yang, Fabrication and luminescence of molybdate films prepared by cell electrochemical method at room temperature[J]. Ferroelectrics., 2007, 357: 48-52.
    [13] H. Lei, X. Zhu, Y. Sun, W. J. Song, Preparation of SrMoO_4 thin films on Si substrates bychemical solution deposition[J]. Cryst. Growth Des., 2008, 310: 789-793.
    [14] J. Bi, C. H. Cui, X. Lai, F. Shi, D. J. Gao, Synthesis of luminescent SrMoO_4 thin films by a non-reversible galvanic cell method[J]. Mater. Res. Bull., 2008, 43: 743-747.
    [15] J. P. Liu, X. T. Huang, Y. Y. Li, Z. K. Li, A general route to thickness-tunable multilayered sheets of sheelite-type metal molybdate and their self-assembled films[J]. J. Mater. Chem., 2007, 17: 2754-2758.
    [16] D. Chen, K. Tang, F. Li, H. Zheng, A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites[J]. Cryst. Growth Des., 2006, 6: 247-252.
    [17] J. Bi, L. Wu, Y. Zhang, Z. Li, J. Li, X. Fu, Solvothermal preparation, electronic structure and photocatalytic properties of PbMoO_4 and SrMoO_4[J]. Appl. Catal. B-Environ., 2009, 91: 135-143.
    [18] A. P. A. Marques, F. C. Picon, D. M. A. Melo, P. S. Pizani, E. R. Leite, J. A. Varela, E. Longo, Effect of the order and disorder of BaMoO_4 powders in photoluminescent properties[J]. J. Fluoresc., 2008, 18: 51-59.
    [19] I. L. V. Rosa, A. P. A. Marques, M. T. S. Tanaka, D. M. A. Melo, E. R. Leite, E. Longo, J. A. Varela, Synthesis, characterization and photophysical properties of Eu~(3+) doped in BaMoO4[J]. J. Fluoresc., 2008, 18: 239-245.
    [20] R. L. Penn, J. F. Banfield, Imperfect oriented attachment: dislocation generation in defect-free nanocrystals[J]. Science., 1998, 281: 969-971.
    [21] J. F. Banfield, S. A. Welch, H. Zhang, T. T. Ebert, R. L. Penn, Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products[J]. Science., 2000, 289: 751-754.
    [22] H. Xu, W. Wang, L. Zhou, A growth model of single crystalline hollow spheres: oriented attachment of Cu_2O nanoparticles to the single crystalline shell wall[J]. Cryst. Growth Des., 2008, 8: 3486-3489.
    [23] S. K. Yang, W. P. Cai, G. Q. Liu, H. B. Zeng, From nanoparticles to nanoplates: preferential oriented connection of Ag colloids during electrophoretic deposition[J]. J. Phys. Chem. C., 2009, 113: 7692-7696.
    [24] G. Zhang, W. Wang, X. Lu, X. Li, Solvothermal synthesis of V-VI binary and ternary hexagonal platelets: the oriented attachment mechanism[J]. Cryst. Grow Des., 2009, 9: 145-150.
    [25] L. Bisson, C. Boissiere, L. Nicole, D. Grosso, J. P. Jolivet, C. Thpmazeau, D. Uzio, G. Berhault, C. Sanchez, Formation of palladium nanostructures in a seed-mediated synthesis through an oriented-attachment-directed aggregation[J]. Chem. Mater., 2009, 21: 2668-2678.
    [26] L. F. Gou, C. J. Murphy, Solution-phase synthesis of Cu_2O nanocubes[J]. Nano. Lett., 2003,3: 231-234.
    [27] M. H. Cao, C. W. Hu, Y. H. Wang, Y. H. Guo, C. X. Guo, E. B. Wang, A controllable synthetic route to Cu, Cu_2O, and CuO nanotubes and nanorods[J]. Chem. Commum., 2003, 1884-1885.
    [28] F. Lei, B. Yan, Hydrothermal synthesis and luminescence of CaMO4: RE~(3+) (M=W, Mo; RE = Eu, Tb) submicro-phosphors[J]. Solid. State. Chem., 2008, 181: 855-862.
    [29] L. Li, Y. W. Yang, X. H. Huang, G. H. Li, L. D. Zhang, Fabrication and characterization of single-crystalline ZnTe nanowire arrays[J]. J. Phys. Chem. B., 2005, 109: 12394-12398.
    [30] L. Li, Y. W. Yang, G. H. Li, L. D. Zhang, Conversion of a Bi Nanowire Array to an Array of Bi-Bi_2O_3 Core-Shell Nanowires and Bi2O3 Nanotubes[J]. Small., 2006, 2: 548-553.
    [31] X. S. Fang, Y. Bando, G. Z. Shen, C. H. Ye, U. K. Gautam, P. M. F. J. Costa, C. Y. Zhi, C. C. Tang, D. Golberg, Ultrafine ZnS Nanobelts as Field Emitters[J]. Adv. Mater., 2007, 19: 2593-2596.
    [32] J. C. Sczancoski, L. S. Cavalcante, M. R. Joya, J. A. Varela, P. S. Pizani, E. Longo, SrMoO_4 powders processed in microwave-hydrothermal: Synthesis, characterization and optical properties[J]. Chem. Eng. J., 2008, 140: 632-637.
    [33] X. Wu, J. Du, H. Li, M. Zhang, B. Xi, H. Fan, Y. Zhu, Y. Qian, Aqueous mineralization process to synthesize uniform shuttle-like BaMoO4 microcrystals at room temperature[J]. Solid. State. Chem., 2007, 180: 3288-3295.
    [1] H. C?lfen, S. Mann, Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures[J]. Angew. Chem. Int. Ed., 2003, 42: 2350-2365.
    [2] H. C?lfen, M. Antonietti, Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment[J]. Angew. Chem. Int. Ed., 2005, 44: 5576-5591.
    [3] Y. Hu, X. Huang, K. Wang, J. Liu, J. Jiang, R. Ding, X. Ji, X. Li, Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes[J]. J. Solid. State. Chem., 2010, 183: 662-667.
    [4] Y. Zhu, J. Li, M. Wan, L. Jiang, 3D-boxlike polyaniline microstructures with super-hydrophobic and high-crystalline properties[J]. Polymer., 2008, 49: 3419-3423.
    [5] Y. S. Luo, W. D. Zhang, X. J. Dai, Y. Yang, S. Y. Fu, Facile synthesis and luminescent properties of novel flowerlike BaMoO4 nanostructures by a simple hydrothermal route[J]. J. Phys. Chem. C., 2009, 113: 4856-4861.
    [6] X. Shi, Y. Xiao, L. Yuan, J. Sun, Hydrothermal synthesis and characterizations of 2D and 3D 4ZnO·B2O3·H2O nano/microstructures with different morphologies[J]. Powder. Technol., 2009, 189: 462-465.
    [7] H. Zhang, D. Yang, Y. Ji, X. Ma, J. Xu, D. Que, Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process[J]. J. Phys. Chem. B., 2004, 108: 3955-3958.
    [8] Q. Xia, X. Chen, K. Zhao, J. Liu, Synthesis and characterizations of polycrystalline walnut-like CdS nanoparticle by solvothermal method with PVP as stabilizer[J]. Mater. Chem. Phys., 2008, 111: 98-105.
    [9] P. X. Gao, C. S. Lao, W. L. Hughes, Z. L. Wang, Three-dimensional interconnected nanowire networks of ZnO[J]. Chem. Phys. Lett., 2005, 408: 174-178.
    [10] Y. Xing, S. Song, J. Feng, Y. Lei, M. Li, H. Zhang, Microemulsion-mediated solvothermal synthesis and photoluminescent property of 3D flowerlike MnWO_4 micro/nanocomposite structure[J]. Solid. State. Sci., 2008, 10: 1299-1304.
    [11] Q. Gong, X. Qian, X. Ma, Z. Zhu, Large-scale fabrication of novel hierarchical 3D CaMoO_4 and SrMoO_4 mesocrystals via a microemulsion-mediated route[J]. Cryst. Growth Des., 2006, 6: 1821-1825.
    [12] B. Liu, S. H. Yu, L. J. Li, Q. Zhang, F. Zhang, K. Jiang, Morphology control of stolzite microcrystals with high hierarchy in solution[J]. Angew. Chem. Int. Ed., 2004, 43: 4745-4750.
    [13] X. Y. Hu, T. C. Zhang, Z. Jin, S. Z. Huang, M. Fang, Y. C. Wu, L. D. Zhang, Single-crystalline anatase TiO_2 dous assembled micro-spheres their photocatalytic activity[J]. Cryst. Growth Des., 2009, 9: 2324-2328.
    [1] J. Chen, J. M. McLellan, A. Siekkinen, Y. Xiong, Z. Y. Li, Y. Xia, Facile synthesis of gold-silver nanocages with controllable pores on the surface[J]. J. Am. Chem. Soc., 2006, 128: 14776-14777.
    [2] S. H. Im, Y. T. Lee, B. Wiley, Y. Xia, Large-scale synthesis of silver nanocubes: the role of HCl in promoting cube perfection and monodispersity[J]. Angew. Chem. Int. Ed., 2005, 44: 2154-2157.
    [3] B. L. Au, X. Lu, Y. Xia, A comparative study of galvanic replacement reactions involving Ag nanocubes and AuCl_2~- or AuCl_4~-[J]. Adv. Mater., 2008, 20: 2517-2522.
    [4] H. W. Zhang, X. Zhang, H. Y. Li, Z. K. Qu, S. Fan, M. Y. Ji, Hierarchical growth of Cu2O double tower-tip-like nanostructures in water/oil microemulsion[J]. Cryst. Growth Des., 2007, 7: 820-824.
    [5] M. A. López-Quintela, Synthesis of nanomaterials in microemulsions: formation mechanisms and growth control[J]. Curr. Opin. Colloid. In., 2003, 8: 137–144.
    [6] Q. Gong, G. Li, X. F. Qian, H. L. Cao, W. M. Du, X. D. Ma, Synthesis of single crystal CdMoO4 octahedral microparticles via microemulsion-mediated route[J]. J Colloid. Interf. Sci., 2006, 304: 408-412.
    [7] M. H. Cao, X. L. Wu, X. Y. He, C. W. Hu, Shape-controlled synthesis of Prussian blue analogue Co_3[Co(CN)_6]_2 nanocrystals[J]. Chem. Commun., 2005, 2241-2243.
    [8] P He, X Shen, H Gao, Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption[J]. J Colloid. Interf. Sci. 2005, 284: 510-515.
    [9] X. Zhang, Y. Xie, F. Xu, X. B. Tian, Growth of BaWO4 fishbone-like nanostructures in w/o microemulsion[J]. J Colloid. Interf. Sci. 2004, 274: 118-121.
    [10] Q. Tang, W. Zhou, W. Zhang, S. Ou, K. Jiang, W. Yu, Y. Qian, Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes[J]. Cryst. Growth Des., 2005, 5: 147-150.
    [11] Z. Lu, J. Liu, Y. Tang, Y. Li, Hydrothermal synthesis of CaSnO_3 cubes[J]. Inorg. Chem. Commun., 2004, 7: 731-733.
    [12] Z. L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies[J]. J. Phys. Chem. B., 2000, 104: 1153-1175.
    [12] J. M. Petroski, Z. L. Wang, T. C. Green, M. A. El-Sayed, Kinetically controlled growth and shape formation mechanism of platinum nanoparticles[J]. J. Phys. Chem. B., 1998, 102: 3316-3320.
    [1] S. H. Yu, B. Liu, M. S. Mo, J. H. Huang, X. M. Liu, Y. T. Qi, General synthesis of single-crystal tungstate nanorods/nanowires: a facile, low-temperature solution approach[J]. Adv. Funct. Mater., 2003, 13: 639-647.
    [2] X. J. Cui, S. H. Yu, L. L. Li, H. B. Liu, M. S. Mo, X. M. Liu, Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal[J]. Chem. Eur. J., 2004, 10: 218-223.
    [3] Y. Ding, Y. Wan, Y. L. Min, W. Zhang, S. H. Yu, General synthesis and phase control of metal molybdate hydrates MMoO_4·nH_2O(M = Co, Ni, Mn, n = 0, 3/4, 1) nano/microcrystals by a hydrothermal approach: magnetic, photocatalytic, and electrochemical properties[J]. Inorg. Chem., 2008, 47: 7813-7823.
    [4] Y. Ding, S. H. Yu, C. Liu, Z. A. Zang, 3D architectures of iron molybdate: phase selective synthesis, growth mechanism, and magnetic properties[J]. Chem. Eur. J. 2007, 13: 746-753.
    [5] T. J. Stelly, J. B. Butt, Bismuth molybdate catalysis of nitric oxide-propane reaction[J]. Ind. Eng. Chem. Prod. Res. Dev., 1972, 11: 397-399.
    [6] K. Sieber, R. Kershaw, K. Dwight, A. Wold, Dependence of magnetic properties on structure in the systems nickel(II) molybdate(VI) and cobalt(II) molybdate(VI)[J]. Inorg. Chem., 1983, 22: 2667-2669.
    [7] D. L. Stern, R. K. Grasselli, Propane oxydehydrogenation over molybdate-based catalysts[J]. J. Catal., 1997, 167: 550-559.
    [8] L. A. Palacio, A. Echavarria, L. Sierra, E. A. Lombardo, Cu, Mn and Co molybdates derived from novel precursors catalyze the oxidative dehydrogenation of propane[J]. Catal. Today., 2005, 338-345.
    [9] Y. Yoshimura, N. Matsubayashi, T. Sato, H. Shimada, A. Nishijima, Molybdate catalysts prepared by a novel impregnation method: effect of citric acid as a ligand on the catalytic activities[J]. Appl. Catal. A- Gen., 1991, 79: 145-159.
    [10] L. M. Madeira, F. J. Maldonado-Hódar, M. F. Portela, F. Freire, R. M. Martin-Aranda, M. Oliveira, Oxidative dehydrogenation of n-butane on Cs doped nickel molybdate: kinetics and mechanism[J]. Appl. Catal. A-Genl., 1996, 135: 137-153.
    [11] A. Sen, P. Pramanik, Low-temperature synthesis of nano-sized metal molybdate powders[J]. Mater. Lett., 2001, 50: 287-294.
    [12] Y. Yoshimura, S. Endo, S. Yoshitomi, T. Sato, H. Shimada, N. Matsubayashi, A. Nishijima, Deactivation of hydrotreating molybdate catalysts by metal deposition[J]. Fuel., 1991, 70:733-739.
    [13] F. J. Maldonado-Hódar, L. M. Madeira, M. F. Portela, R. M. Martín-Aranda, F. Freire, Oxidative dehydrogenation of butane: changes in chemical, structural and catalytic behavior of Cs-doped nickel molybdate[J]. J. Mol. Catal. A-Chem., 1996, 111: 313-323.
    [14] C. K. J. Hulston, P. J. Redlich, W. R. Jackson, F. P. Larkins, M. Marshall, Nickel molybdate-catalysed hydrogenation of brown coal without solvent or added sulfur[J]. Fuel., 1996, 75: 1387-1392.
    [15] J. A. Rodriguez, S. Chaturvedi, J. C. Hanson, Electronic properties and phase transformations in CoMoO_4 and NiMoO_4: XANES and time-resolved synchrotron XRD studies[J]. J. Phys. Chem. B., 1998, 102: 1347-1355.
    [16] X. H. Zhong, Y. Y. Feng, W. G. Knoll, M. Y. Han, Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width[J]. J. Am. Chem. Soc., 2003, 125: 13559-13563.
    [17] L. T. Qu, L. M. Dai, M. Stone, Z. H. Xia, Z. L. Wang, Carbon nanotube arrays with strong shear binding-on and easy normal lifting-off[J]. Science., 2008, 322: 238-242.
    [18] Z. F. Pu, M. H. Cao, J. Yang, K. L. Huang, C. W. Hu, Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes[J]. Nanotechnology., 2006, 17: 799-804.
    [19] Y. W. Jun, J. H. Lee, J. S. Choi, J. Cheon, Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters[J]. J. Phys. Chem. B., 2005, 109, 14795-14806.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700