用户名: 密码: 验证码:
矿区地表沉降InSAR宏观监测理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矿区地表沉降会对矿区土地自然状况、矿区建筑物、管网、地下水源和生态环境造成破坏,对开采诱发的地表形变进行有效的监测管理,对于矿山的可持续发展是非常重要的。
     雷达干涉测量(InSAR)技术作为地表形变宏观监测手段之一,与常规测量方法相比,具有多种技术特点,但是由于理论、数据获取和应用方法方面的一些问题,其技术应用多数还停留在实验研究阶段。论文选择山西省某煤矿及附近区域的地表沉降作为研究对象,使用欧洲空间局卫星ENVISAT-1 ASAR数据来研究InSAR技术监测矿区地表形变的理论和方法,探讨InSAR技术在矿区地表沉降监测中的应用,并结合利用高分辨率遥感影像进行的功能分区分析矿区地表形变情况,同时探讨实际研究中所遇到的问题。
     对影响D-InSAR技术监测地表形变的误差源进行详细的分析讨论,总结出InSAR干涉数据选取的因素。研究了InSAR技术监测矿区地表形变的处理流程,并对相关算法进行分析,包括图像配准、SAR图像滤波算法、相位解缠算法等。
     将获取的三景SAR数据分别以其中两景为主影像进行三轨差分干涉处理,产生两种差分干涉图,将干涉图和矿区功能分区图等叠加,着重对干涉效果好的差分干涉图进行形变分析,探测得到区域形变分布结果,并用实测资料来推断验证区域形变结果可用性。同时还分析了导致干涉效果不理想的误差因素。
     针对本文的研究区地形坡度较大,宜选用中等或更大入射角的SAR系统。提取DEM时,影像对的时间间隔应尽可能短,并尽可能同季节成像,春秋两季最好,冬天无积雪时相干性也不错。另外尽可能选受时间失相干影响小的波长,垂直基线最好在200-500m之间。做差分干涉要考虑矿区地表沉降状况所处时期,在获取SAR数据前根据矿区其他监测数据来确定最佳数据时间间隔最好。
     经过数据处理,其中一种组合方式的差分干涉探测到矿区6处形变信息,和矿区附近的一处形变区,证明了InSAR技术在矿区地表沉降监测的可行性,也为以后更精确的监测提供了依据和宝贵的数据资料。同时发现结合矿区的功能分区更有利于对关注区域分析形变情况。另外,由于数据性质、矿区地势复杂、时间失相干等原因,也有些实际有形变的区域没有得到形变的信息。随着与InSAR技术相关的硬件、软件、处理算法等的日趋成熟,星载SAR资源的不断丰富,可以预见,该技术在形变监测领域会有更广泛的应用。
Surface subsidence of Mine zone may seriously affect the natural state of land, buildings, pipeline network and underground water source, and also damage ecological environment. So, to monitor and manage effectively surface subsidence because of mining is important for sustainable development of mine zone.
     As one of macroscopic monitoring methods, InSAR technology has many technical characteristic compared with conventional measurement methods to monitor subsidence of land. However, because of theory, acquirement of data and application methods and so on, it’s application is mainly in the lab. Paper takes surface subsidence of a mine and the region nearby in Shanxi province as object of study, uses ENVISAT-1 ASAR data of ESA to study theory, methods and application of monitoring deformation in mine zone with InSAR technology, combines function zonation with high-resolution remote sensing image and monitoring result to analyze deformation of mine, discuss problems encountered in study.
     Paper discussed effects of error sources for monitoring the surface deformation of mine with D-InSAR technology, summed up the consideration factor for selection of InSAR data. Then paper studied the processing monitoring the surface deformation of mine with D-InSAR technique, analyzed the algorithms used in paper, including registration, filtering, phase unwrapping.
     Through three-pass D-InSAR, obtained two differential interferograms taking two SAR images acquired as master images respectively. Overlying the interferograms and zoning map, Paper analyzed the interferogram with better quality, detected deformation result, finally verified usability of the result and analyzed the errors.
     In study area with large ground slope, we should choose the SAR systems with moderate or greater incidence. For DEM extraction, the time interval of the images should be as short as possible, if possible, imaging should be in the same season, and the best season is spring and autumn, it will be also right in winter without snow. In addition, the selection of wavelength should be affected by decoherence as small as possible, the vertical baseline is best during 200 and 500m. For differential interference, we need to consider the situation of subsidence. It’s best to access to determine the time interval with other monitoring data before acquiring the SAR data.
     Through D-InSAR processing, paper detected six deformation regions in mining zone and one out mining zone. This result proved the feasibility of monitoring subsidence in mine with InSAR technology, and also provided basis and valued data for future more precise monitoring. Paper found that it is more conducive for the results analysis combining the function zonation. Because of data, the complexity of topography and the time decoherence and so on, some region with deformation in actual has not been detected. With the development of hardware, software, processing algorithms, and rich SAR resources, we could see that the application of InSAR technology on deformation monitoring will be more extensive.
引文
[1]崔希民,陈立武.沉陷大变形动态监测与力学分析[M].北京:煤炭工业出版社,2004:1-10.
    [2] Andrew Jarosz, Dieter Wanke.Use of InSAR for Monitoring of Mining Deformations[C]. Proc. of FRINGE 2003 Workshop, Frascati, Italy:1-6.
    [3]路旭,匡绍君,贾有良等.用InSAR作地面沉降监测的试验研究[J].大地测量与地球动力学,2002, 22(4): 66-70.
    [4]王志勇.星载雷达干涉测量技术在地面沉降监测中的应用[D].泰安:山东科技大学,2007.
    [5]李学军.InSAR技术在大同矿区地面沉降监测中的应用研究[D].太原:太原理工大学,2007.
    [6]晏明星.雷达差分干涉测量在唐山市地面沉降监测中的应用研究[D].成都:成都理工大学,2008.
    [7]王超、张红、刘智.星载合成孔径雷达干涉测量[M].北京:科学出版社,2002.
    [8]刘国祥.合成孔径雷达遥感新技术——InSAR介绍[J].四川测绘,2004.27(2):92-95.
    [9]宁树正.基于星载InSAR技术的西藏崩错地区构造地貌特征研究[D].中国地震局地质研究所,2005.
    [10] Linlin Ge, Chris Rizos, Shaowei Han,Howard Zebker.MINING SUBSIDENCE MONITORING USING THE COMBINED INSAR AND GPS APPROACH [J].
    [11] Hakan Senol KUTOGLU, Hakan AKCIN, and Huseyin KEMALDER, Turkey. Detecting Illegal Mining Activities Using Dinsar.[C] .FIG Working Week 2008:1-8.
    [12]吴立新,高均海,葛大庆,廖明生.工矿区地表沉陷D-InSAR监测试验研究[J].东北大学学报自然科学版,2005,26(8):778-782.
    [13]刘国林,张连蓬,成枢,江涛.合成孔径雷达干涉测量与全球定位系统数据融合监测矿区地表沉降的可行性分析[J].测绘通报,2005(11):10-13.
    [14]董玉森,Ge Linlin, Chang Hsingchun,张志.基于差分雷达干涉测量的矿区地面沉.降监测研究[J].武汉大学学报·信息科学版,2007,32(10):888-891.
    [15]刘广,郭华东,Ramon Hanssen,Zbigniew Perski,李新武,岳焕印,范景辉.InSAR技术在矿区沉降监测中的应用研究[J].国土资源遥感,2008(2): 51-55.
    [16]郭华东.雷达对地观测理论与应用[M].北京:科学出版社,2000.
    [17]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社,1999.
    [18]张红.D-InSAR与POLinSAR的方法及应用研究[D].北京:中科院遥感所博士论文,2002.
    [19]廖明生.雷达干涉测量——原理与信号处理基础[M].测绘出版社,2003.
    [20] R. F. Hanssen.Radar Interferometry——Data Interpretation and Error Analysis [M].Kluwer Academic Publisher 2001.
    [21] D. Massonnot et al..The displacement field of the Landers earthquake mapped by radar interferometry [J].Nature, 1993,364: 138-142.
    [22] Howard A. Zebker.On the derivation of coseismic displacement fields using differential radar interferometry: The Landers earthquake[J].Journal of Geophysical Research, 1994, 99(B10):19617一19634.
    [23]刘国祥. InSAR应用实例及其局限性分析[J].四川测绘,2005,28(3): 139-143.
    [24]舒宁.微波遥感原理[M].武汉:武汉测绘科技大学出版社,2000.
    [25] D. Massonnet , Deflation of Mount Etna monitored by spaceborne radar by interferometry[J],Nature, 1995,375:567-570.
    [26]李平湘,杨杰.雷达干涉测量原理与应用[M].北京:测绘出版社,2006.
    [27]王晓信.干涉雷达地表形变监测数据质量改善方法研究[D].杭州:浙江大学硕士学位论文,2006.
    [28]张艳梅.基于雷达差分干涉技术的地震形变场测量研究[D].武汉:武汉大学硕士学位论文,2005.
    [29] Scharroo R. and Visser P.,Precise orbit determination and gravity field improvement for the ERS satellites. J.Geophys. Res.,1998,103(C4):8113-8127.
    [30] D. Massonnet,F. Rabaute ,Radar Interferometry: Limits and Potential [J]. IEEE Transactions On Geoscience and Remote Sensing,1993,31(2):455-464.
    [31] Qian Lin,J. F. Vesecky and H.A.Zebker,New Approaches in Interferometric SAR data Processing [J], IEEE Transaction Geoscience Remote Sensing,1992,30(3):560-567.
    [32] Gabriel A K,Goldstein R M,“Crossed orbit interferometry: Theory and experimental results from SIR-B”,Int. J. Remote Sensing,1988:9(5):857-872.
    [33] Scheiber R, Moreita A,“Coregistration of interferometric SAR images using spectral diversity”, IEEE Trans. GRS,2000,38(5):2179-2191.
    [34]杨清友,王超.干涉雷达复图像配准与干涉纹图的增强[J].遥感学报.1999,3(2):122-127.
    [35] Eichel P H,Ghiglia D C,etal.,“Spotlight SAR interferometry for terrain elevation mapping and interferometric change detection”,Sandia National Labs Tech.Report,1993.
    [36] Lanari R,Fornaro G,Riccio D,etal.“Generation of digital elevation models by using SIR-C/X-SAR multi-frequency two-pass interferometry”,IEEE Trans.Geosci.Remote Sensing,34(5):1097-1114.
    [37]付进朋.InSAR相位解缠算法研究[D].成都:西南交通大学硕士学位论文,2006.
    [38] R. M. Goldstein , H. A. zebker , and C. L. Werner . 1988 . Satellite radar interferometry:Two-dimensional Phase unwrapping. Radio Science,23(4):713-720.
    [39] Rein-Lien Hsu,Shaoyun chen,Anil K. Jain,Carolyn Mercer. 1998. Local weight selection for two dimensional phase unwrapping.NASA Project Report.December 29.
    [40] T. J. Flynn. 1966. Consistent 2-D Phase unwrapping guided by a quality map. Proceedings of the 1996 International Geoscience and Remote Sensing Symposium. Lincoln. Nebraska. IEEE. Piscataway, 2057-2059.
    [41] D. J. Bone. 1991. Fourier fringe analysis: The two-dimensional phase unwrapping Problem. Applied Optics,30(25):3627-3632.
    [42] T. R. Judge,C. Quan,and P. J. Bryanston - Cross. 1992. Holographic deformation measurements by Fourier transform technique with automatic phase unwrapping,Optical engineering,31(3):533~543.
    [43] Q. Lin, J. F. Vesecky, and H. A. zebker. 1994. Phase unwrapping through fringe-line detection in Synthetic aperture radar interferometry. Applied Optics,33(2):201~208.
    [44] J. A. Quiroga and E. Bernabeu. 1994. Phase-unwrapping algorithrm for noise phase-map processing. Applied Optics, 33(29):6725-6731.
    [45] J. A. Quiroga, A. Gonzalez-Cano and E. Bernabeu. 1995. Phase-unwrapping algorithm based on an adaptive criteri-on, Applied Optics, 34(14):2560-2563.
    [46] B. Strobel. 1996. Processing of interferometric phase maps as complex-valued phasor images. Applied Optics, 35(13):2192-2198.
    [47] J. L. Li, X. Y. Su and J. T. Li. 1997. Phase unwrapping based reliability and edge detection. Optical Engineering 36(6):31-35.
    [48] Wei Xu, Ian Cumming. 1999. A region-growing algorithm for INSAR phase unwrapping. IEEE Trans. Geosci. Remote Sens. , 37(1):124-134.
    [49] G. Fornaro, E. Sansosti. 1999. A two-dimensional region frowing least squares phase unwrapping alforithm for interferometric SAR processing. IEEE Trans. Geosci. Remote Sens. , 37(5):2215-2226.
    [50] D. C. Ghiglia, and M.D.Pritt.1998.Two-dimensional phase Unwrapping: theory, algorithms, and software, Join Wiley&Sons.Inc:151-171.
    [51]徐华平、周荫清,星载干涉SAR中的基线问题[J],电子学报,2003,31(3):437-439.
    [52]汤晓涛,InSAR数据处理的基线估计和影像自动概略配准[J],解放军测绘学院学报,1999,16(4):260-262.
    [53]胡庆东、毛士艺,干涉合成孔径雷达基线的估计[J],航空学报,1998,19(7):19-24.
    [54] Singh et.al.,Baseline estimation in interferometric SAR[C],IGARSS1997.
    [55]李新武等,基于快速傅立叶变换的干涉SAR基线估计[J],测绘学报,2003,32(l):70-72.
    [56]朱晓铃,ENVISAT ASAR数据处理及其在农林资源监测上的应用[D].福州:福州大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700