用户名: 密码: 验证码:
猪链球菌2型srtBCD菌毛簇基因功能初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪链球菌(Streptococcus suis serotype , S. suis)是一种重要的人兽共患病病原菌。根据其表面荚膜多糖的抗原性,可以分为1-34和1/2共35个血清型,其中S. suis 2的致病性最强,临床检出率最高,给全世界的养猪业造成巨大的经济损失。尤其是近年来多次出现S.suis 2感染人事件,引起业界人士的高度关注。菌毛是革兰阳性病原菌与宿主细胞交互作用的重要功能结构,其中次要结构蛋白可能与病原菌的组织细胞亲嗜性相关,在细菌粘附、定植和侵袭过程发挥关键作用。和革兰阴性菌(G—)相比,革兰阳性(G+)菌菌毛编码基因与转肽酶sortase(srt)基因成簇存在,Srt催化菌毛单体共价交叉连接,最后锚定到细胞壁上。此外,值得关注的是,化脓链球菌(GAS)和无乳链球菌(GBS)的菌毛主要结构抗原还被证实是理想的疫苗侯选分子。通过对国内S. suis 2强毒株全基因组注释分析,我们发现两个在结构特征上与已知革兰阳性病原菌菌毛编码基因完全一致的基因簇,分别编码一组Sortase转肽酶和与已知菌毛结构蛋白同源的膜蛋白,命名为srtBCD和srtF菌毛簇,其中srtBCD簇仅存在于强毒株中。本研究以srtBCD菌毛簇为主要研究对象,同时展开对SrtF转肽酶的生物学功能研究,具体内容如下:
     1 srtBCD菌毛簇SSU2099基因的克隆表达与免疫保护性
     选取S.suis 2 srtBCD菌毛簇上菌毛辅助亚基编码基因SSU2099,PCR扩增目的片段,克隆入表达载体pET32a中原核表达,亲和层析法纯化重组蛋白。ELISA结果显示重组蛋白能够刺激小鼠产生高效价的免疫抗体,动物保护性实验表明该蛋白具有良好的免疫保护作用,提示菌毛亚基编码基因SSU2099是重要的疫苗候选分子。
     2 srtBCD基因突变株的构建
     利用同源重组原理构建中间为壮观霉素(SPC)、两侧为srtBCD基因上下游片段的重组质粒,将构建好的质粒电转化入S.suis 2感受态,筛选srtBCD缺失的突变株,并通过组合PCR和逆转录PCR对其进行验证。
     3突变株?srtBCD的生物学功能研究
     体外实验结果显示突变株ΔsrtBCD经反复传代培养后可以稳定生长、ΔsrtBCD突变株在对数期的生长速率明显减缓,且稳定期OD_(600)最大值小于野生株。粘附实验结果表明,ΔsrtBCD突变株对人类喉癌上皮细胞的粘附能力明显减弱,小鼠经05ZYH33野生株和突变株ΔsrtBCD攻毒后,致死率差异不具有统计学意义。推测srtBCD菌毛簇很可能编码S. suis 2表面的菌毛样结构,结果仍需通过免疫电镜及免疫印迹进一步验证。
     4突变株?srtF的生物学功能研究
     05ZYH33野生型和ΔsrtF突变株在菌落形态和溶血活性方面均无明显差异,但ΔsrtF突变株比野生型在对数初期的生长速率有增快的趋势。小鼠经05ZYH33野生型和ΔsrtF突变株攻毒后,致死率差异不具有统计学意义,结果和国外学者报导一致,证实S. suis 2中srtF菌毛簇编码的菌毛结构并非细菌致病作用必须的毒力因子。
Streptococcus suis 2 (S. suis 2) is an emerging zoonotic pathogen responsible for a wide range of life-threatening diseases in pigs and humans. To date, thirty-five serotypes (types 1/2, and 1-34) of S. suis have been described, of which S. suis 2 is the most frequently isolated and associated with disease. Various cell-surface multisubunit protein polymers, known as pili or fimbriae, have a pivotal role in the colonization of specific host tissues by many pathogenic bacteria. In contrast to Gram-negative bacteria, Gram-positive bacteria assemble pili by a distinct mechanism involving a transpeptidase called sortase. Sortase cross-links individual pilin monomers and ultimately joins the resulting covalent polymer to the cell-wall peptidoglycan. Most importantly, pilins confer a significant protection, which indicated that it can serve as a novel vaccine candidate. Based on bioinformatics analysis of the whole genome of S. suis 2 Chinese high virulent strain 05ZYH33, we found two gene clusters similar to pilus-associated gene clusters of some Gram-positive bacteria in genetic organization phenomena, designated srtBCD and srtF pilus clusters, which srtBCD cluster exists only in the virulent strain. In this study,? we characterized a functional member of srtBCD clusters and SrtF from a Chinese S. suis 2 isolate, 05ZYH33, And the following experiments are conducted:
     1 Molecular cloning and immunological characterization of SSU2099 gene from srtBCD pilus island of Streptococcus suis 2
     An open reading fragment, SSU2099, encoding pilus gene from srtBCD pilus island was identified based on bioinformatics analysis of the genome sequence of 05ZYH33 and alignment with relative protein family. The target DNA fragment was amplified using a pair of primers specific to SSU2099 gene. SSU2099 gene was cloned into prokaryotic expression plasmid pET32a subsequently, and the recombinant protein was expressed and purified. The mice anti-SSU2099 serum was obtained by immunizing mice with recombinant SSU2099 protein, and the titer of the serum was analyzed by ELISA. Animal test showed that vaccinating mice with recombinant SSU2099 confer a significant protection, which indicated that SSU2099 can serve as a novel vaccine candidate.
     2 Construction the ?srtBCD mutant
     To obtain the isogenic mutant srtBCD, the competent cells of 05ZYH33 were subjected to electrotrans formation with recombinant plasmid based on the principle of homologous recombination. The resulting mutant strains was further confirmed by a series of PCR and reverse transcription PCR.
     3 Biological functions of ?srtBCD mutant
     We demonstrated that mutant srtBCD reduced capacity to adhere to human laryngeal epithelial cell line compared to the wild-type strain. However, disruption of srtBCD had less effect on the virulence of S.suis in a mouse intraperitoneal model of infection. These results indicated that surface proteins anchored by SrtBCD are required for a normal level of bacterial binding. However, other factors may also be important for S.suis 2 virulence and interactions with host tissues.
     4 Biological functions of ?srtF mutant
     The resulting mutant strain exhibited growth kinetics equivalent to those of the WT parent strain upon cultivation in standard laboratory used in our in vitro assays. Abolishment of the expression of srtF did not result in impaired interactions of S.suis 2 with human laryngeal epithelial cell line. Furthermore, srtF mutant were as virulent as the wild type strain when evaluated in a murine model of S.suis . Taken together, these results suggest that srtF cluster in fact not critical for the full virulence of S. suis 2.
引文
[1] Staats JJ, Feder I, Okwumabua O, et al. Streptococcus suis: past and present. Vet Res Commun. 1997, 21(6):381-407.
    [2] Tang JQ, Wang CJ, Feng YJ, et al. Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. PloS Med, 2006, 3(5): 668?676.
    [3] Feng Y, Zhang H, Ma Y, et al. Uncovering newly emerging variants of Streptococcus suis, an important zoonotic agent. Trends Microbiol. 2010, 18(3):124-131.
    [4] Breton J, Mitchell WR, Rosendal S. Streptococcus suis in slaughter pigs and abattoir workers. Can J Vet Res. 1986, 50(3):338-341.
    [5] Reams RY, Glickman LT, Harrington DD, et al. Streptococcus suis infection in swine: a retrospective study of 256 cases. Part I. Epidemiologic factors and antibiotic susceptibility patterns. J Vet Diagn Invest. 1993, 5(3):363-367.
    [6] Vecht U, van Leengoed LA, Verheijen ER. Streptococcus suis infections in pigs in the Netherlands (Part I). Vet Q. 1985, 7(4):315-321.
    [7] Teekakirikul P, Wiwanitkit V. Streptococcus suis infection: overview of case reports in Thailand. Southeast Asian J Trop Med Public Health. 2003, 34 (2):178-183.
    [8] Perch B, Kristjansen P, Skadhauge K. Group R streptococci pathogenic for man. Two cases of meningitis and one fatal case of sepsis. Acta Pathol Microbiol Scand. 1968, 74(1):69-76.
    [9] Christensen P, Kronvall G. A case of Streptococcus suis meningitis--a new occupational disease in Sweden? Lakartidningen. 1985, 82(3):119.
    [10] Colaert J, Allewaert M, Magerman H, et al. Streptococcus suis meningitis in man. First reported observation in Belgium. Acta Clin Belg. 1985, 40(5):314-317.
    [11] Lun ZR, Wang QP, Chen XG, et al. Streptococcus suis: an emerging zoonotic pathogen. Lancet Infect Dis, 2007, 7(3): 201–209.
    [12] Chau PY, Huang CY, Kay R. Streptococcus suis meningitis. An important underdiagnosed disease in Hong Kong. Med J Aust. 1983, 1(9):414-417.
    [13] Chen C, Tang J, Dong W, et al. A glimpse of Streptococcal toxic shock syndrome from comparative genomics of S. suis 2 chinese isolates. PLoS ONE, 2007, 2(3): e315.
    [14] Smith HE, Vecht U, Wissclink HJ, et al. Mutants of Streptococcus suis types l and 2 impaired in expression of muramidase-released protein and extracellular protein induce disease in newborn germfree pigs. Infect Immun. 1996, 64(10): 4409-4412.
    [15] Yu H, Jing H, Chen Z, et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg Infect Dis. 2006, 12(6):914-920.
    [16] Telford JL, Barocchi MA, Margarit I, et al. Pili in Gram-positive pathogens. Nature Rev Microbiol, 2006, 4: 509-519.
    [17] Mora M, Bensi G, Capo S, et al. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc Natl Acad Sci USA, 2005, 102: 15641-15646.
    [18] Jacques M, Gottschalk M, Foiry B, et al. Ultrastructural study of surface components of Streptococcus suis. J Bacteriol, 1990, 172:2833-2838.
    [19] Dramsi S, Trieu-Cuot P, Bierne H. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol, 2005, 156: 289-297.
    [20] Ton-That H, Marraffini LA, Schneewind O, et al. Protein sorting to the cell wall envelope of gram-positive bacteria. Biochim Biophys Acta, 2004, 1694(1/3): 269-278.
    [21] F?lker S, Nelson AL, Morfeldt E, et al. Sortase-mediated assembly and surface topology of adhesive pneumococcal pili. Mol Microbiol, 2008, 70(3): 595-607.
    [22] Marraffini LA, Dedent AC, Schneewind O, et al. Sortase and the art of anchoring proteins to the envelopes of gram-positive bacteria. Microbiol Mol Biol Rev, 2006, 70(1): 192?221.
    [23] Dramsi S, Caliot E, Bonne I, et al. Assembly and role of pili in group B streptococci. Mol Microbiol. 2006, 60(6): 1401-1413.
    [24] Wang CJ, Li M, Feng Y, et al. The involvement of sortase A in high virulence of STSS-causing Streptococcus suis serotype 2. Arch Microbiol. 2009, 191(1): 23?33.
    [25] Nelson AL, RiesJ, Bagnoli F, et a1. RrgA is a pilus-associated adhesin in streptococcus pneumoniae. Mol Microbiol, 2007, 66(2): 329-340
    [26] Roberto R,Cira DR, Marco S, et al. Identification of novel genomic islands coding for antigenic pilus-like structures in streptococcus agalactiae. Molecular Microbiology, 2006, 61(1): 126-141
    [27] Huang YT, Teng LJ, Ho SW, et al. Streptococcus suis infection. J Microbiol Immunol Infect, 2005, 38(5): 306-313.
    [28] Mandlik A, Swierczynski A, Das A, et al. Pili in gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol, 2008, 16(1): 33-40
    [29] Pezzicoli A,Santi I,Lauer P, et al. Pilus backbone contributes to group B streptococcus paracellular translocation through epithelial cells. J Infect Dis, 2008, 198(6): 890-898.
    [30] Margarit I, Rinaudo CD, Galeotti CL, et al. Preventing bacterial infection with pilus-based vaccines: the group B streptococcus paradigm. J Infect Dis, 2009, 199(1): 108-115
    [31] Vanier G, Fittipaldi N, Slater JD, et al. New putative virulence factors of streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog, 2009, 46(1): 13-20.
    [32] Fittipaldi N, Takamatsu D, Domínguez-Punaro MdlC, et al. Mutations in the gene encoding the ancillary pilin subunit of the streptococcus suis srtF cluster result in pili formed by the major subunit only. PLoS ONE, 2010, 5(1): e8426.
    [33] Kunitomo E, Terao Y, Okamoto S, et al. Molecular and biologicalcharacterization of histidine triad protein in group A streptococci. Microbes Infect, 2008, 10(4): 414-423.
    [34] Kawabata S, Kunitomo E, Terao Y, et al. Systemic and mucosal immunizations with fibronectin-binding protein FBP54 induce protective immune responses against streptococcus pyogenes challenge in mice. Infect Immun, 2001 ,69(2): 924-930
    [35] Gianfaldoni C, Censini S, Hilleringmann M, et al. Streptococcus pneumoniae pilus subunits protect mice against lethal challenge. Infect Immun, 2007, 75(2): 1059-1062.
    [36]李明,胡福泉,王长军,等。环境条件对猪链球菌2型电转化效率的影响。中国人兽共患病学报,2007, 23(8):760-763.
    [37] Vanier G, Fittipaldi N, Slater JD, et al. New putative virulence factors of Streptococcus suis involved in invasion of porcine brain microvascular endothelial cells. Microb Pathog. 2009, 46(1):13-20.
    [38] Vanier G, Segura M, Friedl P, et al. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis serotype 2. Infect Immun. 2004, 72(3): 1441-1449.
    [39] Lalioui L, Pellegrini E, Dramsi S. The SrtA Sortase of Streptococcus agalactiae is required for cell wall anchoring of proteins containing the LPXTG motif, for adhesion to epithelial cells, and for colonization of the mouse intestine. Infect Immun. 2005, 73(6):3342-3350.
    [40] Ton-That H, Mazmanian SK, Faull KF, et al. Anchoring of surface proteins to the cell wall of Staphylococcus aureus. Sortase catalyzed in vitro transpeptidation reaction using LPXTG peptide and NH(2)-Gly(3) substrates. J Biol Chem. 2000, 275(13):9876-9881.
    [41] Chen S, Paterson GK, Tong HH, et al. Sortase A contributes to pneumococcal asopharyngeal colonization in the chinchilla model. FEMS Microbiol Lett. 2005, 253(1):151-154.
    [42] Bierne H, Mazmanian SK, Trost M, et al. Inactivation of the srtA gene in Listeriamonocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol. 2002, 43(4):869-881.
    [43] Barocchi MA, Ries J, Zogaj X, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc Natl Acad Sci U S A. 2006, 103(8):2857 -2862.
    [44] Konto-Ghiorghi Y, Mairey E, Mallet A, et al. Dual role for pilus in adherence to epithelial cells and biofilm formation in Streptococcus agalactiae. PLoS Pathog. 2009, 5(5):e1000422.
    [45] Garibaldi M, Rodríguez-Ortega MJ, Mandanici F, et al. Immunoprotective activities of a Streptococcus suis pilus subunit in murine models of infection. Vaccine. 2010, 28(20): 3609-3616.
    [1] Navarre WW, and Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol. Mol. Biol. Rev. 1999, 63(1): 174-229.
    [2] Sjoquist, J. Meloun B, Hjelm H, et al. Protein A isolated from Staphylococcus aureus after digestion with lysostaphin. Eur J Biochem. 1972, 29(3):572-578.
    [3] Sjoquist J, Movitz J, Johansson IB, et al. Localization of protein A in the bacteria. Eur.J. Biochem. 1972, 30(1):190-194.
    [4] Schneewind O, Model P, Fischetti VA, et al. Sorting of protein A to the staphylococcal cell wall. Cell. 1992, 70(2): 267-281.
    [5] Mazmanian SK, Liu G, Ton-That H, et al. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science. 1999, 285(5428):760-763.
    [6] Schneewind O, Mihaylova-Petkov D, Model P, et al. Cell wall sorting signals in surface proteins of gram-positive bacteria. EMBO J. 1993, 12(12):4803-4811.
    [7] Mazmanian SK, Ton-That H, Schneewind O, et al. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus. Mol Microbiol. 2001, 40(5):1049-1057.
    [8] Ton-That H, Marraffini LA, Schneewind O, et al. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim Biophys Acta. 2004, 1694(1-3): 269-278
    [9] Comfort D, and Clubb RT. A comparative genome analysis identifies distinct sorting pathways in Gram-positive bacteria. Infect Immun. 2004, 72(5):2710-2722
    [10] Scott JR, and Zahner D. Pili with strong attachments: Gram-positive bacteria do it differently. Mol Microbiol. 2006, 62(2):320-330.
    [11] Dramsi S, Trieu-Cuot P, Bierne H, et al. Sorting sortases: a nomenclature proposal for the various sortases of Gram-positive bacteria. Res Microbiol. 2005, 156(3):289-297.
    [12] Mazmanian SK, Skaar EP, Gaspar AH, et al. Passage of heme-iron across the envelope of Staphylococcus aureus. Science. 2003, 299(5608):906-909.
    [13] Marraffini LA. and Schneewind O. Targeting proteins to the cell wall of sporulatingBacillus anthracis. Mol Microbiol. 2006, 62(5):1402-1417.
    [14] Ton-That H, and Schneewind O. Assembly of pili on the surface of Corynebacterium diphtheriae. Mol Microbiol. 2003, 50(4):1429-1438.
    [15] Marraffini LA, Dedent AC, Schneewind O, et al. Sortases and the art of anchoring proteins to the envelopes of Gram-positive bacteria. Microbiol. Mol. Biol. Rev.2006, 70(1):192-221.
    [16] Lauer P, Rinaudo CD, Soriani M, et al. Genome analysis reveals pili in Group B Streptococcus. Science .2005, 309(5731):105.
    [17] Mora M, Bensi G, Capo S, et al. Group A Streptococcus produce pilus-like structures containing protective antigens and Lancefield T antigens. Proc. Natl. Acad. Sci. U.S.A. 2005, 102(43):15641-15646.
    [18] LeMieux J, Hava DL, Basset A, et al. RrgA and RrgB are components of a multisubunit pilus encoded by the Streptococcus pneumonia rlrA pathogenicity islet. Infect Immun. 2006, 74(4):2453-2456.
    [19] Barocchi MA, Ries J, Zoqai X, et al. A pneumococcal pilus influences virulence and host inflammatory responses. Proc. Natl. Acad. Sci. U.S.A. 2006, 103(8):2857-2862.
    [20] Nallapareddy SR, Sinqh KV, Sillanpaa J, et al. Endocarditis and biofilm-associated pili of Enterococcus faecalis. J Clin Invest. 2006, 116(10):2799-2807.
    [21] Mishra A, Das A, Cisar JO, et al. Sortase-catalyzed assembly of distinct heteromeric fimbriae in Actinomyces naeslundii. J Bacteriol. 2007, 189(8):3156-3165.
    [22] Mattick JS. Type IV pili and twitching motility. Annu Rev Microbiol. 2002, 56: 289-314.
    [23] Yanagawa R and Honda E. Presence of pili in species of human and animal parasites and pathogens of the genus Corynebacterium. Infect Immun. 1976, 13(4):1293-1295.
    [24] Yeung MK and Ragsdale PA. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect Immun. 1997, 65(7):2629-2639.
    [25] Yeung MK, Donkersloot JA, Cisar JO, et al. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect Immun. 1998, 66(4):1482-1491.
    [26] Swierczynski A and Ton-That H. Type III pilus of corynebacteria: Pilus length is determined by the level of its major pilin subunit. J Bacteriol. 2006, 188(17), 6318-6325.
    [27] Mandlik A, Swierczynski A, Das A. et al. Corynebacterium diphtheria employs specific minor pilins to target human pharyngeal epithelial cells. Mol Microbiol. 2007, 64(11):111-124.
    [28] Gaspar AH and Ton-That H. Assembly of distinct pilus structures on the surface of Corynebacterium diphtheria. J Bacteriol. 2006, 188(4):1526-1533.
    [29] Ton-That H, Marraffini LA, Schneewind O, et al. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheria. Mol Microbiol. 2004, 53(1):251-261.
    [30] Swaminathan A, Mandlik A, Swierczynski A. et al. Housekeeping sortase facilitates the cell wall anchoring of pilus polymers in Corynebacterium diphtheria. Mol Microbiol. 2007, 66(4):961-974.
    [31] Ton-That Hand Schneewind O. Assembly of pilin in Gram- positive bacteria. Trends Microbiol. 2004, 12(5):228-234.
    [32] Nelson AL, Ries J, Baqnoli F, et al. RrgA is a pilus-associated adhesion in Streptococcus pneumonia. Mol Microbiol. 2007, 66(2):329-340.
    [33] Dramsi S, Caliot E, Bonne I, et al. Assembly and role of pili in group B streptococci. Mol Microbiol. 2006, 60(6):1401-1413.
    [34] Ton-That H and Schneewind O. Assembly of pili in Gram-positive bacteria. Trends Microbiol. 2004, 12(5):228-234.
    [35] Donkersloot JA, Cisar JO, Wax ME, et al. Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene (fimA) for type2 fimbriae. J Bacteriol. 162(3):1075-1078.
    [36] Yeung MK, Donkersloot JA, Cisar JO, et al. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect Immun. 1998, 66(4):1482-1491.
    [37] Yeung MK and Ragsdale PA. Synthesis and function of Actinomyces naeslundii T14V type1 fimbriae require expression of additional fimbria-associated genes.Infect Immun. 1997, 65(7): 2629-2639.
    [38] Yeung MK, Chassy BM, Cisar JO. Cloning and expression of a type 1 fimbrial subunit of Actinomyces viscosus T14V. J Bacteriol. 1987, 169(4):1678-1683.
    [39] Wu H and Fives-Taylor PM. Molecular strategies for fimbrial expression and assembly. Crit Rev Oral Biol Med. 2001, 12(2):101-115.
    [40] Handley PS.and Jacob AE. Some structural and physiological properties of fimbriae of Streptococcus faecalis. J Gen Microbiol. 1981, 127(2):289-293.
    [41] Handley PS, Carter PL, Wyatt JE, et al. Surface structures (peritrichous fibrils and tufts of fibrils) found on Streptococcus sanguis strains may be related to their ability to coaggregate with other oral genera. Infect Immun. 1985, 47(1): 217-227.
    [42] Oligion L andFives-Tavlor P.Overexpression and purification of a fimbria-associated adhesion of Streptococcus parasanguis of a fimbria-associated adhesion of Streptococcus parasanguis. Infect Immun. 1993, 61(3):1016-1022.
    [43] Wu Hand Fives-Taylor PM. Identification of dipeptide repeats and a cell wall sorting signal in the fimbriae-associated adhesion,Fap1, of Streptococcus parasanguis. Mol Microbiol. 1999, 34(5):1070-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700