用户名: 密码: 验证码:
声子晶体理论在建筑隔声板材中的应用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
噪声危害越来越受到各国政府和人们的关注,尤其是在低频部分的。目前建筑墙体多为非承重的轻质墙体,有相当部分的不能满足住宅分户墙的最低隔声要求;且按传统的隔声质量定律难以有效地提高在低频部分的隔声量;因而声子晶体产生带隙的特点足可以应用到建筑隔声领域,使隔声性能提高,尤其是在低频部分的。本文利用有限元分析软件,仿真了多种新型声子晶体隔声材料,对其隔声量以及部分影响因素进行了分析,且最终优化设计了一组样品进行实验验证。本文主要研究内容及成果如下:
     声子晶体新型隔声材料驻波管测试建模。本文首先基于NASTRAN和SYSNOISE有限元软件建立新型隔声材料的驻波管测试系统模型,并用单层匀质材料和一参考文献中的实验数据分别验证本测试系统正确可靠性。
     研究散射体和基体弹性模量E值对新型隔声材料TL值的影响。利用本测试模型首先对1维2、3组元分别进行基体和散射体的弹性模量值变化对相应的新型材料隔声量带来的变化进行分析;接着对2维2、3组元以及首次提出的4组元分别也进行了同样的分析。结果发现:在2000Hz下,散射体材料和基体材料的E值对其TL值影响很小,基本不影响;新材料低频部分的平均隔声量要比同面密度计算的大5~10dB。
     研究组元布局和结构布局对隔声量的影响。对2维2组元逐一增加到3组元的隔声量进行比较分析,发现不论是单一组元还是混合组元分布情况下,各组元的分布越均匀TL值越大,主要表现在非禁带处,在低频禁带处则表现不明显;声子晶体隔声材料的整体质量对禁带处的TL值影响不大,而对非禁带处的TL值影响较大;混合组元要比单一组元的隔声量好。
     进行实验设计,模拟值与实测值对比分析。对多种实验方案的优化,最终选择有机玻璃、玻璃胶和钢筋制成的新型隔声材料样品进行实验。结果表明:实测值曲线比模拟值曲线提前165Hz在低频发生了禁带;禁带过后伴随吻合效应发生;新型隔声材料确实比相应的同面密度匀质材料的平均隔声量要高6.62dB,在100~500Hz内平均隔声量相差却高达8.272dB;表明隔声量的提高完全可以突破隔声质量定律,尤其是在低频部分;同时也表明了本测试模型对复杂的声子晶体材料也是正确可行且可信的。
The noise-harm more and more receives the various countries' government and people's attention, especially in low-frequency part. At present, the walls of constructions are many for the non-load-bearing light-quality wall, has the quite partial light quality partition wall sound insulation performance to be bad, the single-layer wall's TL value cannot satisfy the housing to be divided the household wall the lowest soundproofing request. And it’s difficulty to be effectively enhanced according to the traditional sound insulation mass law in the low frequency part. Therefore the phononic crystals may have the band-gap characteristic to fully apply the construction sound insulation field, particularly in low frequency part, thus it makes the soundproofing performance enhancement.This article through finite element analysis software simulate many kinds of phononic crystal new sound insulating material, we analysed their TL value as well as partly influent factors, we obtained the TL value through the different simulation sample. And finally we had optimized a group of samples designs to carry on the experimental confirmation.This article research content and research results mainly includes following parts:
     Phononic crystals new sound insulating material standing wave tube test modelling.This article first based on NASTRAN and SYSNOISE finite element software established new sound insulating material standing wave tube test system model, and confirmed this test system must be correct and reliability, separately with the uniform single-layer material and a reference empirical data.
     Research on scatterer’s and matrix’s elasticity coefficient E value to new sound insulating material TL value influence. Using this test model, firstly, we analysed 1 dimension 2 components, 3 components separately the matrix’s and the scatterer’s elasticity coefficient value change the change which brings to the corresponding new material TL value; Secondly, we analysed 2 dimension 2 components, 3 components and 4 components as well as proposed for the first time separately. The result indicated: during10~2000Hz, the scatterer material's elasticity coefficient E value and the matrix material's E value are irrelevant with their TL value.
     Research on component layout and the structural configuration measure the TL value to the sound insulation the influence. Increased one by one using this test system we analysed 2 dimensions from 2 components to 3 components separate comparative analysis. We discovered under the same area density the component the stronger symmetrical, the bigger TL value to be. But it reacts in the non-forbidden band, and it does not have an effect in forbidden band. The forbidden band quality not directly participates to control, but the non-forbidden band participates in the control. Under the similar condition, we discovered the structural configuration immediate influence TL value, but does not affect in the first forbidden band range. We also found the TL value of the mixed components is better than pure 3 or 2 components.
     We had experimental design and had the simulation value and the actual value contrastive analysis. Through many kinds of testing plan's optimization, we finally choosed the new phononic crystal sound insulating material sample which is composed by the plexiglass, the glass cement and the steel bar make to carry on the experiment. The result has confirmed: This sample measured curve value will produce the forbidden band advance165Hz in low frequency compared to the simulation value curve. The forbidden band will have followed the coincidence effect occurrence after it, the new phonon crystal sound insulating material is higher 6.62dB truly compared to the corresponding same area density uniform material's average TL value. And their average TL value difference actually reached as high as 8.272dB in the low frequency 100~500Hz part.They explained that the enhancement of the TL value definitely break through the mass law of sound insulation.Obtained the material using the phonon crystal principle surmounts traditional by far, particularly in the low frequency part. It also had simultaneously indicated this test model to the complex phononic crystals material was also feasible and credible.
引文
1胡锦涛.高举中国特色社会主义伟大旗帜,为夺取全面建设小康社会新胜利而奋斗[R].北京. 2007:10
    2李晋奎等译.建筑声学设计指南[M].北京.中国建筑工业出版社, 2004:3~5
    3李鸿忠,许宗衡.关于加强环境保护建设生态市的决定[R].深圳. 2007:5~6
    4丁红都.广州市“宁静工程”实施方案[R].广州. 2007:8
    5钟祥璋.建筑吸声材料与隔声材料[M].北京.化学工业出版社, 2005:6~218
    6 Paulo Henrique, et al. In situ acoustic performance of materials used in Brazilian Building Construction[J]. Construction and Building Materials. 2007, (21):1820~1824
    7 M.H.F.De Sakis, et al. Noise control strategies for naturally ventilated buildings[J]. Building and Environment. 2002, (37):471~484
    8 TangWing Cheong. Vibroacoustic performance of layered composite structure in small close-fitting enclosures[D]. The Hong Kong Polytechnic University. January, 2000:55~75
    9 C.F.Ng, C.K.Hui. Low frequency sound insulation using stiffness control with honeycomb panels[J]. Applied Acoustics. 2007, (xxx):xxx~xxx
    10 A.Uris, A. Llopis, J. Llinares. Effect of the rochwool bulk density on the airborne sound insulation of lightweight double walls[J]. Applied Acoustics. 1999, (58):327~331
    11 António Tadeu, et al. Sound insulation provided by single and double panel walls—a comparison of analytical solutions versus experimental results. Applied Acoustics. 2004, (65):15~29
    12王志螼,徐庆华. V-型皱褶夹芯板与隔声性能实验[J].振动工程学报. 2006, 19(1):65~69
    13赵宏刚,刘耀宗,温激宏,等.新型声学功能材料——声子晶体[J].材料科学与工程学报. 2003, 21(1):153~155
    14温熙森,等编著.光子/声子晶体理论与技术[M].北京.科学出版社,2006:28~60
    15 Sigalas M. M, Economou Economou E. N. Elastic and acoustic wave band structure[J]. Journal of Sound and Vibration. 1992, 158(2):377~382
    16 Kushwaha M. S,Haleci P, Dobrzynsi L. Acoustic band structure of periodic elastic composites[J]. Physical Review Letters. 1993, 71(13):2022~2025
    17 Vasseur. J. O, et al. Complete acoustic band gaps in periodic fiber reinforced composite materials: the car-bon/epoxy composite and some metallic systems[J]. Journal of Physics: Condensed Matter. 1994, (6):8759~8770
    18 Zhengyou Liu et al. Locally Resonant Sonic Materials[R]. Science. 2000, (289):1734~1736
    19温维佳,沈平.局域共振的光子、声子功能材料[R].研究快讯. 2004, (33):106-110
    20沈平,温维佳,刘正猷,等.动态质量密度和声学超常介质[R].特约专稿.物理. 2007, (28):112~117
    21 Liu Z Y, Chan C T, Sheng P. Three-componentelastic wave band-gapmaterial [J]. Physical Letters B. 2002, (65):165~166
    22温激鸿,刘耀宗,王刚,等.基于散射单元的声子晶体振动带隙研究[J].人工晶体学报. 2004, 33(3):358~362
    23王刚,刘耀宗,温激宏,等.大弹性常数差二维声子晶体带隙计算中的集中质量法[J].物理学报. 2005, 54(3): 1247~1252
    24齐共金.二维声子晶体的带隙研究[D].国防科学技术大学硕士学位论文. 2000:7~39
    25刘耀宗,赵宏刚,温激宏,等.基于Sysnoise的声子晶体传声损失仿真计算方法[C] . 2006年LMS首届中国用户大论文集. 2006:58~62
    26郁殿龙,王刚,温激宏,等.二维声子晶体薄板的振动特性[J].机械工程学报. 2006, 42(2):150~154
    27王刚,刘耀宗,温激宏,等.二维声子晶体带隙计算中的时域有限差分方法[J].物理学报. 2003. 52(8):1943~1947
    28 Chunyin Qiu, Zhengyou Liu, Jun Mei, Manzu Ke. The layer multiple-scattering method for calculating transmission coefficients of 2D phononic crystals[J]. Solid State Communications. 2005, (134):765~770
    29 Xin Zhang et al. Large two-dimensional band gaps in three-component phononic crystals[J]. Physics Letters A. 2003, (317):144~149
    30 Xin Zhang , Zhengyou Liu, Youyan Liu. The optimum elastic wave band gaps in three dimensional phononic crystals with local resonance[J]. Eurepor Physical Letters B. 2004, (42):477~482
    31 Xin Zhang, Zhengyou Liu, Youyan Liu, Fugen Wu. Elastic wave band gaps for three-dimensional phononic crystals with two structure units[J]. Physics Letters A. 2003, (313):455~460
    32 Xiaochun Li, Zhengyou Liu. Coupling of cavity modes and guiding modes in two-dimensional phononic crystals[J]. Solid State Communications. 2005, (133):397~402
    33李晓春,梁宏宇,易秀英,等.二维组合宽带隙材料的研究[J].物理学报. 2007, 56(5):2784~2789
    34吴福根,刘有延.二维周期性复合介质中声波带隙结构及其缺陷态[J].物理学报. 2002, 51(7):1434~1437
    35钟兰花,吴福根,刘有延,等.二维声子晶体的对称性对声学带隙的影响[J].无机材料学报. 2006, 21(1):29~33
    36 Zhilin Hou, Weiming Kuang, Youyan Liu. Transmission property analysis of a two-dimensional phononic crystal[J]. Physicis Letters A. 2004, (333):172~180
    37曹永军,董纯红,周培勤.一维准周期结构声子晶体透射性质的研究[J].物理学报. 2006, 55(12):6470~6474
    38颜琳,赵鹤平,王小云,等.二维声子晶体带结构研究[J].应用声学. 2006, 25(4):212~217
    39曾广武,肖伟,程远胜.多组声子晶体复合结构的隔声性能[J].振动与冲击. 2007, 26(1):80~83
    40 Wang G, Wen X S,Wen J H, Shao L H, Liu Y Z. Two-Dimensional Locally Resonant For Phononic Crystals with Binary Structures[J]. Physicis Letters A. 2004, 327:247~253
    41赵宏刚.固/气和固/固二维声子晶体的声波禁带研究[D].国防科学技术大学硕士学位论文. 2001:25~35
    42 Vasseur, J. O.et al. Experimental evidence for the existence of absolute acoustic band gaps in two-dimensional periodic composite media[J]. Physical Review Letters. 1998, (10): 6051
    43张荣英.二维声子晶体带隙结构的实验研究[D].华北电力大学硕士学位论文. 2005:25~42
    44颜琳.二维正方点阵固态声子晶体带隙研究[D].湘潭大学硕士学位论文. 2005:32~45
    45赵宏刚,王刚,温激宏,等.单元结构尺寸对不锈钢/空气二维声子晶体声波禁带的影响[J].功能材料. 2004, 35(6):793~795
    46赵宏刚,王刚,温激宏,等.空气中正方形排列的大声阻抗柱体阵列的声波禁带[J].国防科学技术大学学报. 2004, 26(4): 77~85
    47 C. Charles, B. Bonello, F. Ganot. Propagation of guided elastic waves in 2D phononic crystals[J]. Ultrasonics. 2006, (44):1209~1213
    48 A. Li Chen, Yue Sheng Wang. Study on band gaps of elastic waves propagating in one-dimensional disordered phononic crystals[J]. Physica B: Condensed Matter. 2007, (392): 369~378
    49周梦平,方庆川,凡友华,等.浅析声子晶体理论在建筑隔声领域的应用[J].建筑技术开发. 2008, 35(3):54~57
    50庞业珍.基于传递函数的吸声隔声测量方法与应用研究[D].大连理工大学硕士学位论文. 2005:15:55
    51曲波,朱蓓丽.驻波管中隔声量的四传感器测量法[J].噪声与振动控制. 2002, 6:44~46
    52马大猷编著.声学手册[M].北京.科学出版社, 1983:500~505
    53刘志明.声子晶体带隙特性研究[D].国防科学技术大学硕士学位论文. 2005:25~30
    54施季华.有机玻璃动力弹性模量的测定[J].苏州教育学院学报. 1996, 32(3):83~84
    55朱希珍,林树. WSJ建筑结构胶研制及力学性能测试[J].武汉水利电力学院学报. 1992, 25(6):675~679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700