用户名: 密码: 验证码:
覆冰输电线舞动建模及解析法分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
覆冰输电线舞动将对整个社会造成巨大的经济损失。为了深入了解覆冰输电线舞动原理,论文提出了基于曲梁理论的三自由度舞动方程,并使用多尺度法分析了覆冰输电线随风速变化的分叉和稳定。
     首先,基于zhu提出的曲梁理论和Mason提出的迁移坐标系,建立了覆冰输电线的三维拉格朗日应变表达式。并根据哈密顿原理,建立了考虑截面偏心的四自由度(轴向分量、法向分量、副法向分量和扭转分量)舞动方程。再根据覆冰输电线特性,将上述四自由度舞动模型进一步简化为三自由度(法向分量、副法向分量和扭转分量)舞动模型。该模型可以考虑覆冰截面偏心、初始扭转角和抗弯刚度对覆冰输电线舞动影响。在建立风荷载模型时,除了考虑扭转角位移、法向速度和副法向速度对攻角的影响外,还考虑了初始扭转角对攻角的影响。除此之外,根据Galerkin方法将荷载模型和舞动模型进行离散。
     其次,为了验证上述提出的基于曲梁理论的三自由度舞动模型,本文还建立了基于索结构理论的单自由度(竖向分量)、双自由度(竖向分量和水平分量)和三自由度(竖向分量、水平分量和扭转分量)舞动模型。并采用经典覆冰舞动算例(D型覆冰截面),将上述四种模型计算得到和实验测得的竖向舞动幅值进行对比分析。计算结果表明基于曲梁理论的三自由度舞动模型比基于索结构理论舞动模型精度高。除此之外,还分析了上述四种模型与实验数据间存在误差原因。
     最后,还利用多尺度法和基于曲梁理论的三自由度舞动模型分析1:1和2:1内共振覆冰输电线舞动性质。为了便于多尺度法计算,根据覆冰输电线特性,将三自由度舞动模型简化为两自由度(竖向分量和水平分量)舞动模型。基于以上简化模型,利用多尺度法建立1:1和2:1内共振简化幅值方程来分析覆冰输电线随风速变化的分叉情况。在此基础上,建立1:1和2:1简化幅值方程的雅可比矩阵来判断各分支的稳定性。但在分析内共振2:1单幅值舞动(分支Ⅲ)的稳定性时,2:1简化幅值方程的雅可比矩阵出现歧义现象(不能判断其稳定性)。为了解决上述问题,本文还提出了复合指数-Cartesia形式的2:1简化幅值方程。除此之外,本文还根据团队在中国空气动力研究和发展中心所做的实验数据,拟合了覆冰输电线空气阻力和升力系数关于攻角的三次曲线,并根据以上数据分别对比分析了内共振1:1和2:1考虑覆冰截面偏心和不考虑偏心的分叉和稳定情况。分析结果表明:截面偏心对舞动影响较大。最后,在2:1内共振不考虑偏心情况下,发现了多重稳定的特殊现象,并根据2:1简化幅值方程和两自由度舞动方程在时域内积分得到的随时间变化的法向和副法向位移,分析并验证了该特殊现象的存在。
The galloping of the iced transmission line will cause the great damage to the whole society. In order to better understand the theory of galloping of iced transmission line, a three-degree-of-freedom galloping model based on curved beam theory has been proposed. Also, the Multiple Scale Perturbation Method (MSM) is introduced to analyze bifurcation and stability of the iced transmission line.
     Firstly,based on curved beam theory proposed by Zhu and converted curvilinear coordinates raised by Mason, three-dimension Lagrange strain tensor of iced transmission line is established. Then, according to Hamilton principle, a four-degree-of-freedom (tangential, nominal, bi-nominal and torsional) galloping model considering iced eccentricity is formulated. Moreover, due to the property of transmission line, a reduced three-degree-of-freedom (nominal, bi-nominal and torsional) galloping model is obtained in view of bending, rotation and eccentricity of cross section. Furthermore, the initial rotational angle is introduced into the model of attack angle in addition to the rotational displacement, nominal velocity and bi-nominal velocity. Finally, According to Galerkin method, three-degree-of-freedom discrete galloping model and aerodynamic discrete model are obtained.
     Secondly, in order to test the accuracy of three-degree-of-freedom galloping model based on curved beam theory, three galloping models based on cable structure are established, such as one-degree-of-freedom (vertical) , two-degree-of-freedom (vertical and horizontal) and three-degree-of-freedom (vertical, horizontal and rotational) galloping models. Moreover, one classical galloping example (cross section of D shape) is chosen to analyze the forgoing four galloping models. Comparing vertical displacements of the four galloping models and the experimental data, it can be found that the accuracy of the three-degree-of-freedom galloping model based on curved beam theory is higher than the other three galloping models based on cable structure. Furthermore, the reasons for the difference between the four galloping models and experimental data are discussed.
     Finally, the three-degree-of-freedom galloping model based on curved beam theory and MSM are introduced to analyze the 1:1 and 2:1 resonant cases. In order to establish the model suitable for MSM, a two-degree-of-freedom (nominal and bi-nominal) galloping model is reduced from the three-degree-of-freedom galloping model due to the property of iced transmission line. In view of the above reduced two-degree-of-freedom galloping model, 1:1 and 2:1 Reduced Amplitude Modulation Equations (RAME) are formulated with the method of MSM to analyze the bifurcations of 1:1 and 2:1 resonant cases. Moreover, the Jacobian matrix of 1:1 and 2:1 RAME are established to analyze the stability of the forgoing bifurcations of 1:1 and 2:1 resonant cases except the special branch (one-mode (nominal) galloping), in which case the Jacobian matrix of 2:1 RAME becomes singular. In order to solve this problem, a mixed polar-Cartesian form of 2:1 RAME is adopted. Furthermore, according to the experimental data recently completed in Chinese Aerodynamic Research and Development Center, the drag and lift coefficients are fitted in the form of cubic equations. In view of the above fitting data, the bifurcation and stability of the 1:1 and 2:1 resonant cases considering the eccentricity and without considering the eccentricity are discussed. The results turn out that the iced eccentricity plays an important role on bifurcation and stability. Finally, in the 2:1 resonant case without considering the eccentricity, one special phenomenon (multiple stabilities) is found. Also, from the analysis of numerical integration of RAME and reduced model in time history, it is proved that this phenomenon actually appears as the wind speed is in the wind speed range of multiple stabilities, which is obtained by analyses of bifurcation and stability of RAME.
引文
[1] Palo Alto. Transmission Line Reference Book 1979 Wind-Induced Conductor Motion. EPRI. California.1979.
    [2]夏正春.特高压输电线的覆冰舞动及脱落跳跃研究.华中科技大学.博士论文.2008.
    [3]王藏柱和杨晓红.输电线路导线的振动和防振[J].电力情报. 2002, (1): 69-70.
    [4]郭应龙,李国兴和尤传永.输电线路舞动[M].北京:中国电力出版社. 2003.
    [5]刘连睿.我国高压架空线路舞动情况及分析[J].华北电力技术. 1989, (9): 40-43.
    [6]黄经亚. 500kV输电线路中山口大跨越5次导线舞动的分析及探讨.[J].电力技术. 1990, (4): 14-20.
    [7]李国兴,李裕彬等.中山口大跨越舞动的分析与防治[C].湖北超高压输变电局. 1992.
    [8] C. B. Rawlins. Research on Vibration of Overhead Ground Wires. [J]. IEEE Transaction on Power Delivery. 1988, 3(2): 769-775.
    [9] S. Gupta, T. Wipf et al. Structural Failure Analysis of 345 kV Transmission Line. [J]. IEEE Transaction on Power Delivery. 1994, 9(2): 894-903.
    [10]杨勇.恶劣天气挑战电网安全. [J].中国电力企业管理. 2005, (4): 30-33.
    [11] M. R. Burns. Distribution Line Hazards that Affect Reliability and the Conductor Repairs and Solutions to Avoid Future Damage. [C]. IEEE Rural Electric Power Conference. 2003, May 4-6: C1/1-C1/13.
    [12]王少华.输电线路覆冰导线舞动及其对塔线体系力学特征影响的研究.重庆大学.博士论文.2008.
    [13]刘连睿.我国高压架空线路导线舞动情况及分析. [J].华北电力技术. 1989, (9): 40-43.
    [14]况月明,刘正云和崔秋菊. 500kV龙斗线、斗双线舞动及其防治措施. [J].湖北电力. 2004, 28(增刊): 8-10.
    [15]宋伟,闫东,卢明等.河南电网220kV线路导线舞动问题的研究. [J].河南电力. 2001, (3): 1-3.
    [16]孙渭清和刘振铎.葛岗云500千伏线路防导线舞动问题. [J].湖南电力技术. 1990, (6): 24-29.
    [17]何隆华.高压输电线路导线舞动. [J].贵州电力技术. 1993, (1): 26-36.
    [18]张宏志.大面积导线覆冰舞动事故的调查与分析. [J].东北电力技术. 2001, (12): 15-19.
    [19]黄经亚.架空送电线路导线舞动的分析研究. [J].中国电力. 1995, (2): 21-26.
    [20]王丽新.输电线路静平衡及动力响应的有限元分析[硕士学位论文].华中科技大学. 2004.
    [21] A. E. Davidson. Dancing Conductors. Transactions of AIEE 1930s 49, 1444-1449.
    [22] Den. Hartog. Transmission Line Vibration Due to Sleet. [J]. AIEE Transmission, 1932: 1074-1086.
    [23] Y. M. Desai, N. Popplewell and J. K. Chan. Static and Dynamic Behavior of Mechanical Components Associated with Electrical Transmission Lines-Ⅲ: Part A: Theoretical Perspective. Shock and Vibration Digest. 1989, 21(12): 3-8.
    [24] Y. M. Desai, N. Popplewell, D. G. Havard and A. H. Shah. Static and Dynamic Behavior of Mechanical Components Associated with Electrical Transmission Lines-Ⅲ: Part B: Experimental and Field Perspective. Shock and Vibration Digest. 1990, 22(3): 3-9.
    [25] K. E. Gawronski. Nonlinear Galloping of Bundle-Conduct or Transmission Lines. Ph. D. Thesis. Clarkson College of Technology. 1977.
    [26] W. N. White. An Analysis of the Influence of Support Stiffness on Transmission Line Galloping Amplitudes. Ph. D. Thesis. Tulane University. 1985.
    [27] J. C. Lee. Suppression of Transmission Line Galloping by Support Compliance Design. Ph. D. Thesis. Tulane University. 1989.
    [28] G. Parkinson. Phenomena and Modeling of Flow-Induced Vibrations of Bluff Bodies. Progress in Aerospace Science. 1989, 26: 169-224.
    [29] K. F. Jones. Coupled Vertical and Horizontal Galloping. J. Engrg. Mech. ASCE 1992, 118(1): 92-107.
    [30] A. Luongo and G. Piccardo. Non-Linear Galloping of Sagged Cables in 1:2 Internal Resonance. J. Sound. Vib. 1998, 214(5): 915-940.
    [31] R. D. Blevins and W. D. Iwan. The Galloping Response of a Tow-Degree-of-Freedom System. J. Apll. Mech. Trans. ASME. 1974, 96(3): 1113-1118.
    [32] P. Yu, A. H. Shah and N. Popplewell. Inertially Coupled Galloping of Iced Conductors. J. Apll. Mech. Trans. ASME. 1992, 59(1): 140-145.
    [33] Y. M. Desai, A. H. Shah and N. Popplewell. Galloping Analysis for Tow-Degree-of-Freedom Oscillator. Journal of Engineering Mechanics, American Society of Civil Engineers. 1990, 116 (12): 2583-2602.
    [34] P. Yu, U. M. Esai, H. Hah and N. Popplewell. Three Degrees-of-Freedom Model for Galloping, Part I: Formulation. Journal of Engineering Mechanics, ASCE. 1993, 119(12):2404-2425.
    [35] P. Yu, U. M. Esai, H. Hah and N.Popplewell. Three Degrees-of-Freedom Model for Galloping, PartⅡ: Solutions and Applications. Journal of Engineering Mechanics, ASCE. 1993, 119 (12): 2426-2448.
    [36] A. Luongo, D. Zulli and G. Piccardo. A Linear Curved-Beam Model for the Analysis of Galloping in Suspended Cables. J. Mech Mater Struct. 2007, 2(4): 675-694.
    [37] A. Luongo, D. Zulli and G. Piccardo. A Nonlinear Model of Curved Beam for the Analysis of Galloping of Suspended Cables. Proceedings of Eighth International Conference on Computational Structures. 2006.
    [38] A. Luongo, D. Zulli and G. Piccardo. On the Effect of Twist Angle on Nonlinear Galloping of Suspended Cables. Computers and Structures. 2009, 87: 1003-1014.
    [39] A. Luongo, D. Zulli and G. Piccardo. Analytical and Numerical approaches to nonlinear galloping of internally resonant suspended cables. Journal of Sound and Vibration. 2008, 315: 375-393.
    [40] R. D. Blevins. Flow-Induced Vibration, 2nd ED. Van Nostrand Reinhold, New York. 1990.
    [41] E. Strmmenand and E. Hjorth-Hansen. The Buffeting Wind Loading of Structural Member at an Arbitrary Attitude in the Flow. J. Wind Eng. Ind. Aerod. 1995, 56(2-3): 267-290.
    [42] A. H. Nayfeh and D.T. Mook. Nonlinear Oscillations. Wiley, New York. 1979.
    [43]刘延柱和陈立群.非线性振动.高等教育出版社,北京. 2001.
    [44] Y. M. Desai, A. H. Shah and N. Popplewell. Galloping Analysis for Two–Degree-of-Freedom Oscillator. Journal of Engineering Mechanics, American Society of Civil Engineers. 1988, 116 (12): 2583-2602.
    [45] H. M. Irvine. Cable Structure. The MIT Press, Cambridge. 1981.
    [46]范钦珊,官飞,赵坤民等.覆冰导线舞动的机理分析及动态模拟.清华大学学报(自然科学版). 1995, 35 (2): 34-40.
    [47]黄经亚.架空送电线路导线舞动的分析研究.中国电力. 1995, (2): 21-26.
    [48]何锃和李国兴.中山口大跨越导线舞动的分析计算.High Voltage Engineering. 1997, 23 (4): 12-14.
    [49]李国兴,李裕彬和刘兴胜.中山口大跨越的分析与治理.湖北省超高压输变电局. 1992, 3.
    [50]侯镭.架空输电线路非线性力学特性研究.清华大学.博士论文. 2008.
    [51]程志军.架空输电线路静动力特性及风振研究.浙江大学.博士论文. 2000.
    [52]陈晓明.大跨越输电线舞动及其控制研究.同济大学.博士论文. 2002.
    [53]张忠河和王藏柱.舞动研究现状及其发展趋势[J].电力情报. 1998, (4): 6-8.
    [54]雷川丽,段炜佳和侯镭.架空输电线舞动的计算机仿真. [J].高电压技术. 2007, 33(10): 178-182.
    [55]蔡廷湘.输电线舞动新机理研究.中国电力. 1998, 31(10): 62-66.
    [56] Z. H. Zhu. Nonlinear Elastodynamic Analysis of Low Tension Cable Using a New Beam Element. Ph. D. Thesis, University of Toronto. 2004.
    [57] J. Mason. Variational, Incremental and Energy Methods in solid Mechanics and Shell Theory. Elsevier Scientific Publishing Company. 1980.
    [58] C. L. Lee and N. C. Perkins. Nonlinear Oscillations of Suspended Cables Containing a Two-to-One Internal Resonance. Nonlinear Dynamics. 1992, 3: 465-490.
    [59] R. W.克拉夫和J.彭津著,王光远译.结构动力学.北京,科学出版社.1981.
    [60] K. G. McConnell and C. N. Chang. A Study of the Axail-Torsional Coupling Effect on a Sagged Transmission Line. Experimental Mech. 1986, 26(4): 324-329.
    [61] A. S. Veletsos and G. R. Darbre. Dynamic Stiffness of Parabolic Cables. Int. J. Earthquake Engrg. Struct. Dynamics. 1983, 11(3): 367-401.
    [62] R. K. Mathur, A. H. Shah, P. G. S. Trainor and N. Popplewell. Dynamics of a Guyed Transmission Tower System. IEEE Trans., PWRD, Power Delivery. 1987, 2(3): 908-916.
    [63] P. C. M. Gortemaker. Galloping Conductors and Evaluation of the Effectiveness of in-Span Dampers. Kema Sci. Tech. Report. 1984, 2(4): 27-39.
    [64] A. Luongo, A. Di Egidio and A. Paolone. On the Proper Form of the Amplitude Modulation Equations of Resonant Systems. Nonlinear Dynamics. 2002, 27: 237-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700