用户名: 密码: 验证码:
单片OEICs的激光微细加工技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单片光电集成器件(OEICs)是利用光电子技术和微电子技术将光电子器件和微电子器件集成到同一衬底而形成的新型器件,可完成光发射、接收和信号处理等多种功能,具有功能强、可靠性高、体积小、成本低等突出优点。相控阵雷达、大容量光纤通信系统、光互连、光计算以及光神经网络等都越来越迫切的需要宽带、高速、高可靠的单片OEICs器件。但由于单片OEICs要将光、电两类结构、性能完全不同的器件集成在同一衬底上,从材料生长到制做工艺都有很大的技术难度,需要解决各种光电兼容问题,因此至今尚未完全实用化。半导体的激光微细加工技术具有“低温处理”、“局域升温”的独特优势,将该技术应用于单片OEICs的制做,有利于解决其中的光电兼容难题。
     本文的工作就是围绕单片OEICs的激光微细加工技术开展的,主要的研究结果和创新之处如下:
     1) 用激光微细加工的方法制做出了InGaAs/InP平面型PIN光探测器,响应度为0.21A/W。这向用激光微细加工方法制做出单片集成光接收机的目标迈出了关键的一步。研究了探测器制做中的激光诱导扩散和激光辅助合金工艺。分析了影响探测器性能的因素,总结了原有工艺的不足,提出了相应的解决方法。
     2) 研制出了激光微细加工中微小区域的温度分布和变化的计算机测量系统。该系统首先在提高了原系统温度分辨率的同时,扩展了测量范围。在温度为600℃时,系统的温度分辨率可达到0.2℃,测量区域的最小直径可达到18μm。系统还利用精密电动平台的精确定位功能和温度信号的实时采集、存储功能,实现了微小热斑温度空间分布和温度随时间快速变化过程的测量。
     3) 研究了激光微细加工中的精确对准问题,提出了相应的解决方法。a)根据激光微细加工区温度分布的特点,设计了搜索算法,实现了测温系统和激光微细加工中微小区域的横向对准。b)从理论上分析了直径仅数十微米的激光微细加工区的温度测量与一般红外辐射测温的对系统纵向对准要求的区别,提出了相应的系统调焦方法,实现了测温系统对激光微细加工区的纵向精确对准。c)提出了不可见的10.6μm激光焦斑和激光微细加工微小窗口
Monolithically optoelectronic integrated circuits (OEICs) integrate optoelecronic components and electronic components onto one chip. It has the advantages of high speed, high reliability, cost-effective, and small size. In applications such as phased array radars and fiber-optic communication systems, monolithic OEICs will be the key components. However, The fabrication of monolithic OEICs is confronted with the incompatibility problem between optoelectronic and electronic components. Though enormous efforts have been made to overcome this difficulty, the problem has not been solved perfectly. Laser assisted microprocessing of semiconductors have the advantages of "low temperture processing" and "direct writing". It is promising to use this technology in the fabrication of OEICs to solve the incompatibility problem.The purpose of this work is to develop the laser microprocessing technologies for the fabrication of monolithic OEICs. The main conclusions and contributions include:1) As the fundamentals of the fabrication of monolithically integrated optical receiver, a planar InGaAs/InP PIN photodiode has been fabricated using laser assisted microprocessing. The responsivity of the fabricated Planar InGaAs/InP PIN photodiodes arrived 0.21A/W. Laser induced diffusion and laser assisted alloying were introduced, and the experimental results were presented.2) A computer-controlled temperature measurement system for the small region in laser assisted microprocessing has been developed. The system can realize the real time temperature measurement of the small laser-exposed region nonintrusively. The system reached a temperature resolution of 0.2 ℃. The measurement region diameter of 18 μm was also obtained.The system can be used to measure the tmerature distributions and the temperature changing versus time in the small region.3) Some precise alignment technologies in the laser assisted microprocessing are proposed, a) Algorithm had been designed to cooperate the move of the
    motorized stage and the acquisition of temperature data. It follows that the measurement of temperature distribution and the accurate location of the highest temperature region were realized, b) The requirement of focusing is stringent in the temperature measurement of the laser-processed region. A focusing method was proposed to solve this problem. The method utilized the calculated focal lengths at different wave bands, and the measured temperature distributions of the same object at different objective distances, c) A method has been proposed to realize the precise alignment between the small invisible laser spot and the diffusion window, d) The alignment between the diffusion window and the etching area in the second ion mass spectrometry analysing has also been realized.4) The temperature rise in a semiconductor substrate induced by a 10.6 μ m focused CW CO2 laser beam has been investigated experimentally. The thermal runaway phenomenon was observed. Then its mechanism was analyzed. A numerical method has been proposed to calculate the stable temperature rise when the optical absorptivity of the substrate increases with the substrate temperature. Then methods including preheating the substrate and feedback controlling the temperature of the exposed region have been proposed to avoid the thermal runaway phenomenon.5) Two methods have been proposed to uniform the temperature distribution in the small processed region, a) It was first proposed to uniform the temperature distribution through modulating of the intensity incident on the surface using a mask. The key of this method is calculating the laser intensity distribution that can induce uniform temperature rise in the diffusion region. The numerical method to solve this problem was described. The results show that when the mean temperature rise in the processed region is about 500 K, the maximum temperature difference of 3.9 K can be achieved, and the temperature distribution approaches "top-hat", b) Another method changes the laser intensity distribution at the focal plane using binary optical elements (BOE). The ideal intensity distribution was calculated firstly. And a genetic algorithm was proposed to design the BOE. The results suggest that this method can also uniform the
引文
[1] Mario Dagenais, Robert F. Leheny, John Crow. Integrated optoelectronics. Academic Press, 1995.
    [2] David A., B. Miller. Optical interconnects to silicon. IEEE Journal on Selected Topics in Quantum Electronics, 2000, Vol. 6, No. 6:1312~1317
    [3] Ashok V. Krishnamoorthy, Keith W. Goossen. Optoelectronic-VLSI: photonics integrated with VLSI circuits. IEEE Journal of Selected Topics in Quantum Electronics, 1998, Vol. 4, No. 6, 899~912
    [4] 韩桂明.光电技术在相控阵雷达中的应用.现代雷达,1997,第二期:92~104
    [5] 梁春广,杨瑞麟.光电集成与光集成的国外进展及评述.半导体情报,1994,Vol.31,No.2:27~37
    [6] 王延峰,高建军,吴德馨.10~40 Gb/s光接收机前端的最新研究进展.半导体技术,2002,Vol.27,No.3:60~63
    [7] 裴为华,陈弘达,邓晖等.倒装焊组装的光电混合集成RCE探测器面阵.光电子·激光,2003,Vol.14,No.9:893~896
    [8] Y. Miyamoto, M. Yoneyama, Y. Imai. 40 Gbit/s optical receiver module using a flip-chip bonding technique for device interconnection. Electronics Letters, 1998, Vol.34 No.5:493~494
    [9] Clifton G. Fonstad, Jr. Optical solder bumps: a modular approach to monolithic optoelectronic integration. 2001 International Semiconductor Device Research Symposium. Washington, DC USA: IEEE, 2001: 584~588
    [10] H. Heidrich, R. Kaiser, P. Albrecht, et al. Analysis of optical crosstalk within optoelectronic integrated circuits including lasers and photodetectors. Applied Physics B, 2001, Vol. 73:581~583
    [11] C. P. Lee, S. Margalit, I. Ury, et al. Integration of an injection laser with a gunn oscillator on a semi-insulating GaAs substrate. Appl. Phys. Lett., 1978, Vol.32, No.12: 806~807
    [12] M. Yust, N. Bar-Chaim, S. H. Izadpanah, et al. A mnolithically integrated optical repeater. Appl. Phys. Lett., 1979, Vol. 35, No. 10:795~797
    [13] Tom P. E. Broekaert, Willie W. Ng, J. F. Jensen, et al. InP-HBT optoelectronic integrated circuits for photonic analog-to-digital conversion. IEEE Journal of Solid-state Electronics, 2001, Vol. 36, No. 9:1335~1341
    [14] Davis H. Hartman, Martin K. Grace, Carl R. Ryan. A Monlithic Silicon Photodetector/amplifier IC for fiber and integrated optics application. Journal of Lightwave Technology, 1985, Vol. LT-3, No. 4:729~738
    [15] T. K. Woodward, A. V. Krishnamoorthy. I Gbit/s CMOS photoreceiver with integrated detector operating at 850 nm. Electronics Letters, 1998, Vol.34, No.2:1252~1253
    [16] R. Swoboda and H. Zimmermann. A low-noise monolithically integrated 1.5 Gb/s optical receiver in 0.6- m BiCMOS Technology. IEEE Journal of Selected Topics in Quantum Electronics, 2003, Vol. 9, No.2:419~424
    [17] S. M. Csutak, J. D. Schaub, W. E. Wu et al. High-speed monolithically integrated silicon optical receiver fabricated in 130-nm CMOS technology. IEEE Photonics Technology Letters, 2002, Vol. 14, No. 4:516~518
    [18] 成步文.Si基高速OEIC光接收机芯片的研究.光电子·激光,2003,Vol.14,No.6:659~664
    [19] Monuko du Plessis, Herzl Aharoni and Lukas W. Snyman. Spatial and intensity modulation of light emission from a silicon LED matrix. IEEE Photonics Technology Letters, 2002, Vol. 14, No.6:768~770
    [20] 陈弘达,孙增辉,毛陆虹等.与CMOS工艺兼容的硅基光发射器件研究进展.光电子·激光,2003,Vol.14,No.3:327~330
    [21] Wada. O., Hamaguchi H., Miura S., et al. Monolithic PIN/preamplifier circuit integrated on a GaAs substrate. Electronics Letters, 1983, Vol. 19, No.24:1031~1032
    [22] M. Makiuchi, H. Hamaguchi, Kumai T., et al. Monolithic four-channel photoreceiver integrated on a GaAs substrate using metal-semiconductor-metal photodiodes and FET's. IEEE Electron Device Letters, 1985, Vol. EDL-6, No.12:634~635
    [23] Wang, J. S., Shih C. G., Chang W. H., et al. 11 GHz bandwidth optical integrated receivers using GaAs MESFET and MSM technology. IEEE Photonics Technology Letters, 1993, Vol. 5, No. 3:316~318
    [24] K. D. Pedrotti, S. Beccue, W. J., Haber, Journal of Lightwave Technology, 1990, Vol. 8, No.9:1334~1342
    [25] Crow, John D., Anderson C. J., Bermon S., et al. GaAs MESFET IC for optical multiprocessor networks. IEEE Transactions on Electron Devices, 1989, Vol. 36, No.2: 263~268
    [26] V. Hurm, W. Benz, M. Berroth, et al. 20 Gbit/s fully integrated MSM-photodiode AlGaAs/GaAs-HEMT optoelectronic receiver. Electronics Letters, 1996, Vol.32, No.7: 683~684
    [27] H. Kawamura, E. Swenatsu, and N. Imai. A 45-50 GHz monolithically integrated HEMT/MSM OEIC receiver. Proc. 25th Eur. Microwave Conf., Bologna, Italy. 1995:990~995
    [28] M. Lang, W. Bronner, W. Benz, et al. Complete monolithic integrated 2.5Gbit/s optoelectronic receiver with large area MSM photodiode for 850 nm wavelength. Electronics Letters, 2001, vol. 37, No. 20: 1247~1249
    [29] V. Hurm, W. Benz, W. Bronner, et al. 40 Gbit/s 1.55 u m pin-HEMT photoreceiver monolithically integrated on 3in GaAs substrate. Electronics Letters, 1998, Vol. 34, No. 21:2060~2062
    [30] Yves Baeyens, Andreas Leven, Wolfgang Bronner, et al. Millimeter-wave long-wavelength integrated optical receivers grown on GaAs. IEEE Photonics Technology Letters, 1999, Vol. 11, No.7: 868~870
    [31] R.E.Leoni III, C. S. Whelan, P. F. Marsh, et al. Metamorphic optoeletronic integrated circuits. IEEE MTT-S International Microwave Symposium Digest, Philadephia, Pennsylvania, USA:IEEE, 2003, Vol.1: 147~150
    [32] H. Nakano, S. Yamashita, T. Tanaka, et al. Monolithic integration of laser diodes, photomonitors and laser driving and monitoring circuits on a semi-insulating GaAs. Journal of Lightwave Technology, 1986, Vol. 4, No. 6: 574~582
    [33] O. Wada, H. Nobuhara, T. Sanada, et al. Optoeletronic integrated four-channel transmitter array incorporating AlGaAs/GaAs quantum-well lasers. Journal of Lightwave Technology, 1989, Vol.7, No.1: 189~197
    [34] J. Hornung, Z.-G Wang, W. Bronner, et al. 7.4 Gbit/s monolithically integrated GaAs/AlGaAs laser driver structure. Electronics Letters, 1993, Vol. 29, No. 19: 1694~1696
    [35] Omar Qasaimeh, Weidong Zhou, Pallab Bhattacharya, et al. Monolithically integrated low-power phototransceivers for optoelectronic parallel sensing and processing applications. Journal of Lightwave Technology, 2001, Vol. 19, No.4: 546~551
    [36] R. F. Lehney, R. E. Nahory, M. A. Pollack, et al. Integrated In_(0.53)Ga_(0.47)As p-i-n F.E.T. photoreveiver. Electronics Letters, 1980, Vol. 16, No.10: 353~355
    [37] Y. Akahori Y. Akatsu, A. Kohzen, et al.. 10Gb/s high-speed monolithically integrated photoreceiver using InGaAs p-i-n PD and planar doped InAlAs/InGaAs HEMTs. IEEE Photonics Technology Letters, 1992, Vol. 4, No.7: 754~754
    [38] S. Chandrasekhar, L. M. Lunardi, A. H. Gnauck, et at. A 10 Gbit/s OEIC photoreceiver using InP/InGaAs heterojunction bipolar transistors. Electronics Letters, 1992, Vol. 28, No.5: 466~468
    [39] L. M. Lunardi, S. Chandrasekhar, A. H. Gnauck, et al. 20-Gb/s monolithic p-i-n/HBT photoreceiver module for 1.55- m applications. IEEE Photonics Technology Letters, 1995, Vol. 7, No. 10: 1201~1203
    [40] B. -U. H. Kelpser, J. Spicher, M. Beck, et al. High speed, monolithically integrated pin-HEMT photoreceiver fabricated on InPwith 18 GHz bandwidth. Electronics Letters, 1995, Vol. 31, No. 21: 1831~1833
    [41] Y. Muramoto, K. Kato, Y. Akahori, et al. High-speed monolithic receiver OEIC consisiting of a waveguide p-i-n photodiode and HEMT's. IEEE Photonics Technology Letters, 1995, Vol. 7, No. 6: 685~687
    [42] H. -G. Bach, A. Umbach, S. van Waasen, et al. Ultrafast monolithically integrated InP-based photoreceiver: OEIC-design. fabrication and system application, IEEE Journal of Selected Topics in Quantum Electronics, 1996, Vol. 2, No. 2: 418~423
    [43] Th. Engel, A. Strittmatter, W. Passenberg, et al. Narrow-band photoreceiver OEIC on InP operating at 38 GHz. IEEE Photonics Technology Letters, 1998, Vol. 10, No.9: 1298~1300
    [44] Andreas Umbach, Thomas Engel, Heinz-Gunter Bah, et al. Technology of InP-based 1.55-μ m ultrafast OEMMICs:40 Gbit/s broad-band and 38/60 GHz narrow-band photoreceivers. IEEE J.of Quantum Electronics, 1999, Vol.35, No.7: 1024-1031
    [45] K. Takahata, Y. Miyamoto, Y. Muramoto, et al. Ultrafast monolithic receiver OEIC module operating at over 40 Gbit/s. Electronics Letters, 1999, Vol. 35, No.4: 322~324
    [46] K. Takahata, Y. Muramoto, H. Fukano, et al. 52 GHz bandwidth monolithically integrated WGPD/HEMT photoreceiver with large O/E conversion factor of 105 V/W. Electronics Letters, 1999, Vol. 35, No.19: 1639~1640
    [47] N. Shimizu, K. Murata, A. Hirano, et al. 40-Gbit/s monolithic digital OEIC composed of unitravel ling-carrier photodiode and InP HEMTs. Electronics Letters, 2000, Vol. 36, No. 14: 1220~1221
    [48] D. Huber, M. Bitter, M. Dulk, et al. A 53 GHz monolithically integrated InP/InGaAs PIN/HBT receiver OEIC with an electrical bandwidth of 63 GHz. Proc.l2th International Conference on InP and Related Material, Williamsburg, USA: IEEE, 2000: 325~328
    [49] Hideki Kamitsuna, Yutaka Matsuoka, ShojiYamahata, et al. Ultrahigh-speed InP/InGaAs DHPTs for OEMMICs. IEEE Transactions on Microwave Theory and Techniques, 2001, Vol.49, No. 10:1921~1925
    [50] Heinz-Gunter Bach, Andreas Beling, Gebre Giorgis, et al. Design and fabrication of 60-Gb/s InP-Based monolithic photoreceiver OEICs and modules. IEEE Journal of Selected Topics in Quantum Eletronics, 2002, Vol. 8, No.6:1445~1450
    [51] J. Shibata, I. Nakao, Yoichi Sasai, et al. Monolithic integration of an InGaAs/InP laser diode with heterojunction bipolar transistors. Appl. Phys. Lett., 1984, Vol. 45:191~193
    [52] N. Suzuki, H. Furuyama, Y. Hirayama, et al. High-speed operation of 1.5 μm GaInAsP/InP optoelectronic integrated laser drivers. Eletronics Letters, 1988, Vol.24, No. 8:467~468
    [53] Y. H. Lo, P. Grabbe, M. Z. Igbel, et al. Multigigabit/s 1.5 μm 1/4-shifted DFB OEIC transmitter and its use in transmission experiments. IEEE Photonics Technology Letters, 1990, Vol. 2, No.9:673~674
    [54] K. -Y Liou, S. Chandrasekhar, A. G. Dentai, et al. A 5 Gb/s monolithically integrated lightwave transmitter with 1.5 μm multiple quantum well laser and HBT driver circuit. IEEE Photonics Technology Letters, 1991, Vol.3, No. 10:928~930
    [55] Daniel Yap, Kenneth R. Elliot, Young K. Brown, et al. High-speed integrated optoelectronic modulation circuit. IEEE Photonics Technology Letters, 2001, Vol. 13, No.6:626~628
    [56] S. Pradhan, P. Bhattacharya and W. K. Liu. Monolithically integrated 1.55 μm photoreceiver-laser driver optoelectronic integrated circuit. Electronics Letters, 2002, Vol. 38, No.17:987~989
    [57] 周炳琨.1991光电子器件与集成技术年会论文集.北京:清华大学出版社,1992
    [58] 敖金平,刘伟吉,李献杰等.单片集成长波长光接收机.半导体光电,2002,Vol.23,No.1:26~28
    [59] 李献杰,曾庆明,徐晓春等.1.55μm光发射技术研究.半导体光电,2002,Vol.23,No.1:23~25
    [60] Sun Zeng hui, Chen Hongda, Mao luhong, et al. Simulation of a silicon LED in standard CMOS technology.半导体学报, 2003, Vol. 24, No.3:255~259
    [61] 李炜,毛陆虹,陈弘达等.CMOS兼容光电单片接收机的模拟与设计.半导体学报,2003,Vol.24,No.9:960~965
    [62] 崇英哲,黄辉,王兴妍等.高性能pin/HBT集成光接收机前端设计.半导体光电,2003,Vol.24,No.4:248~250
    [63] 叶玉堂.激光微细加工.成都:电子科技大学出版社,1995
    [64] F. I. Harper and M. I. Cohen. Properties of Si diodes prepared by alloying Al into n-type Si with heat pulses from a Nd:YAG laser. Solid State Electronics, 1970, Vol. 13: 1103~1109
    [65] J. M. Fairfield and G. H. Schwuttke. Silicon diodes made by laser irradiation. Solid State Electronics, 1968, Vol.11: 1175~1176
    [66] D. J. Ehrlich, J. Y. Tsao. Submicrometer-linewidth doping and relief definition in silicon by laser-controlled diffusion. Appl. Phys. Lett., 1982, Vol.41, No.3:297~299
    [67] P. Baumgartner, K. Brunner, G. Abstreiter, et al. Fabrication of in-plane-gate transistor structures by focused laser beam-induced Zn doping of modulation-doped GaAs/AIGaAs quantum wells. Appl. Phys. Lett., 1994, Vol. 64, No. 5:592~594
    [68] M. Holzman, P. Baumgartner, C. Engel, et al. Fabrication of n- and p-channel in-plane-gate transistors from Si/SiGe/Ge heterostructures by focused laser beam writing. Appl. Phys. Lett., 1996, Vol. 68, No.21 : 3025~3027
    [69] P. Baumgartner, W. Wegscheider, M. Bichier, et al. Single-electron transistor fabricated by focused laser beam-induced doping of a GaAs/AlGaAs heterostructure. Appl. Phys. Lett., 1997, Vol. 70, No.16:2135~2137
    [70] A. Pokhmurska, O. Bonchik, S. Kiyak et al. Laser doping in Si, InP and GaAs. Applied Surface science, 2000, 154-155:712~715
    [71] A. Yu. Bonchik, S. G. Kijak, Z. Gotra, et al. Laser technology for submicron-doped layers formation in semiconductors. Optics & Laser Technology, 2001, 33:589~591
    [72] K. Sera, F. Okumura, Kaneko, et al. Excimer-laser doping into Si thin films. Journal of Applied Physics, 1990, Vol. 67, No.5:2359~2363
    [73] G. K. Giust and T. W. Sigmon. High-performance thin-film transistors fabricated using excimer laser processing and grain engineering. IEEE Transactions on Electron Devices, 1998, Vol. 45, No.4:925~932
    [74] Cheon-Hong Kim, Sang-Hoon Jung, Juhn-Suk Yoo, et al. Poly-Si TFT fabricated by laser-induced in-situ fluorine passivation and laser doping. IEEE Electron Device Letters, 2001, Vol. 22, No.8: 396~398
    [75] Dominique D., Gurwan K., Takasi N., et al. Laser doping for ultra-shallow junctions monitored by time resolved optical measurements. IEICE Trans.Electron, 2002, Vol. E85-c, No. 5:1098~1102
    [76] Eun Sik Jung, Ji Chel Bea and Young Jae Lee. Ultra-shallow junction with elevated SiGe source/drain fabricated by laser-induced atomic layer doping. Electronics Letters, 2002, Vol. 38, No. 16: 926~927
    [77] Y. Hatanaka, T. Aoki, M. Niraula, et al. Laser doping technique for II - VI semiconductors, ZnSe and CdTe. Proceedings of the 5th Asian Symposium on Information Display, Hsingchu, Taiwan: IEEE, 1999: 65~68
    [78] H. Tsukamoto. 150nm-gate p-channel MOSFET fabrication using laser annealing. Electronics Letters, 1998, Vol.34, No. 4: 401~403
    [79] S. D. McDougall, O. P. Kowalski, J. H. Marsh, et al. Broad optical bandwidth InGaAs-InAlGaAs light-emitting diodes fabricated using a laser annealing process. IEEE Photonics Technology Letters, 1999, Vol.11 No. 12: 1557~1559
    [80] H. S. Lim, V. Aimez, B. S. Ooi. et al. A novel fabrication technique for multiple-wavelength photonic-integrated devices in InGaAs-InGaAsP laser heterostructures. IEEE Photonics Technology Letters, 2002, Vol.14, No. 5: 594~596
    [81] Min-Cheol Lee, In-Hyuk Song and Min-Koo Han. Grain boundary controlled poly-Si TFT process employing selective Si ion implantation and excimer laser annealing. International semiconductor device research symposium, 2001, Washington, DC, USA:IEEE, 2001:85~88
    [82] Seong-Dong Kim, Cheol-Min Park and Jason C. S. Woo. Advanced source/drain engineering for box-shaped ultrashallow junction formation using laser annealing and pre-amorphization implantation in sub-100-nm SOI CMOS. IEEE Transactions on Electron Devices, 2002, Vol.49, No. 10: 1748~1754
    [83] Soo Young Yoon, Nigel Young, P. J. van der Zang, et al. High-performance poly-Si TFTs made by ni-mediated crystallization through low-shot laser annealing. IEEE Electron Device Letters, 2003, Vol. 24, No.1: 1~3
    [84] Hassaun A. Jones-Bey. Laser annealing moves into semiconductor manufacturing. Laser Focus World, 2002, Vol.38, No.9: 32
    [85] D. J. Ehrlich, et al. Spatially delineated growth of metal films via photochemical prenucleation. Appl. Phys. Lett., 1981, Vol.38, No.11: 946~948
    [86] D. J. Ehrlich, R. M. Osgood, et al. Laser-induced microscopic etching of GaAs and InP. Appl. Phys. Lett, 1981, Vol.36, No. 8:698~700
    [87] T. F. Deutch, D. J. Ehrlich, et al. Laser photodeposition of metal films with microscopic features. Appl. Phys. Lett., 1979, Vol.35, No. 2:175~177
    [88] Hiroyuki Yabe, Akihisa Takahashi, Tetsumi Sumiyoshi, et al. Direct writing of conductive aluminum line on aluminum nitride ceramics by transversely excited atmospheric CO_2 laser, Appl. Phys. Lett, 1997, Vol. 71, No. 19:2758~2760
    [89] Ghandour, Osman A. Scarmozzino Robert, Osgood Richard M. Jr, et al. Laser-assisted thermally enhanced InP via etching for microwave device applications. IEEE Transactions on Semiconductor Mnaufacturing, 1993, Vol. 6, No. 4:357~360
    [90] M. Muilenborn, H. Dirac and J. W. Petersen. Silicon nanostructures produced by laser direct etching. Appl. Phys. Lett., 1995, Vol. 66, No. 22:3001~3003
    [91] A. Starovoitov and S. Bayliss. Structured Iuminescent porous silicon layers produced with laser assisted chemical etching. Appl. Phys. Lett., 1998, Vol. 73, No. 9: 1284~1286
    [92] C. J. Newsome, M. O'Neill and R. J. Farley. Laser etched gratings on polymer layers for alignment of liquid crystals. Appl, Phys. Lett., 2004, Vol.72,No.17:2078~2080
    [93] Drouet d'Aubigny, Christian Y, Walker C. K., et al. Laser microchemical etching of waveguides and quasi-optical components. Proceedings of SPIE-The International Society for Optical Engineering, Micromaching and Microfabrication Process Technology Ⅶ, 2001, Vol. 4557:101~110
    [94] T. Akane, K. Sugioka, S. Nomura, et al. F2 laser etching of GaN. Applied Surface Science, 2000, Vol.168:335~339
    [95] Yang Fu-Hsiang, Hsiao Chao-Jen, Yang Ying-Jay, et al. Fabrication of blue GaN light-emitting diodes by laser etching. Japanese Journal of Applied Physics, Part 2: Letters, 2002, Vol.41, No. 4:L468~L470
    [96] 李刚,沈复初,姚奎鸿等.高阻硅低温欧姆接触.半导体学报,1988,Vol.9,No.2:208~210
    [97] 马景林,周瑞英,李国辉等.磷砷化镓离子注入层的CW CO_2激光退火研究.半导体学报,1984,Vol.5,No.6:676~678
    [98] 殷士端,张敬平,顾诠等.硅中注铅的连续CO_2激光激光退火行为.半导体学报,1987.Vol.8.No.6:665~668
    [99] 朱兵,鲍希茂,李和生.用连续CO_2激光在n-InP上制备欧姆接触.半导体学报,1984,Vol.5,No.5:554~556
    [100] 邹世昌,林成鲁.半导体的CO_2激光退火和合金化.物理学报,1982,Vol.31,No.8:1038~1044
    [101] 傅春寅,鲁永令.在N型硅中激光掺金.半导体学报,1984,Vol.5,No.3:323~326
    [102] 弓继书,郑宝真,庄蔚华等.注Zn~+-GaAs的激光退火及GaAs欧姆接触的激光合金化.半导体学报,1980,Vol.1,No.4:311~316
    [103] 王红卫,杨景铭,钱佩信.激光单条扫描定域再结晶SOI技术研究.电子学报,1996,Vol.24,No.2:22~27
    [104] 叶玉堂,李忠东,洪永和等.用固态杂质源在GaAs衬底上实现的连续波CO_2激光诱导zn扩散.中国激光,1997,Vol.24,No.3:237~241
    [105] 叶玉堂,李忠东,洪永和等.GaAs衬底的固态杂质源脉冲1.06μm激光诱导扩散.光学学报,1997,Vol.17,No.4.:419~422
    [106] Qihong Lou. Development of excimer laser and its applications at SIOFM. Proceedings of Pacific Rim Conference on lasers and electro-optics, 1999, Seoul, South Korea:IEEE, 1999:801
    [107] 刘传珍,杨柏梁,李牧菊等.激光退火法低温制备多晶硅薄膜的研究.液晶与显示,2000,Vol.15,No.1:46~52
    [108] 张燕,李向阳,姜润清等.砷注入碲镉汞的激光退火.红外技术,2000,Vol.22,No.4:26~29
    [109] 马柄和,苑伟政,李铁军等.准分子激光直接刻蚀单晶硅研究.西北工业大学学报,2000,Vol.18,No.3:491~495
    [110] 蔡志华,田洪涛,陈朝等.Nd:YAG连续激光诱导下InP的Zn掺杂.量子电子学报,2002,Vol.19,No.5:467~470
    [111] 赵宇,孟庆端,胡礼中等.激光刻蚀与化学腐蚀结合法制备量子线(点)结构.大连理工大学学报,2003,Vol.43,No.3:382~384
    [112] GC LIM, Tuan Anh MAI. Laser micro-fabrications: present to future applications. Isamu Miyamoto, Yong Feng Lu, Koji Sugioka, Jan J. Dubowski, Editors, Second International Symposium on Laser Precision Microfabrication, Proceedings of SPIE, 2002, Vol. 4426:170~176
    [113] K. Naessens, Heidi Ottevaere, P. Van Daele, et al. Flexible fabrication of microlenses in polymer layers with excimer laser ablation. Applied Surface Science, 2003, Vol. 208-209:159~164
    [114] Satoshi Kawata, Hong-Bo Sun. Two-photon photopolymerization as a tool for making micro-devices. Applied Surface science, 2003, Vol. 208-209:153~158
    [115] N. Grote, H. Venghaus. 光纤通信器件.国防工业出版社,2003
    [116] M. Agethen, D. Keiper, G. Janssen. InGaAs PIN detectors for frequencies above 100 GHz. Conference Proceedings- International Confernce on Indium Phosphide and Related Materials, May 12-16,2002, Stockholm, Sweden:IEEE, 2002:673~675
    [117] A. Umbach, D. Trommer, R. Steingruber, et al. High-speed, high-power 1.55 μm photodetectors. Optical and Quantum Electronics, 2001, Vol. 33, No.7-10:1101~1112
    [118] K. Kato, A. Kozen, Y. Muramoto et al. 110-GHz, 50%-efficiency mushroom-mesa waveguide p-i-n photodiode for a 1.55-mm wavelength. IEEE Photonics Technology Letters, 1994, Vol. 6, No.6:719~721
    [119] N. Shimizu, N. Watanabe, T. Furuta, et al. InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz. IEEE Photonics Technology Letter, 1998, Vol. 10, No. 3:412~414
    [120] 徐之韬,王任凡,陈浩瀚.10 Gbit/s高速GaInAs/InP平面PIN的研究.光通信研究,1998,sum No.89:37~41
    [121] C. P. Skrimshire, J. R. Farr, M. J. Robertson, et al. Reliability of mesa and planar InGaAs PIN photodiodes, IEE PROCEEDINGS, 1990, Vol. 137, Pt. J.,No. 1: 74~78
    [122] G. Wang, Y. Yoneda, I. Hanawa, et al. Highly reliable high performance waveguide-integrated InP/InGaAs pin photodiode for 40 Gbit/s fibre-optical communication. Electronics Letters. 2003. Vol. 39. No. 15:1147~1149
    [123] 李忠东,叶玉堂,洪永和等.连续波激光诱导扩散区温度的不接触测量.应用科学学报,1997,Vol.15,No.4:413~417
    [124] Brian Tuck. Atomic diffusion in Ⅲ-Ⅳ semiconductors, IOP Publishing Ltd., 1988,
    [125] Ch Lauterbach. Zinc diffusion in InP from spin-on films of various zinc concentration. Semicond.Sci.Technol., 1995, 10(1995): 500~503
    [126] G. J. van Gurp, T. van Dongen, G. M. Fontijn, et al. Interstitial and substitutional Zn in InP and InGaAsP. Journal of Applied Physics, 1989, Vol. 65, No.2:553~559
    [127] J. E. Haysom, R. Glew, C. Blaauw, et al. Improved p-doping profiles in lasers and modulators. Conference Proceedings- International Confernce on Indium Phosphide and Related Materials, May 12-16,2002, Stockholm, Sweden:IEEE, 2002:627~630
    [128] K. H. Yoon, Y. H. Lee, D. H. Yeo, et al. The characteristics of Zn-doped InP using spin-on dopant as a diffusion source. Journal of Electronic Materials, 2002, Vol. 31, No.4:244~247
    [129] Shiwei FENG, Jun HU, Yicheng LU, et al. Comparative studies of p-type InP layers formed by Zn_3As_2 and Zn_3P_2 diffusion. Journal of Electronic Materials, 2003, Vol. 32, No.9:932~934
    [130] U. Schade and P. Enders. Rapid thermal processing of zinc diffusion in indium phosphide. Semicond. Sci. Technol., 1992, No,7(1992): 752~757
    [131] B. Stritzker, A. Pospieszczyk, J. A. Tagle. Measurement of lattice temperature of silicon during pulsed laser annealing. Physical Review Letters, 1981, Vol. 47, No.5:356~358
    [132] Daniel Guidotti, John G. Wilman. Novel and nonintrusive optical thermometer. Appl. Phys. Lett, 1992, Vol. 60, No.5:524~526
    [133] Y. H. Zhou and Z. M. Zhang. Effects of radiative properties of surfaces on radiometric temperature measurement. D. P. Dewitt,et al. editors, 9th International Conference on Advanced Thermal Processing of Semiconductors-RTP' 2001, September25-2 9,2001, Hiton, Anchorage ALaska:IEEE, 2001: 179~188
    [134] Jianhui Gu, Siu-Chung Tam, Yee-Loy Lam, et al. Laser-induced temperature-rise measurement by infrared imaging. Henry Heivajian, Koji Sugioka, Malcolm C. Gower, Jan J. Dubowski, Editors, Laser Applications in Microelectronic and Optoelectronic, manufacturing Proceedings of SPIE,2000, Vol.3933:388~395
    [135] M. B. Ignatiev, I. Yu. Smurov, G. Flamant, et al. Surface temperature measurements during pulsed laser action on metallic and ceramic materials. Applied Surface Science, 1996, 96-98:505~512
    [136] M. Ignatiev, I. Yu. Smurov, G. Flament, et al. Two-dimensional resolution pyrometer for real-time monitoring of temperature image in laser materials processing. Applied Surface Science, 1997, 109-110:498~508
    [137] 梁耀荣.激光加工点温度测量装置的光学系统参数的计算与选定.航空精密制造技术,1997,Vol.33,No.1:19~21
    [138] 高魁明,周玮.红外辐射与红外探测器.基础自动化,1995,第一期:42~46
    [139] 胡士凌.光电子线路.北京:北京理工大学出版社,2004
    [140] M. Lax. Temperature rise induced by a laser beam. Journal of Applied Physics, 1977, Vol. 48, No. 9:3919~3924
    [141] 苏显渝,李继陶.信息光学.北京:科学出版社,1999,
    [142] 李锡善,蒋海英,蒋安民.光学玻璃的色散特性测量及近似计算方法的讨论.光学学报,1995,Vol.15,No.2:207~210
    [143] 沈金萱,屈逢源.离子注入硅片的CW CO_2激光退火固相外延模型.半导体学报,1983,Vol.4,No.1:56~63
    [144] M. R. T. Siregar, W. Luthy and K. Affiter. Dynamics of CO_2 laser heating in the processing of silicon. Appl. Phys. Lett, 1980, Vol. 36, No. 10, 788~789
    [145] M. K. Loze and C. D. Wright. Temperature distributions in semi-infinite and finite-thickness media as a result of absorption of laser light. Applied Optics, 1997, Vol. 36, No.2:494~507
    [146] Pablo Loza, Dmitri Kouznetsov and Roberto Ortega. Temperature distribution in a uniform medium heated by linear absorption of a Gaussian light beam. Applied Optics, 1994, Vol.33, No.18:3831~3836
    [147] R. A. Ghez and R. A. Laff. Laser heating and melting of thin films on low-conductivity substrates. Journal of Applied Physics, 1975, Vol. 46, No.5:2103~2110
    [148] Shen Zhonghua, Lu Jian Ni Xiaowu. An analytical solution to the problem of laser-induced heating and melting of semiconductors. Chinese Journal of Lasers, 1998, A25(7).: 632~635
    [149] 魏在福,查鸿逵,王润文.激光加热温度场物理分析.光学学报,1994,Vol.14,No.4:355~359
    [150] 魏学勤,郑启光,汪洪海等.激光输出不稳定性对激光与物质热作用的影响.光学学报.1999,Vol.19,No.2:206~210
    [151] Yong-Feng LU and Yoshinobu AOYAGI. Temperature rise and heat flux induced by laser beam with double-Gaussian intensity distribution. Japanese Journal of Applied Physics, 1995, Vol. 34, Part 1, No. 7A: 3759~3763
    [152] 袁南儿.计算机新型控制策略及其应用.清华大学出版社,1998,
    [153] Sic Pooh Chang, Jin-Min Kuo, Yar-Ping Lee, et al. Transformation of Gaussian to coherent uniform beams by inverse-Gaussian transmittive filters. Applied Optics, 1998, Vol. 37, No. 4:747~752
    [154] 李永平,陈德伟,王炜.应用于光束均匀化整形的SAGAGD算法.强激光与粒子束,2002,Vol.14,No.1:61~63
    [155] 鲁建业,李琦,董蕴华等.采用混合遗传.模拟退火算法对DOE的直接设计,光电

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700